首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T4 mutants in gene 17 accumulate particles which contain the main head protein in the cleaved form (gp23*) arranged in an unexpanded lattice (empty small particles), together with other expanded capsids (empty large particles). The isolated empty small particles can be transformed in vitro, by lowering the ionic strength, to capsid-like structures. This structural transformaton is not coupled to chemical modification of the structural proteins of the empty small particles. In contrast to unexpanded particles that are easily dissociated, the transformed structures are as resistant to dissociation as other T-even head-related particles with expanded lattice. Furthermore, the transformed particles are able to bind in vitro hoc and soc proteins, rendering capsids indistinguishable from the normal T4 capsids both morphologically and by their stability against denaturing agents. Our results indicate that the in vitro transformation of the empty small particles might mimic important and characteristic aspects of the in vivo maturation of T4 heads, thus suggesting a possible role of the "cleaved but unexpanded" particle in the maturation pathway of the T4 shell.  相似文献   

2.
A maturable head-related particle of bacteriophage T4 has been identified and characterized. This epsilon-particle has the same size as the prehead, but its shell is made of the cleaved product of gene 23 (gp23*). It contains internal matter, most likely the processed core proteins, which is lost or modified by experimental manipulations. It accumulates, together with partially filled ("grizzled") heads, in T4 infected cells that are treated with 9-aminoacridine. On sections of "well-preserved" cells the epsilon-particles are not identifiable with certainty; a more or less empty breakdown product of them becomes visible when cytoplasmic leakage is induced. The number of particles per cell is then in agreement with the biochemically and with the number of particles counted in lysates. Morphologically and biochemically, the isolated epsilon-particles closely resemble the empty small particles of 17- -infected cells described in previous papers of this series. Both are composed of gp23* and are still unexpanded, so that they are not yet able to bind the minor head proteins soc and hoc. We discuss the possibility of the epsilon-particle being an intermediate on the normal T4 wild-type head maturation pathway.  相似文献   

3.
The capsid proteins of papillomavirus self-assemble to form empty capsids or virus-like particles that appear quite similar to naturally occurring virions by conventional electron microscopy. To characterize such virus-like particles more fully, cryoelectron microscopy and image analysis techniques were used to generate three-dimensional reconstructions of capsids produced by vaccinia virus recombinants (V capsids) that expressed human papillomavirus type 1 L1 protein only or both L1 and L2 proteins. All V capsids had 72 pentameric capsomers arranged on a T = 7 icosahedral lattice. Each particle (approximately 60 nm in diameter) consisted of an approximately 2-nm-thick shell of protein with a radius of 22 nm with capsomers that extend approximately 6 nm from the shell. At a resolution of 3.5 nm, both V capsid structures appear identical to the capsid structure of native human papillomavirus type 1 (T. S. Baker, W. W. Newcomb, N. H. Olson, L. M. Cowsert, C. Olson, and J. C. Brown, Biophys. J. 60:1445-1456, 1991), thus implying that expressed and native capsids are structurally equivalent.  相似文献   

