首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1.

Results

Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site.

Conclusions

We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria.

Reviewers

This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann) and Dr. Shamil Sunyaev.  相似文献   

2.
3.
Release factors (RFs) govern the termination phase of protein synthesis. Human mitochondria harbor four different members of the class 1 RF family: RF1Lmt/mtRF1a, RF1mt, C12orf65 and ICT1. The homolog of the essential ICT1 factor is widely distributed in bacteria and organelles and has the peculiar feature in human mitochondria to be part of the ribosome as a ribosomal protein of the large subunit. The factor has been suggested to rescue stalled ribosomes in a codon-independent manner. The mechanism of action of this factor was obscure and is addressed here. Using a homologous mitochondria system of purified components, we demonstrate that the integrated ICT1 has no rescue activity. Rather, purified ICT1 binds stoichiometrically to mitochondrial ribosomes in addition to the integrated copy and functions as a general rescue factor, i.e. it releases the polypeptide from the peptidyl tRNA from ribosomes stalled at the end or in the middle of an mRNA or even from non-programmed ribosomes. The data suggest that the unusual termination at a sense codon (AGA/G) of the oxidative-phosphorylation enzymes CO1 and ND6 is also performed by ICT1 challenging a previous model, according to which RF1Lmt/mtRF1a is responsible for the translation termination at non-standard stop codons. We also demonstrate by mutational analyses that the unique insertion sequence present in the N-terminal domain of ICT1 is essential for peptide release rather than for ribosome binding. The function of RF1mt, another member of the class1 RFs in mammalian mitochondria, was also examined and is discussed.  相似文献   

4.
5.
Mitochondrial translation synthesizes key subunits of the respiratory complexes. In Schizosaccharomyces pombe, strains lacking Mrf1, the mitochondrial stop codon recognition factor, are viable, suggesting that other factors can play a role in translation termination. S. pombe contains four predicted peptidyl tRNA hydrolases, two of which (Pth3 and Pth4), have a GGQ motif that is conserved in class I release factors. We show that high dosage of Pth4 can compensate for the absence of Mrf1 and loss of Pth4 exacerbates the lack of Mrf1. Also Pth4 is a component of the mitochondrial ribosome, suggesting that it could help recycling stalled ribosomes.  相似文献   

6.
M Yarus 《Molecular cell》2001,8(4):733-734
In the October 5th issue of Cell, clarify the end of translation on a eubacterial mRNA. By elucidating the molecular choreography of class I and class II release factors within the ribosome, they show how the steps around the release of nascent protein are ordered.  相似文献   

7.

Background

Termination of translation in eukaryotes is controlled by two interacting polypeptide chain release factors, eRFl and eRF3. eRFl recognizes nonsense codons UAA, UAG and UGA, while eRF3 stimulates polypeptide release from the ribosome in a GTP- and eRFl – dependent manner. Recent studies has shown that proteins interacting with these release factors can modulate the efficiency of nonsense codon readthrough.

Results

We have isolated a nonessential yeast gene, which causes suppression of nonsense mutations, being in a multicopy state. This gene encodes a protein designated Itt1p, possessing a zinc finger domain characteristic of the TRIAD proteins of higher eukaryotes. Overexpression of Itt1p decreases the efficiency of translation termination, resulting in the readthrough of all three types of nonsense codons. Itt1p interacts in vitro with both eRFl and eRF3. Overexpression of eRFl, but not of eRF3, abolishes the nonsense suppressor effect of overexpressed Itt1p.

Conclusions

The data obtained demonstrate that Itt1p can modulate the efficiency of translation termination in yeast. This protein possesses a zinc finger domain characteristic of the TRIAD proteins of higher eukaryotes, and this is a first observation of such protein being involved in translation.  相似文献   

8.
H J Pel  C Maat  M Rep    L A Grivell 《Nucleic acids research》1992,20(23):6339-6346
We report the molecular cloning, sequencing and genetic characterization of the first gene encoding an organellar polypeptide chain release factor, the MRF1 gene of the yeast Saccharomyces cerevisiae. The MRF1 gene was cloned by genetic complementation of a respiratory deficient mutant disturbed in the expression of the mitochondrial genes encoding cytochrome c oxidase subunit 1 and 2, COX1 and COX2. For COX1 this defect has been attributed to an impaired processing of several introns. Sequence analysis of the MRF1 gene revealed that it encodes a protein highly similar to prokaryotic peptide chain release factors, especially RF-1. Disruption of the gene results in a high instability of the mitochondrial genome, a hallmark for a strict lesion in mitochondrial protein synthesis. The respiratory negative phenotype of mrf1 mutants lacking all known mitochondrial introns and the reduced synthesis of mitochondrial translation products encoded by unsplit genes confirm a primary defect in mitochondrial protein synthesis. Over-expression of the MRF1 gene in a mitochondrial nonsense suppressor strain reduces suppression in a dosage-dependent manner, shedding new light on the role of the '530 region' of 16S-like ribosomal RNA in translational fidelity.  相似文献   

