首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The clinical picture of severe acute respiratory syndrome (SARS) is characterized by pulmonary inflammation and respiratory failure, resembling that of acute respiratory distress syndrome. However, the events that lead to the recruitment of leukocytes are poorly understood. To study the cellular response in the acute phase of SARS coronavirus (SARS-CoV)-host cell interaction, we investigated the induction of chemokines, adhesion molecules, and DC-SIGN (dendritic cell-specific ICAM-3-grabbing nonintegrin) by SARS-CoV. Immunohistochemistry revealed neutrophil, macrophage, and CD8 T-cell infiltration in the lung autopsy of a SARS patient who died during the acute phase of illness. Additionally, pneumocytes and macrophages in the patient's lung expressed P-selectin and DC-SIGN. In in vitro study, we showed that the A549 and THP-1 cell lines were susceptible to SARS-CoV. A549 cells produced CCL2/monocyte chemoattractant protein 1 (MCP-1) and CXCL8/interleukin-8 (IL-8) after interaction with SARS-CoV and expressed P-selectin and VCAM-1. Moreover, SARS-CoV induced THP-1 cells to express CCL2/MCP-1, CXCL8/IL-8, CCL3/MIP-1alpha, CXCL10/IP-10, CCL4/MIP-1beta, and CCL5/RANTES, which attracted neutrophils, monocytes, and activated T cells in a chemotaxis assay. We also demonstrated that DC-SIGN was inducible in THP-1 as well as A549 cells after SARS-CoV infection. Our in vitro experiments modeling infection in humans together with the study of a lung biopsy of a patient who died during the early phase of infection demonstrated that SARS-CoV, through a dynamic interaction with lung epithelial cells and monocytic cells, creates an environment conducive for immune cell migration and accumulation that eventually leads to lung injury.  相似文献   

2.
Severe acute respiratory syndrome (SARS) caused by a newly identified coronavirus (SARS-CoV) is a serious emerging human infectious disease. In this report, we immunized ferrets (Mustela putorius furo) with recombinant modified vaccinia virus Ankara (rMVA) expressing the SARS-CoV spike (S) protein. Immunized ferrets developed a more rapid and vigorous neutralizing antibody response than control animals after challenge with SARS-CoV; however, they also exhibited strong inflammatory responses in liver tissue. Inflammation in control animals exposed to SARS-CoV was relatively mild. Thus, our data suggest that vaccination with rMVA expressing SARS-CoV S protein is associated with enhanced hepatitis.  相似文献   

3.
Severe acute respiratory syndrome (SARS) is a highly contagious and life threatening disease, with a fatality rate of almost 10%. The etiologic agent is a novel coronavirus, severe acute respiratory syndrome coronavirus (SARS-CoV), with animal reservoirs found in bats and other wild animals and thus the possibility of reemergence. In this study, we first investigated at 6 years postinfection whether SARS-specific memory T cells persist in SARS-recovered individuals, demonstrating that these subjects still possess polyfunctional SARS-specific memory CD4+ and CD8+ T cells. A dominant memory CD8+ T cell response against SARS-CoV nucleocaspid protein (NP; amino acids 216 to 225) was then defined in SARS-recovered individuals carrying HLA-B*40:01, a HLA-B molecule present in approximately one-quarter of subjects of Asian ethnicities. To reconstitute such a CD8+ T cell response, we isolated the alpha and beta T cell receptors of the HLA-B*40:01-restricted SARS-specific CD8+ T cells. Using T cell receptor gene transfer, we generated SARS-specific redirected T cells from the lymphocytes of normal individuals. These engineered CD8+ T cells displayed avidity and functionality similar to that of natural SARS-specific memory CD8+ T cells. They were able to degranulate and produce gamma interferon, tumor necrosis factor alpha, and macrophage inflammatory proteins 1α and 1β after antigenic stimulation. Since there is no effective treatment against SARS, these transduced T cells specific for an immunodominant SARS epitope may provide a new avenue for treatment during a SARS outbreak.  相似文献   