4.
We have used differential scanning calorimetry in conjunction with cryo-electron microscopy to investigate the conformational transitions undergone by the maturing capsid of phage T4. Its precursor shell is composed primarily of gp23 (521 residues): cleavage of gp23 to gp23* (residues 66 to 521) facilitates a concerted conformational change in which the particle expands substantially, and is greatly stabilized. We have now characterized the intermediate states of capsid maturation; namely, the cleaved/unexpanded, state, which denatures at tm = 60 degrees C, and the uncleaved/expanded state, for which tm = 70 degrees C. When compared with the precursor uncleaved/unexpanded state (tm = 65 degrees C), and the mature cleaved/expanded state (tm = 83 degrees C, if complete cleavage precedes expansion), it follows that expansion of the cleaved precursor (delta tm approximately +23 degrees C) is the major stabilizing event in capsid maturation. These observations also suggest an advantage conferred by capsid protein cleavage (some other phage capsids expand without cleavage): if the gp23-delta domains (residues 1 to 65) are not removed by proteolysis, they impede formation of the stablest possible bonding arrangement when expansion occurs, most likely by becoming trapped at the interface between neighboring subunits or capsomers. Icosahedral capsids denature at essentially the same temperatures as tubular polymorphic variants (polyheads) for the same state of the surface lattice. However, the thermal transitions of capsids are considerably sharper, i.e. more co-operative, than those of polyheads, which we attribute to capsids being closed, not open-ended. In both cases, binding of the accessory protein soc around the threefold sites on the outer surface of the expanded surface lattice results in a substantial further stabilization (delta tm = +5 degrees C). The interfaces between capsomers appear to be relatively weak points that are reinforced by clamp-like binding of soc. These results imply that the "triplex" proteins of other viruses (their structural counterparts of soc) are likely also to be involved in capsid stabilization. Cryo-electron microscopy was used to make conclusive interpretations of endotherms in terms of denaturation events. These data also revealed that the cleaved/unexpanded capsid has an angular polyhedral morphology and has a pronounced relief on its outer surface. Moreover, it is 14% smaller in linear dimensions than the cleaved/expanded capsid, and its shell is commensurately thicker.  相似文献   

5.
Giant T4 phage capsoids formed in canavanine-treated cultures infected by phage mutants in genes 21 and 17, respectively, differ with regard to cleavage of the major capsid protein, gp 23, and in the fine structure of their hexagonal surface lattices. Quantitative computer processing of electron micrographs shows that the significant differences in capsomer morphology amount to six symmetrically placed features present in the uncleaved hexamer but absent after cleavage. These features may be related with the N-terminal portions of gp 23 monomers excised by phage-specific proteolysis. Cleaved 17? giants can be induced to undergo a further structural transformation (expansion). Structural characteristics of partially transformed giant particles give clues about the dynamics of the cleavage and expansion transformations. Both processes appear to be polar, initiating in one cap and propagating along the particle. The transition zone of partial cleavage is diffuse, whereas the transition between unexpanded and expanded areas is confined to a narrow band of some 20 nm width.  相似文献   

6.
We have investigated the conformational basis of the expansion transformation that occurs upon maturation of the bacteriophage T4 prohead, by using laser Raman spectroscopy to determine the secondary structure of the major capsid protein in both the precursor and the mature states of the surface lattice. This transformation involves major changes in the physical, chemical, and immunological properties of the capsid and is preceded in vivo by processing of its major protein, gp23 (56 kDa), to gp23* (49 kDa), by proteolysis of its N-terminal gp23-delta domain. The respective secondary structures of gp23 in the unexpanded state, and of gp23* in the expanded state, were determined from the laser Raman spectra of polyheads, tubular polymorphic variants of the capsid. Similar measurements were also made on uncleaved polyheads that had been expanded in vitro and, for reference, on thermally denatured polyheads. We find that, with or without cleavage of gp23, expansion is accompanied by substantial changes in secondary structure, involving a major reduction in alpha-helix content and an increase in beta-sheet. The beta-sheet contents of gp23* or gp23 in the expanded state of the surface lattice, and even of gp23 in the unexpanded state, are sufficient for a domain with the "jellyroll" fold of antiparallel beta-sheets, previously detected in the capsid proteins of other icosahedral viruses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Inter- and intra-subunit bonding within the surface lattice of the capsid of bacteriophage T4 has been investigated by differential scanning calorimetry of polyheads, in conjunction with electron microscopy, limited proteolysis and sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The bonding changes corresponding to successive stages of assembly of the major capsid protein gp23, including its maturation cleavage, were similarly characterized. The uncleaved/unexpanded surface lattice exhibits two endothermic transitions. The minor event, at 46 degrees C, does not visibly affect the surface lattice morphology and probably represents denaturation of the N-terminal domain of gp23. The major endotherm, at 65 degrees C, represents denaturation of the gp23 polymers. Soluble gp23 from dissociated polyheads is extremely unstable and exhibits no endotherm. Cleavage of gp23 to gp23* and the ensuing expansion transformation effects a major stabilization of the surface lattice of polyheads, with single endotherms whose melting temperatures (t*m) range from 73 to 81 degrees C, depending upon the mutant used and the fraction of gp23 that is cleaved to gp23* prior to expansion. Binding of the accessory proteins soc and hoc further modulates the thermograms of cleaved/expanded polyheads, and their effects are additive. hoc binding confers a new minor endotherm at 68 degrees C corresponding to at least partial denaturation of hoc. Denatured hoc nevertheless remains associated with the surface lattice, although in an altered, protease-sensitive state which correlates with delocalization of hoc subunits visualized in filtered images. While hoc binding has little effect on the thermal stability of the gp23* matrix, soc binding further stabilizes the surface lattice (delta Hd approximately +50%; delta t*m = +5.5 degrees C). It is remarkable that in all states of the surface lattice, the inter- and intra-subunit bonding configurations of gp23 appear to be co-ordinated to be of similar thermal stability. Thermodynamically, the expansion transformation is characterized by delta H much less than 0; delta Cp approximately 0, suggesting enhancement of van der Waals' and/or H-bonding interactions, together with an increased exposure to solvent of hydrophobic residues of gp23* in the expanded state. These findings illuminate hypotheses of capsid assembly based on conformational properties of gp23: inter alia, they indicate a role for the N-terminal portion of gp23 in regulating polymerization, and force a reappraisal of models of capsid swelling based on the swivelling of conserved domains.  相似文献   

