首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty-six axenic strains of planktonic Anabaena with coiled trichomes belonging to 13 species were investigated by analyzing the pattern and content of their fatty acid composition, and by comparing their fatty acid composition with their morphological properties. In general, the planktonic Anabaena with coiled trichomes contained 14:0, 16:0, 16:1(cis-), 18:0, 18:1, 18:2, and 18:3() as their major fatty acid component, and were classified as Type 2 according to the Kenyon-Murata System. The Type 2 was further divided into two subtypes: Type 2A with 16:2 and 16:3, and Type 2B without 16:2 and 16:3. Among these Anabaena strains with coiled form, A. oumiana (NIES-73 and Ana Kas1) and A. eucompacta (Ana Chiba) contained Type 2B fatty acid composition, and other strains contained Type 2A. Among the strains with the latter type, A. circinalis (Ana Da) and A. curva (Ana Ao) had low levels of 18:3(). Most Anabaena strains with coiled trichomes showed a strong correlation between morphological characteristics and fatty acid composition.  相似文献   

2.
Shukla E  Singh SS  Singh P  Mishra AK 《Protoplasma》2012,249(3):651-661
The fatty acid methyl ester (FAME) analysis of the 12 heterocystous cyanobacterial strains showed different fatty acid profiling based on the presence/absence and the percentage of 13 different types of fatty acids. The major fatty acids viz. palmitic acid (16:0), hexadecadienoic acid (16:2), stearic acid (18:0), oleic acid (18:1), linoleic (18:2), and linolenic acid (18:3) were present among all the strains except Cylindrospermum musicola where oleic acid (18:1) was absent. All the strains showed high levels of polyunsaturated fatty acid (PUFAs; 41-68.35%) followed by saturated fatty acid (SAFAs; 1.82-40.66%) and monounsaturated fatty acid (0.85-24.98%). Highest percentage of PUFAs and essential fatty acid (linolenic acid; 18:3) was reported in Scytonema bohnerii which can be used as fatty acid supplement in medical and biotechnological purpose. The cluster analysis based on FAME profiling suggests the presence of two distinct clusters with Euclidean distance ranging from 0 to 25. S. bohnerii of cluster I was distantly related to the other strains of cluster II. The genotypes of cluster II were further divided into two subclusters, i.e., IIa with C. musicola showing great divergence with the other genotypes of IIb which was further subdivided into two groups. Subsubcluster IIb(1) was represented by a genotype, Anabaena sp. whereas subsubcluster IIb(2) was distinguished by two groups, i.e., one group having significant similarity among their three genotypes showed distant relation with the other group having closely related six genotypes. To test the validity of the fatty acid profiles as a marker, cluster analysis has also been generated on the basis of morphological attributes. Our results suggest that FAME profiling might be used as species markers in the study of polyphasic approach based taxonomy and phylogenetic relationship.  相似文献   

3.
Twenty-eight axenio planktonic cyanobacterial strains (10 Microcystis, three Oscillatoria, one Spirulina, one Aphanizomenon, 13 Anabaena) were investigated for their fatty acid composition by measurement of non-polar and hydroxy fatty acids. No 2-hydroxy fatty acids were detected in any strain, but 3-hydroxy fatty acids were detected in minor quantities in 24 strains. The highest portion of total fatty acids were non-polar fatty acids. Qualitative and quantitative analyses of 3-hydroxy fatty acids showed no taxonomic value in these strains, while the type of non-polar fatty acid composition was shown to be consistent within Microcystis and Anabaena strains, distinguishing them as type 4, characterized by the presence of 18:4, and type 2, characterized by 18:3 (α) of the Kenyon-Murata system. Two Oscillatoria agardhii Gomont strains were also included in the type 2 group due to the presence of 18: 3 (α), but the difference in characteristics of 16:2 and 16:3 between O. agardhii and Anabaena further divided type 2 into two subgroups: type 2A for Anabaena and type 2B for O. agardhii. A simplified unweighted pair group method with arithmetic averages (UPGMA) dendrogram demonstrated that the classification of 28 strains (Microcystis spp., Anabaena spp., Aphanizomenon flos-aquae (Lemmermann) Ralfs f. gracile (Lemmermann) Elenkin, O. agardhii and Spirullnasubsalsa Oersted ex Gomont based on numerical analysis of non-polar fatty acids corresponded to morphological species criteria, suggesting that non-polar fatty acid composition is a valuable chemical marker in the taxonomy of planktonic cyanobacteria. However, the fatty acid composition in Oscillatoria raciborskii is similar to that of Microcystis and very different from that of O. agardhii, suggesting its special position in Oscillatoria and the chemical diversity in the genus Oscillatoria.  相似文献   