4.
The severe acute respiratory syndrome (SARS) is a newly emerging human infectious disease caused by the severe acute respiratory syndrome coronavirus (SARS-CoV). The spike (S) protein of SARS-CoV is a major virion structural protein. It plays an important role in the interaction with receptors and neutralizing antibodies. In this study, the S1 domain of the spike protein and three truncated fragments were expressed by fusion with GST in a pGEX-6p-1 vector. Western blot results demonstrated that the 510-672 fragment of the S1 domain is a linear epitope dominant region. To map the antigenic epitope of this linear epitope dominant region, a set of 16 partially overlapping fragments spanning the fragment were fused with GST and expressed. Four antigenic epitopes S1C3 (539-559), S1C4 (548-567), S1C7/8 (583-606), and S1C10/11 (607-630) were identified. Immunization of mice with each of the four antigenic epitope-fused proteins revealed that all four proteins could elicit spike protein specific antisera. All of them were able to bind to the surface domain of the whole spike protein expressed by recombinant baculovirus in insect cells. Identification of antigenic epitopes of the spike protein of SARS-CoV may provide the basis for the development of immunity-based prophylactic, therapeutic, and diagnostic clinical techniques for the severe acute respiratory syndrome.  相似文献   

5.
Human lung epithelial cells are likely among the first targets to encounter invading severe acute respiratory syndrome-associated coronavirus (SARS-CoV). Not only can these cells support the growth of SARS-CoV infection, but they are also capable of secreting inflammatory cytokines to initiate and, eventually, aggravate host innate inflammatory responses, causing detrimental immune-mediated pathology within the lungs. Thus, a comprehensive evaluation of the complex epithelial signaling to SARS-CoV is crucial for paving the way to better understand SARS pathogenesis. Based on microarray-based functional genomics, we report here the global gene response of 2B4 cells, a cloned bronchial epithelial cell line derived from Calu-3 cells. Specifically, we found a temporal and spatial activation of nuclear factor (NF)κB, activator protein (AP)-1, and interferon regulatory factor (IRF)-3/7 in infected 2B4 cells at 12-, 24-, and 48-hrs post infection (p.i.), resulting in the activation of many antiviral genes, including interferon (IFN)-β, -λs, inflammatory mediators, and many IFN-stimulated genes (ISGs). We also showed, for the first time, that IFN-β and IFN-λs were capable of exerting previously unrecognized, non-redundant, and complementary abilities to limit SARS-CoV replication, even though their expression could not be detected in infected 2B4 bronchial epithelial cells until 48 hrs p.i. Collectively, our results highlight the mechanics of the sequential events of antiviral signaling pathway/s triggered by SARS-CoV in bronchial epithelial cells and identify novel cellular targets for future studies, aiming at advancing strategies against SARS.  相似文献   

6.
To establish a small animal model of severe acute respiratory syndrome (SARS), we developed a mouse model of human severe acute respiratory syndrome coronavirus (SARS-CoV) infection by introducing the human gene for angiotensin-converting enzyme 2 (hACE2) (the cellular receptor of SARS-CoV), driven by the mouse ACE2 promoter, into the mouse genome. The hACE2 gene was expressed in lung, heart, kidney, and intestine. We also evaluated the responses of wild-type and transgenic mice to SARS-CoV inoculation. At days 3 and 7 postinoculation, SARS-CoV replicated more efficiently in the lungs of transgenic mice than in those of wild-type mice. In addition, transgenic mice had more severe pulmonary lesions, including interstitial hyperemia and hemorrhage, monocytic and lymphocytic infiltration, protein exudation, and alveolar epithelial cell proliferation and desquamation. Other pathologic changes, including vasculitis, degeneration, and necrosis, were found in the extrapulmonary organs of transgenic mice, and viral antigen was found in brain. Therefore, transgenic mice were more susceptible to SARS-CoV than were wild-type mice, and susceptibility was associated with severe pathologic changes that resembled human SARS infection. These mice will be valuable for testing potential vaccine and antiviral drug therapies and for furthering our understanding of SARS pathogenesis.  相似文献   

