首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nodules were collected from 14 legume species from the Indonesian Islands of South Sulawesi, Java and Sumatra. Their rhizobia were isolated and growth characteristics, nodulation ability and nitrogen fixing effectiveness were assessed against recommended commercially available Australian strains. The test legumes wereMacroptilium atropurpureum Urb. cv. Siratro,Vigna unguiculata (L.) Walp. cv Eureka,Centrosema pubescens Benth cv. Belalto andDesmodium heterocarpon (L) DC. A significant portion of the native rhizobial isolates were of the fast growing type. Dry matter and total nitrogen production forM. atropurpureum andV. unguiculata was highest when inoculated with native strains while the commerical strains produced superior dry matter production forC. pubescens andD. heterocarpon. However the total nitrogen production of native and commercial strains was not significantly different for the latter two legumes. The study indicated that a potential exists for developing inocula from local Rhizobium strains.  相似文献   

3.
Aims: To assess the phenotypic, symbiotic and genotypic diversity scope of Mesorhizobium spp. strains associated with Acacia seyal (Del.) isolated from different agro‐ecological zones in Senegal, and uses of susceptible microbial inoculum in a reafforestation process. Methods and Results: A polyphasic approach including phenotypic and genotypic techniques was used to study the diversity and their relationships with other biovars and species of rhizobia. The geographical origins of the strains have limited effect on their phylogenetic and phenotypic classification. Nodulation tests indicated promiscuity of the strains studied, because they were capable of nodulating six woody legume species (Acacia auriculiformis, Acacia senegal, A. seyal, Acacia tortilis ssp. raddiana, Leucaena leucocephala and Prosopis juliflora). Sequencing and phylogenetic analyses of nodA, nodC and nifH genes pointed out that in contrast to nodA gene, the phylogenies of nodC and nifH genes were not consistent with that of 16S rRNA, indicating that these genes of the A. seyal‐nodulating rhizobia might have different origins. Microbial inoculation on nonsterile soil had significant effect on the nodules number and the growth of the seedlings, indicating that these strains of rhizobia might be used as inoculum. Conclusions: The results indicated that A. seyal is a nonselective host that can establish effective symbiosis with Mesorhizobium spp. strains from diverse genomic backgrounds and that the selected A. seyal‐nodulating rhizobia could enhance plant growth. Significance and Impact of the Study: These results showed the important role that A. seyal could play in the improvement of reafforestation process as a promiscuous host, which can establish effective symbiosis with rhizobia from diverse genomic backgrounds.  相似文献   

4.
Summary Nodulation of pea cv. Afghanistan and cv. Iran by a nodulating Rhizobium strain is suppressed by the presence of a non-nodulating strain. The degree of suppression varies, dependent on the Rhizobium strains used. There is a great variation in the competitive ability of the Rhizobium strains and this is not related to the ability to form root nodules. The critical period of competition is restricted to ca. 24 hours after inoculation.  相似文献   

5.
Several Indonesian and some imported Rhizobium strains were assessed for their effectiveness in nodulating four legume species in four soil types of Java. Naturally occurring Rhizobia formed effective symbioses onVigna unguiculata, Macroptilium atropurpureum andDesmodium heterocarpon in all four soils and the applied strains, with some exceptions, did not infect a majority of nodules of these legumes.Centrosema pubescens was more specific in its Rhizobia requirements and applied strains formed effective symbioses in two clay soils, but not in two sandy loam soils.  相似文献   

6.
目的:研究相思根瘤菌质粒与其抗药性之间的关系。方法:研究了相思根瘤菌MZ和AJ018在含不同浓度的抗生素的固体培养基和液体培养基的生长情况,并用碱裂解方法对其质粒组成进行检测。结果:两菌株对链霉素和卡那霉素均无抗性,而对其它抗生素都有不同程度的抗性。MZ菌株对实验中的氯霉素、氨苄青霉素、四环素三种抗生素的耐受范围与最大耐受值都比AJ018强,当平板培养基中氨苄青霉素、四环素、氯霉素的终浓度分别为250μg/ml、75μg/ml、150μg/ml时,AJ018在平板上无菌落生长,当三种抗生素终浓度分别为800μg/ml1、50μg/ml、400μg/ml时无菌落生长。两菌株都含有一个大约50kb的质粒。  相似文献   

7.
Root-nodule bacteria capable of nodulating local acacias were isolated from five climatically diverse and geographically widely separated localities in New South Wales. Strains showed marked geographic localization. Fast-growing isolates, culturally and serologically related to Rhizobium, were obtained from the arid zone but from no other area. Alpine isolates had particularly slow growth rates, with fifty percent taking longer than 10 days to form colonies on yeast mannitol agar. Strains from the rain-forest and coastal health areas had the characteristics of typical Bradyrhizobium. Most of the strains tested had a wide host range, nodulating members of both the Mimosaceae and the Fabaceae, although the extra-slow growing alpine isolates appeared specific for their original host. Isolates varied in their effectiveness with a third of strains failing to give significant weight increases in inoculated plants.  相似文献   