4.
The fatty acid composition of lipid A was studied using gas-liquid chromatography (GLC) and GLC-mass spectrometry in Pseudomonas fluorescens strains of biovars A, B, C, i, F and G, the type strain ATCC 13525 (biovar A) inclusive. The following fatty acids were identified as predominant in the composition of lipid A in the strains representing biovars A, B, C, i, F and G: 3-hydroxydecanoic (3-OH C10:0), 2-hydroxydodecanoic (2-OH C12:0), 3-hydroxydodecanoic (3-OH C12:0), dodecanoic (C12:0), hexadecanoic (C16:0), octadecanoic (C18:0), hexadecenoic (C16:1) and octadecenoic (C18:1) acids. Lipid A of a biovar G strain differed noticeably from other strains in its fatty acid composition. Its main components were as follows: 3-hydroxytetradecanoic (3-OH C14:0), 3-hydroxypentadecanoic (3-OH C15:0) and dodecanoic (C12:0) fatty acids. The coefficients of similarity were determined for lipid A specimens isolated from the studied strains of P. fluorescens by calculating their fatty acid composition with a computer.  相似文献   

5.
The cellular fatty acids of free-living, nitrogen-fixing cyanobacteria belonging to the genera Anabaena and Nostoc were analyzed to differentiate the genera. The fatty acid compositions of 10 Anabaena strains and 10 Nostoc strains that were grown for 12 days on BG-11o medium were determined by gas-liquid chromatography-mass spectroscopy. Of the 53 fatty acids detected, 17 were major components; the average level for each of these 17 fatty acids was at least 0.9% of the total fatty acids (in at least one of the genera). These fatty acids included (with mean percentages in the Anabaena and Nostoc strains, respectively) the saturated fatty acids 16:0 (30.55 and 23.23%) and 18:0 (0.77 and 1.27%); several unsaturated fatty acids, including 14:1 cis-7 (2.50 and 0.11%), 14:1 cis-9 (3.10 and 3.41%), a polyunsaturated 16-carbon (sites undetermined) fatty acid with an equivalent chain length of 15.30 (1.20 and 1.03%), 16:4 cis-4 (0.95 and 0.87%), 16:3 cis-6 (2.16 and 1.51%), 16:1 cis-7 (1.44 and 0.36%), 16:1 cis-9 (6.53 and 18.76%), 16:1 trans-9 (4.02 and 1.35%), 16:1 cis-11 (1.62 and 0.42%), 18:2 cis-9 (10.16 and 12.44%), 18:3 cis-9 (18.19 and 17.25%), 18:1 cis-9 (4.01 and 5.10%), and 18:1 trans-9 (0.92 and 1.94%); and the branched-chain fatty acids iso-16:0 (2.50 and 1.14%) and iso-15:1 (0.34 and 2.05%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The fatty acid composition of Pseudomonas aeruginosa PAO1 was compared between biofilm and batch planktonic cultures. Strain PAO1 biofilms were able to maintain a consistent fatty acid profile for up to 6 days, whereas strain PAO1 batch planktonic cultures showed a gradual loss of cis-monounsaturated fatty acids over 4 days. Biofilms exhibited a greater proportion of hydroxy fatty acids but a lower proportion of both cyclopropane fatty acids and saturated fatty acids (SAFAs). SAFAs with >=16 carbons, in particular, decreased in biofilms when compared with that in batch planktonic cultures. A reduced proportion of SAFAs and a decline in overall fatty acid chain length indicate more fluidic biophysical properties for cell membranes of P. aeruginosa in biofilms. Separating the biofilms into 2 partitions and comparing their fatty acid compositions revealed additional trends that were not observed in the whole biofilm: the shear-nonremovable layer consistently showed greater proportions of hydroxy fatty acid than the bulk liquid + shear-removable portion of the biofilm. The shear-nonremovable portion demonstrated a relatively immediate decline in the proportion of monounsaturated fatty acids between days 2 and 4; which was offset by an increase in the proportion of cyclopropane fatty acids, specifically 19:0cyc(11,12). Simultaneously, the shear-removable portion of the biofilm showed an increase in the proportion of trans-monounsaturated fatty acids and cyclopropane fatty acids.  相似文献   