8.
Isolated human immunodeficiency virus (HIV) and HIV-infected human lymphocytes in culture have been imaged for the first time by atomic force microscopy (AFM). Purified virus particles spread on glass substrates are roughly spherical, reasonably uniform, though pleomorphic in appearance, and have diameters of about 120 nm. Similar particles are also seen on infected cell surfaces, but morphologies and sizes are considerably more varied, possibly a reflection of the budding process. The surfaces of HIV particles exhibit "tufts" of protein, presumably gp120, which do not physically resemble spikes. The protein tufts, which number about 100 per particle, have average diameters of about 200 A, but with a large variance. They likely consist of arbitrary associations of small numbers of gp120 monomers on the surface. In examining several hundred virus particles, we found no evidence that the gp120 monomers form threefold symmetric trimers. Although >95% of HIV-infected H9 lymphocytic cells were producing HIV antigens by immunofluorescent assay, most lymphocytes displayed few or no virus on their surfaces, while others were almost covered by a hundred or more viruses, suggesting a dependence on cell cycle or physiology. HIV-infected cells treated with a viral protease inhibitor and their progeny viruses were also imaged by AFM and were indistinguishable from untreated virions. Isolated HIV virions were disrupted by exposure to mild neutral detergents (Tween 20 and CHAPS) at concentrations from 0.25 to 2.0%. Among the products observed were intact virions, the remnants of completely degraded virions, and partially disrupted particles that lacked sectors of surface proteins as well as virions that were split or broken open to reveal their empty interiors. Capsids containing nucleic acid were not seen, suggesting that the capsids were even more fragile than the envelope and were totally degraded and lost. From these images, a good estimate of the thickness of the envelope protein-membrane-matrix protein outer shell of the virion was obtained. Treatment with even low concentrations (<0.1%) of sodium dodecyl sulfate completely destroyed all virions but produced many interesting products, including aggregates of viral proteins with strands of nucleic acid.  相似文献   