9.
Translation of genetic information encoded in messenger RNAs into polypeptide sequences is carried out by ribosomes in all organisms. When a full protein is synthesized, a stop codon positioned in the ribosomal A site signals termination of translation and protein release. Translation termination depends on class I release factors. Recently, atomic-resolution crystal structures were determined for bacterial 70S ribosome termination complexes bound with release factors RF1 or RF2. In combination with recent biochemical studies, the structures resolve long-standing questions about translation termination. They bring insights into the mechanisms of recognition of all three stop codons, peptidyl-tRNA hydrolysis, and coordination of stop-codon recognition with peptidyl-tRNA hydrolysis. In this review, the structural aspects of these mechanisms are discussed.  相似文献   

10.
11.
Most cell death stimuli trigger the mitochondrial release of cytochrome c and other cofactors that induce caspase activation and ensuing apoptosis. Apoptosis is also associated with massive mitochondrial fragmentation and cristae remodeling. Dynamin-related protein 1 (Drp1), a protein of the mitochondrial fission machinery, has been reported to participate in apoptotic mitochondrial fragmentation. Several theories explaining the mechanisms of cytochrome c release have been proposed. One suggests that it relies on the activation of Drp1-mediated mitochondrial fission. Here, we report that downregulation of Drp1 inhibits fragmentation of the mitochondrial network and partially prevents the release of cytochrome c but fails to prevent the release of other mitochondrial factors such as second mitochondria-derived activator of caspase/direct IAP-binding protein with low pI, Omi/HtrA2, adenylate kinase 2 and deafness dystonia peptide/TIMM8a. An explanation for the prevention of cytochrome c release is provided by our observation that inhibiting Drp1-mediated mitochondrial fission prevents the mitochondrial release of soluble OPA1 that was proposed to regulate cristae remodeling and complete cytochrome c release during apoptosis. Finally, we observed that downregulation of Drp1 delays but does not inhibit apoptosis, suggesting that mitochondrial fragmentation is not a prerequisite for apoptosis.  相似文献   

12.
When a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved. In archaea, archaeal elongation factor 1 alpha (aEF1α), a carrier GTPase for tRNA, acts as a class II RF by forming a heterodimeric complex with archaeal RF1 (aRF1). We report the crystal structure of the aRF1·aEF1α complex, the first active class I and II RF complex. This structure remarkably resembles the tRNA·EF–Tu complex, suggesting that aRF1 is efficiently delivered to the ribosomal A site, by mimicking tRNA. It provides insights into the mechanism that couples GTP hydrolysis by the class II RF to stop codon recognition and peptidyl-tRNA hydrolysis by the class I RF. We discuss the different mechanisms by which aEF1α recognizes aRF1 and aPelota, another aRF1-related protein and molecular evolution of the three functions of aEF1α.  相似文献   

13.
We have previously identified a protein with Mr approximately 40,000 (p40) that binds with high specificity and affinity to the 5'-untranslated leaders of mitochondrial mRNAs in yeast. Here we show that this protein is abundant, comprising about 0.4% of total mitochondrial protein. p40 is present in a cytoplasmic (rho degree) petite mutant that lacks mitochondrial protein synthesis and is therefore nuclear encoded. p40 can be detected by immunological techniques in cell lysates of several different pet mutants, specifically disturbed in the translation of individual mitochondrial mRNAs. It is thus not one of the translation factors defined by any of these mutations. In the case of a pet111 mutant, which is specifically blocked in the translation of COX2 mRNA, extracts still display COX2 mRNA binding activity, indicating that p40 complex formation in vitro is not dependent on the presence of PET111.  相似文献   

14.
eIF3j is one of the eukaryotic translation factors originally reported as the labile subunit of the eukaryotic translation initiation factor eIF3. The yeast homolog of this protein, Hcr1, has been implicated in stringent AUG recognition as well as in controlling translation termination and stop codon readthrough. Using a reconstituted mammalian in vitro translation system, we showed that the human protein eIF3j is also important for translation termination. We showed that eIF3j stimulates peptidyl-tRNA hydrolysis induced by a complex of eukaryotic release factors, eRF1-eRF3. Moreover, in combination with the initiation factor eIF3, which also stimulates peptide release, eIF3j activity in translation termination increases. We found that eIF3j interacts with the pre-termination ribosomal complex, and eRF3 destabilises this interaction. In the solution, these proteins bind to each other and to other participants of translation termination, eRF1 and PABP, in the presence of GTP. Using a toe-printing assay, we determined the stage at which eIF3j functions – binding of release factors to the A-site of the ribosome before GTP hydrolysis. Based on these data, we assumed that human eIF3j is involved in the regulation of translation termination by loading release factors into the ribosome.  相似文献   