7.
Fifty axenic strains of planktonic Anabaena, including 24 strains of the straight form and 26 strains of the coiled form, were examined for their DNA base composition (GC content). The taxonomic value of their GC content at species level was evaluated by comparing their morphological, physiological and biochemical properties. The DNA base composition determined for all fifty strains ranged from 35.9 to 56.4 mol% GC. The straight-form strains were in the range of 35.9-56.4 mol% GC, while coiled forms were in the range of 38.1-50.3 mol% GC. In general, strains assigned to the same species showed similar DNA base composition. However, of three strains of A. affinis Lemmermann that were separated into two categories, two had 40.6-40.9 mol% GC, and the third strain 45.6 mol% GC. It is noteworthy that the DNA base composition of the newly established species A. eucompacta Li et Watanabe was 45.5 mol% GC, which differed from 39.5 mol% GC of the morphologically close species, A. compacta (Nygarrd) Hickel.  相似文献   

8.
As understanding of the evolutionary relationships between strains and species of root nodule bacteria increases the need for a rapid identification method that correlates well with phylogenetic relationships is clear. We have examined 123 strains ofRhizobium: R. fredii (19),R. galegae (20),R. leguminosarum (22),R. loti (17),R. meliloti (21), andR. tropici (18) and six unknowns. All strains were grown on modified tryptone yeast-extract (TY) agar, as log phase cultures, scraped from the agar, lysed, and the released fatty acids derivatized to their corresponding methyl esters. The methyl esters were analysed by gas-chromatography using the MIDI/Hewlett-Packard Microbial Identification System. All species studied contained 16:0, 17:0, 18:0 and 19cyclow9C fatty acids but onlyR loti andR tropici produced 12:0 3 OH,13:0 iso 3 OH,18:1w9C and 15:0 iso 3 OH,17:0 iso 3 OH and 20:2w6,9C fatty acids respectively. Principal component analysis was used to show that strains could be divided into clusters corresponding to the six species. Fatty acid profiles for each species were developed and these correctly identified at least 95% of the strains belonging to each species. A dendrogram is presented showing the relationships betweenRhizobium species based on fatty acid composition. The data base was used to identify unknown soil isolates as strains ofRhizobium lacking a symbiotic plasmid and a bacterium capable of expressing a symbiotic plasmid fromR. leguminosarum asSphingobacterium spiritovorum.  相似文献   

9.
Cellular fatty acid composition of Leuconostoc oenos   总被引:3,自引:0,他引:3  
The cellular fatty acid composition of 70 lactic acid bacteria was examined by capillary gas chromatography. Fifty-four Leuconostoc oenos strains, including three reference, type strains from the other Leuconostoc spp., nine Pediococcus spp. and two Lactobacillus spp. were studied. Eighteen fatty acids were determined, of which 10 were identified by gas chromatography-mass spectrometry. The relative percentages of the 18 fatty acids of the Leuconostoc strains were analyzed numerically and grouped using the unweighted pair-group method. Results show that four clusters could be defined at r = 0.920, with five strains unassigned. The major fatty acids of the Leuc. oenos strains were found to be palmitic acid (C16:0), palmitoleic acid (C16:1–9), oleic acid (C18: 1–9), vaccenic acid (C18: 1–11), dihyrosterculic acid (C19-cyclopropane-9) and lactobacillic acid (C19-cyclopropane-11). It was mainly on the basis of the amounts of oleic acid and the C19-cyclopropane fatty acids that the strains of Leuc. oenos could be distinguished from each other. This is the first report of the occurrence of dihydrosterculic acid in lactic acid bacteria. For the majority of Leuc. oenos strains, the result obtained with the cellular fatty acid analysis confirmed the phenotypic relationships.  相似文献   