7.
Six years have passed since the outbreak of severe acute respiratory syndrome (SARS). Previous studies indicated that specific Abs to SARS-related coronavirus (SARS-CoV) waned over time in recovered SARS patients. It is critical to find out whether a potential anamnestic response, as seen with other viral infections, exists to protect a person from reinfection in case of another SARS outbreak. Recovered SARS patients were followed up to 6 y to estimate the longevity of specific Ab. The specific memory B cell and T cell responses to SARS-CoV Ags were measured by means of ELISPOT assay. Factors in relation to humoral and cellular immunity were investigated. Six years postinfection, specific IgG Ab to SARS-CoV became undetectable in 21 of the 23 former patients. No SARS-CoV Ag-specific memory B cell response was detected in either 23 former SARS patients or 22 close contacts of SARS patients. Memory T cell responses to a pool of SARS-CoV S peptides were identified in 14 of 23 (60.9%) recovered SARS patients, whereas there was no such specific response in either close contacts or healthy controls. Patients with more severe clinical manifestations seemed to present a higher level of Ag-specific memory T cell response. SARS-specific IgG Ab may eventually vanish and peripheral memory B cell responses are undetectable in recovered SARS patients. In contrast, specific T cell anamnestic responses can be maintained for at least 6 y. These findings have applications in preparation for the possible reemergence of SARS.  相似文献   

8.
An enhanced polymerase chain reaction (PCR) assay to detect the coronavirus associated with severe acute respiratory syndrome (SARS-CoV) was developed in which a target gene pre-amplification step preceded TaqMan real-time fluorescent PCR. Clinical samples were collected from 120 patients diagnosed as suspected or probable SARS cases and analyzed by conventional PCR followed by agarose gel electrophoresis, conventional TaqMan real-time PCR, and our enhanced TaqMan real-time PCR assays. An amplicon of the size expected from SARS-CoV was obtained from 28/120 samples using the enhanced real-time PCR method. Conventional PCR and real-time PCR alone identified fewer SARS-CoV positive cases. Results were confirmed by viral culture in 3/28 cases. The limit of detection of the enhanced real-time PCR method was 10(2)-fold higher than the standard real-time PCR assay and 10(7)-fold higher than conventional PCR methods. The increased sensitivity of the assay may help control the spread of the disease during future SARS outbreaks.  相似文献   

9.
10.
严重急性呼吸系统综合征(severe acute respiratory syndrome,SARS)是由严重急性呼吸系统综合征冠状病毒(SARS corona-vims,SARS-CoV)引起的呼吸系统疾病。SARS-CoV的刺突蛋白(spike protein)具有S1和S2两个独特的功能结构域,研究发现两者都是进行疫苗和抗体研究的理想和有效的靶点。对非典疫苗的研究生产非常有价值,对预防和治疗SARS也有重大意义。  相似文献   

11.
12.
Effective vaccines should confer long-term protection against future outbreaks of severe acute respiratory syndrome (SARS) caused by a novel zoonotic coronavirus (SARS-CoV) with unknown animal reservoirs. We conducted a cohort study examining multiple parameters of immune responses to SARS-CoV infection, aiming to identify the immune correlates of protection. We used a matrix of overlapping peptides spanning whole SARS-CoV proteome to determine T cell responses from 128 SARS convalescent samples by ex vivo IFN-gamma ELISPOT assays. Approximately 50% of convalescent SARS patients were positive for T cell responses, and 90% possessed strongly neutralizing Abs. Fifty-five novel T cell epitopes were identified, with spike protein dominating total T cell responses. CD8(+) T cell responses were more frequent and of a greater magnitude than CD4(+) T cell responses (p < 0.001). Polychromatic cytometry analysis indicated that the virus-specific T cells from the severe group tended to be a central memory phenotype (CD27(+)/CD45RO(+)) with a significantly higher frequency of polyfunctional CD4(+) T cells producing IFN-gamma, TNF-alpha, and IL-2, and CD8(+) T cells producing IFN-gamma, TNF-alpha, and CD107a (degranulation), as compared with the mild-moderate group. Strong T cell responses correlated significantly (p < 0.05) with higher neutralizing Ab. The serum cytokine profile during acute infection indicated a significant elevation of innate immune responses. Increased Th2 cytokines were observed in patients with fatal infection. Our study provides a roadmap for the immunogenicity of SARS-CoV and types of immune responses that may be responsible for the virus clearance, and should serve as a benchmark for SARS-CoV vaccine design and evaluation.  相似文献   