9.
Staphylococcus aureus pathogenicity island 1 (SaPI1) is a mobile genetic element that carries genes for several superantigen toxins. SaPI1 is normally stably integrated into the host genome but can become mobilized by "helper" bacteriophage 80α, leading to the packaging of SaPI1 genomes into phage-like transducing particles that are composed of structural proteins supplied by the helper phage but having smaller capsids. We show that the SaPI1-encoded protein gp6 is necessary for efficient formation of small capsids. The NMR structure of gp6 reveals a dimeric protein with a helix-loop-helix motif similar to that of bacteriophage scaffolding proteins. The gp6 dimer matches internal densities that bridge capsid subunits in cryo-electron microscopy reconstructions of SaPI1 procapsids, suggesting that gp6 acts as an internal scaffolding protein in capsid size determination.  相似文献   

10.
We report the assembly of human immunodeficiency virus (HIV)-like particles in African green monkey kidney cells coinfected with two recombinant vaccinia viruses, one carrying the HIV-1 gag and protease genes and the other the env gene. Biochemical analysis of particles sedimented from culture supernatants of doubly infected cells revealed that they were composed of gag proteins, primarily p24, as well as the env proteins gp120 and gp41. Thin-section immunoelectron microscopy showed that these particles were 100 to 120 nm in diameter, were characterized by the presence of cylindrical core structures, and displayed the mature gp120-gp41 complexes on their surfaces. Furthermore, thin-section immunoelectron microscopy analysis of infected cells showed that particle assembly and budding occurred at the plasma membrane. Nucleic acid hybridization suggested that the particles packaged only the gag mRNA but not the env mRNA. Therefore, the system we present is well suited for studies of HIV virion maturation. In addition, the HIV-like particles provide a novel and attractive approach for vaccine development.  相似文献   

11.
Double-stranded DNA-packaging in icosahedral bacteriophages is believed to be driven by a packaging "machine" constituted by the portal protein and the two packaging/terminase proteins assembled at the unique portal vertex of the empty prohead shell. Although ATP hydrolysis is evidently the principal driving force, which component of the packaging machinery functions as the translocating ATPase has not been elucidated. Evidence suggests that the large packaging subunit is a strong candidate for the translocating ATPase. We have constructed new phage T4 terminase recombinants under the control of phage T7 promoter and overexpressed the packaging/terminase proteins gp16 and gp17 in various configurations. The hexahistidine-tagged-packaging proteins were purified to near homogeneity by Ni(2+)-agarose chromatography and were shown to be highly active for packaging DNA in vitro. The large packaging subunit gp17 but not the small subunit gp16 exhibited an ATPase activity. Although gp16 lacked ATPase activity, it enhanced the gp17-associated ATPase activity by >50-fold. The gp16 enhancement was specific and was due to an increased catalytic rate for ATP hydrolysis. A phosphorylated gp17 was demonstrated under conditions of low catalytic rates but not under high catalytic rates in the presence of gp16. The data are consistent with the hypothesis that a weak ATPase is transformed into a translocating ATPase of high catalytic capacity after assembly of the packaging machine.  相似文献   

12.
We describe the aberrant phage multiplication of the triple conditional lethal mutant 43?(polymerase)· 30?(ligase)·46?(exonuclease) of bacteriophage T4D in which phage DNA replication is arrested but some late protein synthesis occurs (33). The nuclear disruption is indistinguishable from wild type. Forty-five empty small and empty large particles are assembled per cell when the multiplicity of infection (m.o.i.) is 100. This number corresponds closely to the 38 phage equivalents of cleaved major head protein determined biochemically. By reducing the m.o.i. the number of observable particles decreases, reaching 1–5 per cell at an m.o.i. of 5(+5). The total synthesis of phage related proteins is not significantly dependant on the m.o.i. The synthesis of late proteins is about 10% of that of wild type at high m.o.i. and decreases with the m.o.i. The different early and late proteins do not show the same relative proportions as in wild type and respond differently to an increased m.o.i. These and other results are discussed with respect to the role of phage DNA in prehead assembly and head maturation.  相似文献   