10.
Algal preparations from Acetabularia crenulata were analyzed for their fatty acid composition to establish the suitability of this alga as a model to study fatty acid oxidation and oxylipin biosynthesis. The work was based on two goals. The first goal of this study was to determine the contribution of fatty acids from contaminating bacteria and how this influenced the total fatty acid composition of cell homogenates of A. crenulata collected in the wild as compared to specimens cultured in sterile conditions. The major fatty acids detected for both specimens were palmitic (C16:0), palmitoleic (C16:1n-7), oleic (C18:1n-9), linoleic (C18:2n-6), linolenic (C18:3n-3), and octadecatetraenoic acid (C18:4n-3). Significant amounts of odd-chain fatty acids common to bacteria were not detected in either sample. Furthermore, branched-chain fatty acids, typical bacterial biomarkers, were not detected in either sample. Data suggest that bacteria do not greatly contribute to the total fatty acid pool of A. crenulata. The second goal was to compare the fatty acid composition of cell homogenates with that of isolated chloroplasts. Comparatively speaking palmitoleic and octadecatetraenoic acid were found at significantly lower concentrations in the chloroplast whereas oleic and linolenic acid were found at significantly higher amounts in this organelle. Furthermore, the amount of hexadecatrienoic acid (C16:3), a fatty acid commonly esterified to monogalactosyldiacylglycerol (MGDG; lipid present at high concentrations inside the chloroplasts of algae), was present at very low concentrations in these plastids (0.7%). Typically green algal follow the "prokaryotic pathway" for MGDG biosynthesis where C18:3 is esterified at the sn-1 position of the glycerol backbone and C18:3 or C16:3 at the sn-2 position, making C16:3 a major fatty acid inside chloroplasts. Interestingly, our results suggest that chloroplasts of A. crenulata appear to follow the "eukaryotic pathway" for MGDG biosynthesis where C18:3 is both at the sn-1 and sn-2 position of MGDG. Taking into account the exceptions noted, the fatty acid composition for A. crenulata is similar to that reported for most chlorophytes.  相似文献   

11.
The fatty acid composition from mycelia of Streptomyces hygroscopicus strains was studied. A significant proportion of C18 : 2 was found in cultures. High levels of C16 : 0, iso-C16 : 0 and C18 : 1 were also detected in all S. hygroscopicus strains. The different representatives of S. hygroscopicus had almost the same proportion of unsaturated fatty acids. Certain shifts in the amount of iso, anteiso and straight-chain fatty acids in some cultures were revealed. This might be explained by the adaptation capability of strains belonging to one species to form a variety of available fatty acids determined by particular cell membrane composition favouring certain antibiotic biosynthesis.  相似文献   

12.
13.
本文用气相色谱法测定了35株假丝酵母全细胞长链脂肪酸的组成和含量,并运用主分量分析法处理数据,对菌株进行分类。测定结果表明,这些菌株中共含有38种脂肪酸,其中软脂酸(C_(16:0))、棕榈油酸(C_(16:1))、硬脂酸(C_(18:0))、油酸(C_(18:1))、亚油酸(C_(18:2))和亚麻酸(C_(18:3发))等脂肪酸的含量较高,它们占总含量的90%以上。对脂肪酸的主分量分析将35株假丝酵母分为两个类群,分群结果与表观性状聚类分析的结果相似,根据脂肪酸对一些菌株亲缘关系的测定也有与表观性状分析类似的结果。酵母菌全细胞脂肪酸的分析为探索酵母菌系统分类关系提供了一可行的方法。  相似文献   

14.
The fatty acid composition of 35 Haemophilus influenzae strains was found to be grossly similar and characterized by relatively large amounts of 14:0, 3-OH-14:0, 16:1 and 16:0. The three C18 fatty acids 18:2, 18:1 and 18:0 were also present, but in much lower concentrations. This general pattern was also found for most of the other species of Haemophilus examined (H. aegyptius, H. aphrophilus, H. canis, H. gallinarum, H. haemolyticus, and H. parainfluenzae). Small but distinct quantitative discrepancies were detected for H. ducreyi and the haemin-independent species H. paraphrohaemolyticus, H. paraphrophilus and H. suis. Actinobacillus actinomycetemcomitans was found to be indistinguishable from H. influenzae. Pasteurella multocida also exhibited a fatty acid pattern closely related to that of Haemophilus, but could be distinguished by its higher concentration levels of the C18 fatty acids. The fatty acid pattern of H. vaginalis was considerably different from those of the other species examined. This species lacked 3-OH-14:0 and 18:2 and contained small amounts of 14:0 and 16:0, whereas 18:1 and 18:0 were the major constituents.  相似文献   