13.
A novel coronavirus, the severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), was identified as the causative agent of SARS. The profile of specific antibodies to individual proteins of the virus is critical to the development of vaccine and diagnostic tools. In this study, 13 recombinant proteins associated with four structural proteins (S, E, M and N) and five putative uncharacterized proteins (3a, 3b, 6, 7a and 9b) of the SARS-CoV were prepared and used for screening and monitoring their specific IgG antibodies in SARS patient sera by protein microarray. Antibodies to proteins S, 3a, N and 9b were detected in the sera from convalescent-phase SARS patients, whereas those to proteins E, M, 3b, 6 and 7a were undetected. In the detectable specific antibodies, anti-S and anti-N were dominant and could persist in the sera of SARS patients until week 30. Among the rabbit antisera to recombinant proteins S3, N, 3a and 9b, only anti-S3 serum showed significant neutralizing activity to the SARS-CoV infection in Vero E6 cells. The results suggest (1) that anti-S and anti-N antibodies are diagnostic markers and in particular that S3 is immunogenic and therefore is a good candidate as a subunit vaccine antigen; and (2) that, from a virus structure viewpoint, the presence in some human sera of antibodies reacting with two recombinant polypeptides, 3a and 9b, supports the hypothesis that they are synthesized during the virus cycle.  相似文献   

14.
To date, the pathogenesis of severe acute respiratory syndrome (SARS) in humans is still not well understood. SARS coronavirus (SARS-CoV)-specific CTL responses, in particular their magnitude and duration of postinfection immunity, have not been extensively studied. In this study, we found that heat-inactivated SARS-CoV elicited recall CTL responses to newly identified spike protein-derived epitopes (SSp-1, S978, and S1202) in peripheral blood of all HLA-A*0201(+) recovered SARS patients over 1 year postinfection. Intriguingly, heat-inactivated SARS-CoV elicited recall-like CTL responses to SSp-1 but not to S978, S1202, or dominant epitopes from several other human viruses in 5 of 36 (13.8%) HLA-A*0201(+) healthy donors without any contact history with SARS-CoV. SSp-1-specific CTLs expanded from memory T cells of both recovered SARS patients, and the five exceptional healthy donors shared a differentiated effector CTL phenotype, CD45RA(+)CCR7(-)CD62L(-), and expressed CCR5 and CD44. However, compared with the high avidity of SSp-1-specific CTLs derived from memory T cells of recovered SARS patients, SSp-1-specific CTLs from the five exceptional healthy donors were of low avidity, as determined by their rapid tetramer dissociation kinetics and reduced cytotoxic reactivity, IFN-gamma secretion, and intracellular production of IFN-gamma, TNF-alpha, perforin, and granzyme A. These results indicate that SARS-CoV infection induces strong and long-lasting CTL-mediated immunity in surviving SARS patients, and that cross-reactive memory T cells to SARS-CoV may exist in the T cell repertoire of a small subset of healthy individuals and can be reactivated by SARS-CoV infection.  相似文献   

15.
Severe acute respiratory syndrome (SARS), a new disease with symptoms similar to those of atypical pneumonia, raised a global alert in March 2003. Because of its relatively high transmissibility and mortality upon infection, probable SARS patients were quarantined and treated with special and intensive care. Therefore, instant and accurate laboratory confirmation of SARS-associated coronavirus (SARS-CoV) infection has become a worldwide interest. For this need, we purified recombinant proteins including the nucleocapsid (N), envelope (E), membrane (M), and truncated forms of the spike protein (S1–S7) of SARS-CoV inEscherichia coli. The six proteins N, E, M, S2, S5, and S6 were used for Western blotting (WB) to detect various immunoglobulin classes in 90 serum samples from 54 probable SARS patients. The results indicated that N was recognized in most of the sera. In some cases, S6 could be recognized as early as 2 or 3 days after illness onset, while S5 was recognized at a later stage. Furthermore, the result of recombinant-protein-based WB showed a 90% agreement with that of the whole-virus-based immunofluorescence assay. Combining WB with existing RT-PCR, the laboratory confirmation for SARS-CoV infection was greatly enhanced by 24.1%, from 48.1% (RT-PCR alone) to 72.2%. Finally, our results show that IgA antibodies against SARS-CoV can be detected within 1 week after illness onset in a few SARS patients.  相似文献   