8.
B. H. Ng 《Plant and Soil》1987,103(1):123-125
The growth, nodulation and nitrogen fixation ofCasuarina equisetifolia were compared at six levels (0–500mM NaCl) of salinity in sand culture. Dry weight of nodules, shoots and roots and N content of shoots increased at intermediate levels of salinity (50–100 mM) but decreased at 500 mM NaCl. Nodulation occurred at all NaCl levels, but at 500mM NaCl level, the nodule dry weight declined by 50% from the control. Increasing NaCl concentration of up to 200mM had little effect on the N2-fixation rate, but at 500mM NaCl level the rate decreased to 40% of the control value.  相似文献   

9.
Hatimi  Abdelhakim 《Plant and Soil》1999,216(1-2):93-101
The behaviour of Acacia cyanophylla Lind. plants submitted to salinity stress was followed in the greenhouse. The plants were associated with indigenous symbiotic microorganisms isolated from the coastal dunes of the Souss-Massa region. A two months period of salinity had a large negative impact on plant growth and acquisition of macro nutrients. However, the study underlined the role of the microbial inoculum for the plant in the achievement of salt tolerance. An isolate of Bradyrhizobium sp., RCM6 (R1), originating from the Massa dunes, was highly efficient in improving growth and nutrition of the A. cyanophylla. Double inoculation with the rhizobia and an endomycorrhizal complex, isolated from the Lamzar dunes had a clear additional positive effect, i.e. the fungi further increased the tolerance of the A. cyanophylla plants to salinity. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
Abstract Symbiotic experiments in the glasshouse demonstrated that two species of sulla, Hedysarum coronarium and Hedysarum flexuosum , grown in Morocco were mutually incompatible in their requirements for effectively nitrogen-fixing strains of rhizobia: nitrogen-fixing Rhizobium strains isolated from H. coronarium nodulated H. flexuosum but did not fix nitrogen, conversely strains from H. flexuosum were ineffective for H. coronarium . The agronic implications are discussed.  相似文献   

11.
In this study, we explored the effect of salinity on cadmium (Cd) tolerance and phytoremediation potential of Acacia nilotica. Two-month-old uniform plants of A. nilotica were grown in pots contaminated with various levels of Cd (0, 5, 10, and 15 mg kg?1), NaCl (0%, 0.5%, 1.0% (hereafter referred as salinity), and all possible combinations of Cd + salinity for a period of six months. Results showed that shoot and root growth, biomass, tissue water content and chlorophyll (chl a, chl b, and total chl a+b) contents decreased more in response to salinity and combination of Cd + salinity compared to Cd alone. Shoot and root K concentrations significantly decreased with increasing soil Cd levels, whereas Na and Cl concentrations were not affected significantly. Shoot and root Cd concentrations, bioconcentration factor (BCF) and translocation factor (TF) increased with increasing soil Cd and Cd + salinity levels. At low level of salinity (0.5%), shoot and root Cd uptake enhanced, while it decreased at high level of salinity (1.0%). Due to Cd tolerance, high shoot biomass and shoot Cd uptake, this tree species has some potential for phytoremediation of Cd from the metal contaminated saline and nonsaline soils.  相似文献   

12.
对厚荚相思(Acaciacrassicarpa)根瘤菌HJ06菌株的16SrDNA全序列和nifA基因片段进行了测定。结果表明,HJ06菌株在以16SrDNA序列构建的系统发育树状图中位于根瘤菌属(Rhizobium)分支中,与根瘤菌属各个种的相似性达95%以上;从HJ06菌株克隆出的585bpnifA基因片段与Klebsiellapneumoniae的同源性达到99.3%,与Klebsiellaoxytoca的NifF,NifL,NifA,NifB蛋白基因的同源性为97.8%。  相似文献   

13.
Summary Competition of five strains of Rhizobium of the cowpea group, onVigna radiata (L) Wilcjeck variety ML 5, was tested in loamy clay and loamy sand soils. Strains RM 6 and RM 5 were effective nodulators in loamy clay soil, and strains MNH, M 20 and RM 6 were effective nodulators in loamy sand soil. Strains RM 6 and MNH predominated nodule formation in loamy clay and loamy sand soils respectively.  相似文献   