15.
The physiological properties and fatty acid content of 59 strains of Saccharomyces cerevisiae isolated from soft-drink factories, a fruit puree factory, a fuel-alcohol distillery and a winery were compared. Discriminant analysis of the results allocated the strains to four groups according to their source. Resistance to preservatives and temperature stress were correlated with differences in fatty acid composition. The fatty acid C18: 1Δ11, growth at pH 2 and in the presence of 200–600 mg 1-1 benzoate or sorbate, and maximal growth rate at 42°C were characteristics associated with yeasts from particular environments. However, tolerance of thermal stress and content of the C18: 2 fatty acid were associated with subspecies: the former species S. capensis, S. chevalieri , etc. The relative content of C10 : 0, C12 : 0 and C18 : 0 acids varied according to both isolation source and subspecies.  相似文献   

16.
A set of 20 Mollicutes strains representing different lines of descent, including the type species of the genus Mycoplasma, Mycoplasma mycoides, Acholeplasma laidlawii and a strain of Mesoplasma, were subjected to polar lipid and fatty acid analyses in order to evaluate their suitability for classification purposes within members of this group. Complex polar lipid and fatty acid profiles were detected for each examined strain. All strains contained the polar lipids phosphocholine-6'-alpha-glucopyranosyl-(1'-3)-1, 2-diacyl-glycerol (MfGL-I), 1-O-alkyl/alkenyl-2-O-acyl-glycero-3-phosphocholine (MfEL), sphingomyelin (SphM), 1-O-alkyl/alkenyl-glycero-3-phosphocholine (lysoMfEL), the unknown aminophospholipid APL1 and the cholesterol Chol2. A total of 19 strains revealed the presence of phosphatidylethanolamine (PE) and/or phosphatidylglycerol (PG), and the presence of diphosphatidylglycerol (DPG) was detected in 13 strains. The unknown aminolipid AL1 was found in the extracts of 17 strains. Unbranched saturated and unsaturated compounds predominated in the fatty acid profiles. Major fatty acids were usually C16:0, C18:0, C18:1 omega9c and 'Summed feature 5' (C18:2 omega6, 9c/C18:0 anteiso). Our results demonstrated that members of the M. mycoides cluster showed rather homogenous polar lipid and fatty acid profiles. In contrast, each of the other strains was characterized by a unique polar lipid profile and significant quantitative differences in the presence of certain fatty acids. These results indicate that analyses of both polar lipid and fatty acid profiles could be a useful tool for classification of mycoplasmas.  相似文献   

17.
The identification and composition of the fatty acids of the major lipid classes (triacylglycerols and phospholipids) within Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae) nymphs were determined. Comparisons were made to fatty acids from the internal lipids of B. argentifolii adults. The fatty acids, as ester derivatives, were analyzed by capillary gas chromatography (CGC) and CGC-mass spectrometry (MS). All lipid classes contained variable distributions of eight fatty acids: the saturated fatty acids, myristic acid (14:0), palmitic acid (16:0), stearic acid (18:0), arachidic acid (20:0); the monounsaturated fatty acids, palmitoleic acid (16:1), oleic acid (18:1); the polyunsaturated fatty acids, linoleic acid (18:2), linolenic acid (18:3). Fourth instar nymphs had 5-10 times the quantities of fatty acids as compared to third instar nymphs and 1-3 times the quantities from adults. The fatty acid quantity differences between fourth and third instar nymphs were related to their size and weight differences. The percentage compositions for fatty acids from each lipid class were the same for the pooled groups of third and fourth instar nymphs. For nymphs and adults, triacylglycerols were the major source of fatty acids, with 18:1 and 16:0 acids as major components and the majority of the polyunsaturated fatty acids, 18:2 and 18:3 were present in the two phospholipid fractions, phosphatidylethanolamine and phosphatidylcholine. Evidence was obtained that whiteflies indeed synthesize linoleic acid and linolenic acid de novo: radiolabel from [2-(14)C] acetate was incorporated into 18:2 and 18:3 fatty acids of B. argentifolii adults and CGC-MS of pyrrolidide derivatives established double bonds in the Delta(9,12) and Delta(9,12,15) positions, respectively.  相似文献   