16.
The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 A resolution. The structure of this "X" domain, seen in many single-stranded RNA viruses, reveals a three-layered alpha/beta/alpha core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1'-phosphate (Appr-1'-p). The SARS nsP3 domain readily removes the 1' phosphate group from Appr-1'-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1'-p.  相似文献   

17.
Severe acute respiratory syndrome coronavirus (SARS-CoV) first appeared in Southern China in November 2002, and then quickly spread to 33 countries on five continents along international air travel routes. Although the SARS epidemic has been contained, there is a clear need for a safe and effective vaccine should an outbreak of a SARS-CoV infection reappear in human population. In this study, we tested four DNA-vaccine constructs: (1) pLL70, containing cDNA for the SARS-CoV spike (S) gene; (2) pcDNA-SS, containing codon-optimized S gene for SARS-CoV S protein (residues 12-1255) fused with a leader sequence derived from the human CD5 gene; (3) pcDNA-St, containing the gene encoding the N-portion of the codon-optimized S gene (residues 12-532) with the CD5 leader sequence; (4) pcDNA-St-VP22C, containing the gene encoding the N-portion of the codon-optimized S protein with the CD5 leader sequence fused with the C-terminal 138 amino acids of the bovine herpesvirus-1 (BHV-1) major tegument protein VP22. Each of these plasmids was intradermally administered to C57BL/6 mice in three separate immunizations. Analysis of humoral and cellular immune responses in immunized mice demonstrated that pcDNA-SS and pcDNA-St-VP22C are the most immunogenic SARS vaccine candidates.  相似文献   

18.
E protein is a membrane component of severe acute respiratory syndrome coronavirus (SARS-CoV). Disruption of E protein may reduce viral infectivity. Thus, the SARS-CoV E protein is considered a potential target for the development of antiviral drugs. However, the cellular immune responses to E protein remain unclear in humans. In this study, we found that peripheral blood mononuclear cells (PBMCs) from fully recovered SARS individuals rapidly produced IFN-gamma and IL-2 following stimulation with a pool of 9 peptides overlapping the entire E protein sequence. Analysis of the immune responses by flow cytometry showed that both CD4+ and CD8+T cells were involved in the SARS-CoV E-specific immune responses after stimulation with SARS-CoV E peptides. Moreover, the majority of IFN-gamma+CD4+T cells were central memory cells expressing CD45RO+CCR7+CD62L-; whereas IFN-gamma+CD8+ memory T cells were mostly effector memory cells expressing CD45RO-CCR7-CD62L-. The results of T-cell responses to 9 individual peptides indicated that the E protein contained at least two major T cell epitopes (E2 amino acid [aa] 9-26 and E5-6: aa 33-57) which were important in eliciting cellular immune response to SARS-CoV E protein in humans.  相似文献   

19.
Severe acute respiratory syndrome (SARS) is a lifethreatening emerging respiratory disease caused by the coronavirus, SARS-CoV. The nucleocapsid (N) protein of SARS-CoV is highly antigenic and may be a suitable candidate for diagnostic applications. We constructed truncated recombinant N proteins (N1 [1-422 aa], N2 [1- 109 aa], and N3 [110-422 aa]) and determined their antigenicity by Western blotting using convalescent SARS serum. The recombinants containing N1 and N3 reacted with convalescent SARS serum in Western blotting. However, the recombinant with N2 did not. In ELISA using N1 or N3 as the antigens, positive results were observed in 10 of 10 (100%) SARS-CoV-positive human sera. None of 50 healthy sera gave positive results in either assay. These data indicate that the ELISA using N1 or N3 has high sensitivity and specificity. These results suggest that the middle or C-terminal region of the SARS N protein is important for eliciting antibodies against SARS-CoV during the immune response, and ELISA reactions using N1 or N3 may be a valuable tool for SARS diagnosis.  相似文献   