14.
Anger  Klaus  Riesebeck  Kim  P&#;schel  Cornelia 《Hydrobiologia》2000,426(1):161-168
The neotropical crab Armases miersii (Rathbun, 1897) breeds in supratidal rock pools, where great salinity variations occur. In laboratory experiments, all larval stages and the first juveniles were reared at six different salinities (5–55 PSU, intervals of 10 PSU). In five series of experiments, exposure to these conditions began either from hatching (Zoea I) or from the onset of successively later stages (Zoea II, III, Megalopa, Crab I). Growth was measured in terms of dry weight, carbon, nitrogen and hydrogen content. At osmotically extreme conditions (5 and 55 PSU, resp.), all stages showed minimum biomass accumulation; this was consistent with maximum mortality and longest duration of development (data presented in a separate paper). Successively later exposure to these salinities tended to reduce these effects. Lowest mortality and shortest time of development occurred generally at 15–25 PSU, indicating an optimum at moderately reduced salinities. This response pattern, however, was not congruent with that observed in growth. Biomass accumulation was initially maximum within a wide range of salinities (15–45 PSU), but in the Zoea II and III stages, this range tended to narrow and to shift towards higher salinities (35–45 PSU). These trends reversed in the Megalopa and Crab I, where maximum growth occurred again in a wider range and at lower salinities (15–35 PSU). The reduction of zoeal growth in moderately dilute media (15–25 PSU), which were optimal for survival and development, is interpreted as an energetic cost of hyper-osmoregulation, which begins already at hatching. Five PSU caused hypo-osmotic stress, exceeding in the long term the larval capacity for hyper-regulation. Poor zoeal survival and growth at 55 PSU are interpreted as effects of hyper-osmotic stress. In the Megalopa and Crab I, reduced growth at salinities 35 PSU may reflect the energetic costs of hypo-osmoreguation beginning in these stages. Our data suggest that the physiological adaptations of larval and early juvenile A. miersii allowing for survival and development in a physically harsh and unpredictable habitat imply a trade-off with reduced growth, due to energetic costs of osmoregulation.  相似文献   

15.
Slow growing strains of rhizobia appear to lack both uptake systems and catabolic enzymes for disaccharides. In the fast-growing strains of rhizobia there are uptake mechanisms and catabolic enzymes for disaccharide metabolism. In Rhizobium leguminosarum WU 163 and WU235 and R. trifolii WU290, sucrose and maltose uptake appears to be constitutive whereas in R. meliloti WU60 and in cowpea Rhizobium NGR234 uptake of these disaccharides is inducible. There is evidence that there are at least two distinct disaccharide uptake systems in fast-growing rhizobia, one transporting sucrose, maltose and trehalose and the other, lactose. Disaccharide uptake is via an active process since uptake is inhibited by azide, dinitrophenol and carbonyl cyanide m-chlorophenylhydrazone but not by arsenate. Bacteroids of R. leguminosarum WU235 and R. lupini WU8 are unable to accumulate disaccharides.  相似文献   

16.
Abstract Glucose uptake and phosphorylating activities were studied in two strains of slow-growing Rhizobium: Rhizobium japonicum (USDAI-110) and cowpea Rhizobium (USDA3278). Cultured cells of both species actively took up glucose, and at least two systems appeared to be involved, whereas purified bacteroids of both species failed to accumulate glucose actively. In both cell types, glucose phosphorylation was ATP-dependent, and no evidence was obtained for a phosphoenolpyruvate-dependent glucose phosphotransferase system.  相似文献   

17.
18.
In this study we assessed the inherent relative growth rate (RGR) under controlled environment conditions of 10 contrasting Acacia species from semi-arid and mesic environments. For several of the species, compound pinnate leaves produced early in the seedling stage, were gradually replaced by phyllodes (expanded petioles that form simple lamina). Other species either did not form phyllodes, or only did so to a minor degree by the end of the study. Phyllode production was dominant in the four slow-growing Acacia species from semi-arid environments (A. aneura, A. colei, A. coriacea and A. tetragonophylla), with leaf production being exclusive or dominant in five (A. dealbata, A. implexa, A. mearnsii, A. melanoxylon and A. irrorata) of the six faster-growing species from mesic environments. The exception was A. saligna which was fast growing but did produce phyllodes. From a carbon economy perspective, slow growth in the semi-arid species was not associated with lower net assimilation rates or less plant mass allocated to foliage. Rather, the primary factor associated with their slow growth was a smaller foliage area per unit foliage mass. This was true for comparisons based on the mean over all harvests or at set plant masses. The production of phyllodes by the semi-arid species substantially reduced foliage area per unit foliage mass, as this was lower for phyllodes than leaves in all species. To assess the impact that phyllode production had on ontogenetic changes in RGR, we modelled the situation where only leaves were formed. This analysis showed that changing from leaves to phyllodes substantially reduced the RGR. There was little difference in plant nitrogen concentration or the ratio of foliage nitrogen to plant nitrogen between the species. This resulted in foliage nitrogen productivity (dry mass gain per unit foliage nitrogen and time) being directly proportional to foliage area per unit foliage mass between species. We concluded that a smaller foliage area per unit foliage mass and phyllode production are the primary factors associated with lower RGR in contrasting Acacia species.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号