13.
Mutants in the genes governing the maturation of the head of bacteriophage T4 and in gene 24 were studied by electron microscopy of thin sections. We define morphologically: black particles, comprising mature, stable heads and immature, fragile heads, which break down upon lysis; grizzled particles, which apparently are partially filled or partially emptied; empty large particles without DNA or core Which are all the same size as normal heads; empty small particles without DNA and without core which are of the size of the τ particle, which is the prehead of phage T4. The study of single and double mutants of the maturation genes demonstrates that the phenotypes are only different by the proportions of the different particles made except for 17? where only empty small and empty large particles accumulate. The mutants in gene 24 are epistatic on all other mutants. Mutants in gene 17 are epistatic on the remaining ones. The results are consistent with the hypothesis that the products of several of the maturation genes act on DNA to render it competent for packaging while the others act directly on the particle. By this uncoupling, bypasses and abortive pathways can result.  相似文献   

14.
R Prange  A Clemen    R E Streeck 《Journal of virology》1991,65(7):3919-3923
The envelope of hepatitis B virus contains three related proteins, one of which is myristylated. The nonmyristylated small and middle protein are assembled into empty envelope particles which are secreted from cells, whereas the myristylated large envelope protein is mainly found in complete virions and is not secreted in the absence of the nucleocapsid. The block to secretion can be partially overcome by mutation or deletion of the myristylation site. Creation of a myristyl attachment site in the small protein impairs the secretion of empty envelope particles but not their intracellular assembly. Myristylation may therefore play a crucial role in hepatitis B virus replication by channeling the envelope proteins into complete viral particles.  相似文献   

15.
Gene product 9 (gp9, 288 amino acid residues per monomer, molecular weight 30.7 kD) of bacteriophage T4 triggers the baseplate reorganization and the sheath contraction after interaction of the long tail fibers with the receptors of the bacterial cell. In this work we have produced the recombinant protein and determined that gp9 is a stable homotrimer and active in in vitro complementation assay completing the defective phage particles which lack gp9. According to CD-spectroscopy data, the gp9 polypeptide chain contains 65-73% beta-structure and 11-16% alpha-helical segments, this being in good agreement with secondary structure prediction results. Additionally, we have constructed a set of plasmid vectors for expression of gp9 deletion mutants. The fragments with consecutive truncations of the N-terminus of the molecule, as well as the full-length protein, are trimers resistant to SDS treatment and decrease infective phage particle formation in in vitro complementation assay with native gp9. The deletion of the molecule C-terminal region results in failure of trimerization and decreases the stability of the protein.  相似文献   

16.
Of the nine proteins found in the virion of phage P22, four are ejected into the cell after adsorption. The four ejected proteins, termed E proteins, are gp16, gp20, gp26, and gp7. This was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of radioactively labeled phage that had been adsorbed to cells and then eluted off the surface with distilled water. Phage particles that lack gp7 (7- particles) or gp20 (20- particles) successfully eject all their E proteins. The 16- particles do not eject gp7. Analysis of phage ghosts showed that they lack gp16, gp20, and gp7, but they have gp26 in close to normal quantities. Our results suggest roles for gp16 and gp26 in DNA and E protein ejection. All four E proteins are possible candidates for roles in helping the phage DNA cross the plasma membrane.  相似文献   

17.
The solubilization of isolated brain synaptosomal plasma membranes by various detergents was studied and in each case found to depend upon detergent concentration. By using conditions sufficient to extract maximally protein and phospholipid from the membranes, postsynaptic junctional particles were isolated with each of four detergents and their ultrastructural appearances and protein contents compared. Two basic structural forms were identified. One, isolated with Triton X-100, consists of a planar array of dense-staining particles ca. 20 nm in diameter. It resembles the postsynaptic density seen in undigested synaptosomal plasma membranes. The other, isolated with sodium deoxycholate, contains less protein. It has the same overall shape and dimensions as the postsynaptic density, but consists of a branching network of short 5 nm fibres (the postsynaptic junctional lattice) making up an array of contiguous polygons, each ca. 20 nm across. The interior of these polygonal elements seems to be hydrophobic since it cannot be penetrated by metallic salts used for negative staining. It is suggested that the dense-staining 20 nm subunits observed at the postsynaptic junctional site may be composed of hydrophobic proteins inserted into the hollow cores of the lattice polygons. Electrophoretic analysis of the proteins present in the various postsynaptic junctional preparations identified two major common components with molecular masses of 275000 and 47500. The latter is tentatively identified as actin. Components comigrating respectively with alpha- and beta-tubulin are present, and the relation of the lattice structure to subjacent microtubules is discussed.  相似文献   