20.
Severe acute respiratory syndrome coronavirus (SARS-CoV) was identified to be the causative agent of SARS with atypical pneumonia. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV. It is not clear whether ACE2 conveys signals from the cell surface to the nucleus and regulates expression of cellular genes upon SARS-CoV infection. To understand the pathogenesis of SARS-CoV, human type II pneumocyte (A549) cells were incubated with the viral spike protein or with SARS-CoV virus-like particles containing the viral spike protein to examine cytokine modulation in lung cells. Results from oligonucleotide-based microarray, real-time PCR, and enzyme-linked immunosorbent assays indicated an upregulation of the fibrosis-associated chemokine (C-C motif) ligand 2 (CCL2) by the viral spike protein and the virus-like particles. The upregulation of CCL2 by SARS-CoV spike protein was mainly mediated by extracellular signal-regulated kinase 1 and 2 (ERK1/2) and AP-1 but not the IκBα-NF-κB signaling pathway. In addition, Ras and Raf upstream of the ERK1/2 signaling pathway were involved in the upregulation of CCL2. Furthermore, ACE2 receptor was activated by casein kinase II-mediated phosphorylation in cells pretreated with the virus-like particles containing spike protein. These results indicate that SARS-CoV spike protein triggers ACE2 signaling and activates fibrosis-associated CCL2 expression through the Ras-ERK-AP-1 pathway.Severe acute respiratory syndrome (SARS) is an atypical pneumonia that occurred in several countries during late 2002 and the first half of 2003. A novel coronavirus, SARS-coronavirus (SARS-CoV), isolated from SARS patients was identified to be the causative agent of SARS. SARS-CoV infected more than 8,000 people, with a worldwide mortality rate of 9.6% (8, 20). The virus contains a positive-sense single-stranded RNA genome of approximately 30,000 nucleotides. Four major structural proteins including spike (S), membrane (M), envelope (E), and nucleocapsid (N) make up the SARS-CoV particles (31, 36). Angiotensin (Ang)-converting enzyme 2 (ACE2) and CD209L (L-SIGN) have been identified to be the receptors for SARS-CoV (15, 27). SARS-CoV spike protein induced ACE2-mediated interleukin-8 (IL-8) release from lung cells via activation of activation protein 1 (AP-1) (4). Nevertheless, involvement of ACE2 in virus pathogenesis is not fully understood.Dysregulation of inflammatory cytokines and adhesion molecules may be involved in lung injury that causes acute respiratory distress syndrome. High levels of proinflammatory cytokines such as interleukin-6, transforming growth factor β (TGF-β), and tumor necrosis factor alpha (TNF-α) were detected in the sera and ACE2+ cells of SARS patients (12, 45). Elevated levels of cytokines, including alpha interferon (IFN-α), IFN-β, IFN-γ, CCL3, CCL5, and CXCL10, were also detected in SARS-CoV-infected macrophages, dendritic cells, and a colon carcinoma cell line (1, 5, 25). It is possible that the high fatality rate of SARS results from a severe immune response caused by cytokines and chemokines.CCL2 [chemokine (C-C motif) ligand 2; monocyte chemoattractant protein-1, (MCP-1)] is a CC chemokine that attracts monocytes, memory T lymphocytes, and basophils. CCL2 and its receptor CCR2 are involved in inflammatory reactions, including monocyte/macrophage migration, Th2 cell polarization, and the production of TGF-β and procollagen in fibroblast cells (9, 10). CCL2 is thus associated with several lung inflammatory disorders including acute respiratory distress syndrome, asthma, and pulmonary fibrosis (35). These inflammatory disorders and pulmonary infiltration are known to account for the progressive respiratory failure and death of SARS patients. In addition, upregulation of CCL2 was detected in the sera of SARS patients and the supernatant of a SARS-CoV-infected culture system (5, 16). However, mechanisms by which SARS-CoV is involved in the upregulation of CCL2 are not known.In this study, we have taken a step forward in understanding the pathogenesis of SARS-CoV by examining SARS-CoV-mediated cytokine modulation in human type II pneumocyte (A549) cells and monkey kidney Vero E6 cells. Both pretreatment of A549 cells with SARS-CoV virus-like particles (VLPs) and preincubation of the cells with the viral spike protein upregulate the expression of fibrosis-associated CCL2. SARS-CoV may interact with ACE2 receptor and activate casein kinase II-mediated ACE2 phosphorylation, which is critical for SARS-CoV-induced CCL2 upregulation. In addition, Ras, Raf, MEK, extracellular signal-regulated kinase 1 and 2 (ERK1/2), and AP-1 are directly involved in SARS-CoV-induced CCL2 upregulation. These data suggest that the intracellular ACE2 signaling pathway in the pneumocytes of SARS-CoV-infected patients confers risks of lung fibrosis leading to respiratory failure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号