15.
16.
Koc EC  Koc H 《Biochimica et biophysica acta》2012,1819(9-10):1055-1066
Mitochondria are responsible for the production of over 90% of the energy in eukaryotes through oxidative phosphorylation performed by electron transfer and ATP synthase complexes. Mitochondrial translation machinery is responsible for the synthesis of 13 essential proteins of these complexes encoded by the mitochondrial genome. Emerging data suggest that acetyl-CoA, NAD(+), and ATP are involved in regulation of this machinery through post-translational modifications of its protein components. Recent high-throughput proteomics analyses and mapping studies have provided further evidence for phosphorylation and acetylation of ribosomal proteins and translation factors. Here, we will review our current knowledge related to these modifications and their possible role(s) in the regulation of mitochondrial protein synthesis using the homology between mitochondrial and bacterial translation machineries. However, we have yet to determine the effects of phosphorylation and acetylation of translation components in mammalian mitochondrial biogenesis. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.  相似文献   

17.
Transient global brain ischemia induces dysfunctions of mitochondria including disturbance in mitochondrial protein synthesis and inhibition of respiratory chain complexes. Due to capacity of mitochondria to release apoptogenic proteins, ischemia-induced mitochondrial dysfunction is considered to be a key event coupling cerebral blood flow arrest to neuronal cell death. Ischemic preconditioning (IPC) represents an important phenomenon of adaptation of central nervous system (CNS) to sub-lethal short-term ischemia, which results in increased tolerance of CNS to the lethal ischemia. In this study we have determined the effect of ischemic preconditioning on ischemia/reperfusion-associated inhibition of mitochondrial protein synthesis and activity of mitochondrial respiratory chain complexes I and IV in the hippocampus of rats. Global brain ischemia was induced by 4-vessel occlusion in duration of 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later, 15 min of lethal ischemia was induced. Our results showed that IPC affects ischemia-induced dysfunction of hippocampal mitochondria in two different ways. Repression of mitochondrial translation induced during reperfusion of the ischemic brain is significantly attenuated by IPC. Slight protective effect of IPC was documented for complex IV, but not for complex I. Despite this, protective effect of IPC on ischemia/reperfusion-associated changes in integrity of mitochondrial membrane and membrane proteins were observed. Since IPC exhibited also inhibitory effect on translocation of p53 to mitochondria, our results indicate that IPC affects downstream processes connecting mitochondrial dysfunction to neuronal cell death.  相似文献   

18.
Translation termination is promoted by class 1 and class 2 release factors in all domains of life. While the role of the bacterial class 1 factors, RF1 and RF2, in translation termination is well understood, the precise contribution of the bacterial class 2 release factor, RF3, to this process remains less clear. Here, we use a combination of binding assays and pre-steady state kinetics to provide a kinetic and thermodynamic framework for understanding the role of the translational GTPase RF3 in bacterial translation termination. First, we find that GDP and GTP have similar affinities for RF3 and that, on average, the t1/2 for nucleotide dissociation from the protein is 1–2 min. We further show that RF3:GDPNP, but not RF3:GDP, tightly associates with the ribosome pre- and post-termination complexes. Finally, we use stopped-flow fluorescence to demonstrate that RF3:GTP enhances RF1 dissociation rates by over 500-fold, providing the first direct observation of this step. Importantly, catalytically inactive variants of RF1 are not rapidly dissociated from the ribosome by RF3:GTP, arguing that a rotated state of the ribosome must be sampled for this step to efficiently occur. Together, these data define a more precise role for RF3 in translation termination and provide insights into the function of this family of translational GTPases.  相似文献   

19.
20.
Proinflammatory cytokines such as tumour necrosis factor (TNF)-alpha, interleukin (IL)-1 beta and IL-18 are key mediators of joint inflammation during rheumatoid arthritis (RA). This chronic inflammation may result from a non-specific innate immune response that could be triggered by a wide variety of microorganisms, because numerous bacterial fragments have been identified in the joints of RA patients. As we have demonstrated previously that protein I/II, a pathogen-associated molecular pattern (PAMP) from oral streptococci, triggers IL-6 and IL-8 gene expression and release from either THP-1 cells or fibroblast-like synoviocytes (FLSs), we next explored the capacity of protein I/II to induce the synthesis and release of IL-18 in THP-1 cells and in FLSs isolated from either RA or osteoarthritis (OA) patients. We demonstrate that protein I/II induced IL-18 mRNA in both THP-1 cells and FLSs but, in contrast to THP-1 cells, gene expression was not associated with the synthesis of the corresponding protein in FLSs. Furthermore, our studies revealed that FLSs did not express the biologically inactive precursor, pro-IL-18, in response to protein I/II. Using actinomycin D, we also showed that IL-18 mRNA is unstable in FLSs. Taken together, these data indicate that lack of IL-18 release from activated FLSs results from a defect in translation of IL-18 mRNA into pro-IL-18 because of rapid degradation of IL-18 mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号