18.
The naked core of bacteriophage T4 was isolated ex vivo after cross-linking with either glutaraldehyde or dithiobis(succinimidyl propionate). The isolated particles appeared to be morphologically identical to the cores found in thin sections, to those demonstrated in in situ lysis preparations, and to core structures assembled in vitro. Treatment with glutaraldehyde provided core particles which were morphologically well preserved, whereas dithiobis(succinimidyl propionate)-induced cross-linking was reversible and allowed analysis of the protein composition of the isolated particles. The identity of the reversibly cross-linked particles with those obtained after irreversible cross-linking was suggested by their morphology and their similar sedimentation behavior. Immunolabeling confirmed the structural presence of the main core protein in both structures. Gel electrophoresis of reversibly cross-linked cores revealed the essential head proteins gp22, gp67, and gp21, the three internal proteins IPI, IPII, and IPIII, and a 17K protein.  相似文献   

19.
Analysis of the results of X-ray diffraction, electron microscopy and s sequence studies of filamentous bacteriophage M13 are used to construct structural models for the minor proteins gp7 and gp9 at the end of the virus assembled first, and a portion of gp6 at the end of the virus that binds host. Comparison of the sequence of the major coat protein, gp8, with those of gp7, gp9 and gp6 indicates that significant portions of these three proteins have sequences similar to that of gp8. Assuming that sequence similarity is indicative of structural similarity, gp7, gp9 and portions of gp6 are modeled based on what is known about the structure of gp8. These molecular models are analyzed to predict the packing of the minor proteins with the terminal gp8 proteins (the last gp8 proteins at either end of the helix). This analysis indicates that the gp8 proteins integrated into the virus first may have a structure distinct from those in the body of the virus particle. The gp8 proteins at the end assembled last appear to have a conformation very similar to that of the integral coat proteins. These models place specific constraints on models for the process of viral assembly.  相似文献   

20.
Methods developed for isolating bacterial nucleoids were applied to bacteria infected with phage T4. The replicating pool of T4 DNA was isolated as a particle composed of condensed T4 DNA and certain RNA and protein components of the cell. The particles have a narrow sedimentation profile (weight-average s=2,500S) and have, on average, a T4 DNA content similar to that of the infected cell. Their dimensions observed via electron and fluorescence microscopy are similar to the dimensions of the intracellular DNA pool. The DNA packaging density is less than that of the isolated bacterial nucleoid but appears to be roughly similar to its state in vivo. Host-cell proteins and T4-specific proteins bound to the DNA were characterized by electrophoresis on polyacrylamide gels. The major host proteins are the RNA polymerase subunits and two envelope proteins (molecular weights, 36,000 and 31,000). Other major proteins of the host cell were absent or barely detectable. Single-strand breaks can be introduced into the DNA with gamma radiation or DNase without affecting its sedimentation rate. This and other studies of the effects of intercalated ethidium molecules have suggested that the average superhelical density of the condensed DNA is small. However, these studies also indicated that there may be a few domains in the DNA that become positively supercoiled in the presence of high concentrations of ethidium bromide. In contrast to the Escherichia coli nucleoid, the T4 DNA structure remains condensed after the RNA and protein components have been removed (although there may be slight relaxation in the state of condensation under these conditions).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号