18.
Fatty acid compositions of rainbow trout Oncorhynchus mykiss (Walbaum, 1792) was determined during embryogenesis, yolk-sac fry, swim up fry and fry stages. Embryonic and yolk-sac development of fertilized eggs were followed until fry weighed 25 g and samples were taken from each stage to analyse fatty acid composition. Analyses of fatty acid composition were performed by gas chromatography mass spectrometry. Throughout all the developmental stages of O. mykiss important changes, such as an increase in the percentage of 18:2, 18:3 and 20:5 and as a decrease in the percentage of 14:0, 16:2, 20:0, 20:2, 20:3, 20:4 and 22:0 were observed in the amounts of fatty acid of developing eggs. During transition from the embryonic to the yolk-sac stage, an important increase in 20:0, 20:3, 20:5, 22:0 and a decrease in 18:3, 22:1 was determined between 45-day old embryo and yolk-sac fry. During transition from the 43 day yolk-sac stage to swim up stage, a decrease in the percentage of 18:0, 20:2 and an increase in the percentage of 14:0, 16:2, 18:2, 18:3 was seen. In all the observed stages, no qualitative but significant quantitative variations were determined in the fatty acid composition of O. mykiss. It may be concluded that 14:0, 16:0, 16:1, 18:0, 18:1 18, 20 and 22 polyunsaturated fatty acids are necessary for normal development of O. mykiss during their life stages.  相似文献   

19.
Late summer cyanobacterial blooms in the Baltic Sea contain Anabaena sp. together with Nodularia spumigena and Aphanizomenon flos-aquae. Although Anabaena is common especially in the Gulf of Finland, very little is known about its genetic diversity. Here we undertook a molecular phylogenetic study of 68 Anabaena strains isolated from the brackish Gulf of Finland. We sequenced the 16S rRNA genes from 54 planktonic and 14 benthic Anabaena strains, and rbcL and rpoC1 genes from a subset of these strains. Phylogenetic trees showed that Anabaena strains, from both planktonic and benthic habitats, were genetically diverse. Although the Anabaena strains were morphologically diverse, in our study only one genetically valid species was found to exist in the plankton. Evolutionary distances between benthic Anabaena strains were greater than between planktonic strains, suggesting that benthic habitats allow for the maintenance of greater genetic diversity than planktonic habitats. A number of novel lineages containing only sequences obtained in this study were compiled in the phylogenetical analyses. Thus, it seemed that novel lineages of the genus Anabaena may be present in the Baltic Sea. Our results demonstrate that the Baltic Sea Anabaena strains show surprisingly high genetic diversity.  相似文献   

20.
K Kobayashi  H Suginaka  I Yano 《Microbios》1987,51(206):37-42
The fatty acid composition of representative Candida species was examined by gas-liquid chromatography (GLC) using a polar column. The major fatty acids were C14:0, C16:0, C18:0 saturated, C16:1 and C18:1 monoenoic series, with or without C18 polyunsaturated acids (C18:2 and C18:3). In Torulopsis glabrata and Saccharomyces cerevisiae the C18:2 and C18:3 acids were not found, but the C10:0 and C12:0 acids were detected in S. cerevisiae. These results indicated that the Candida genus could be distinguished from Torulopsis and Saccharomyces genera by GLC analysis of fatty acids. Quantitative differences in the fatty acid composition between cells grown at high temperature (37 degrees C) and low temperature (25 degrees C) were found generally in Candida species, and the amounts of C18 polyunsaturated acids (C18:2 and C18:3) increased in the cells grown at 25 degrees C. Each Candida species showed a characteristic profile in fatty acid composition. Determination of the cellular fatty acid composition in Candida species is likely to be useful for the grouping or chemotaxonomy of newer isolates of Candida species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号