首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The three-dimensional (3D) structure of the hyperthermophilic esterase EstE1 was constructed by homology modeling using Archaeoglobus fulgidus esterase as a reference, and the thermostability-structure relationship was analyzed. Our results verified the predicted 3D structure of EstE1 and identified the ion pair networks and hydrophobic interactions that are critical determinants for the thermostability of EstE1.  相似文献   

2.
An aromatic amino acid, Tyr or Trp, located in the esterase active site wall, is highly conserved, with hyperthermophilic esterases showing preference for Tyr and lower temperature esterases showing preference for Trp. In this study, we investigated the role of Tyr182 in the active site wall of hyperthermophilic esterase EstE1. Mutation of Tyr to Phe or Ala had a moderate effect on EstE1 thermal stability. However, a small-to-large mutation such as Tyr to His or Trp had a devastating effect on thermal stability. All mutant EstE1 enzymes showed reduced catalytic rates and enhanced substrate affinities as compared with wild-type EstE1. Hydrogen bond formation involving Tyr182 was unimportant for maintaining EstE1 thermal stability, as the EstE1 structure is already adapted to high temperatures via increased intramolecular interactions. However, removal of hydrogen bond from Tyr182 significantly decreased EstE1 catalytic activity, suggesting its role in stabilization of the active site. These results suggest that Tyr is preferred over a similarly sized Phe residue or bulky His or Trp residue in the active site walls of hyperthermophilic esterases for stabilizing the active site and regulating catalytic activity at high temperatures.  相似文献   

3.
We introduce an upgraded version of the error-prone polymerase chain reaction (epPCR) comprising three DNA polymerase-catalyzed steps. It improves the common epPCR strategy such that random mutations can be confined exactly to a distinct, but freely selectable, sequence region within a gene without the need for flanking restriction endonuclease sites. The new method is called protein domain library generation by overlap extension (PDLGO). To validate PDLGO, we generated a random library of EstE, a multidomain esterase from Xanthomonas vesicatoria. It was demonstrated that random mutations appear exclusively within the catalytic domains as intended. The domains of EstE flanking the catalytic domains are required for transport of EstE to the cell envelope and remain unaltered. Microplates with integrated pH sensors, providing a substrate-independent high-throughput screening tool, were used to analyze whole cells of E. coli expressing the variants of the EstE library. A variant (P286H) with substantially increased catalytic activity was identified. Our results indicate that combining PDLGO with microplates containing integrated pH sensors provides a simple and rapid toolbox for directed evolution of esterases.  相似文献   

4.
The esterase/lipase family (EC 3.1.1.3/EC 3.1.1.1) represents a diverse group of hydrolases that catalyze the cleavage of ester bonds and are widely distributed in animals, plants and microorganisms. Among these enzymes, hormone-sensitive lipases, play a critical role in the regulation of rodent fat cell lipolysis and are regarded as adipose tissue-specific enzymes. Recently, we reported the structural and biological characterization of EstE5 from the metagenome library [K.H. Nam, M.Y. Kim, S.J. Kim, A. Priyadarshi, W.H. Lee, K.Y. Hwang, Structural and functional analysis of a novel EstE5 belonging to the subfamily of hormone-sensitive lipase, Biochem. Biophys. Res. Commun. 379 (2009) 553-556]. The structure of this protein revealed that it belongs to the HSL-family. Here, we report the inhibition of the activity of the HSL-homolog EstE5 protein as determined by the use of esterase/lipase inhibitors. Our results revealed that the EstE5 protein is significantly inhibited by PMSF. In addition, this is the first study to identify the crystal structures of EstE5-PMSF at 2.4 and 2.5 Å among the HSL-homolog structures. This structural configuration is similar to that adopted when serine proteases are inhibited by PMSF. The results presented here provide valuable information regarding the properties of the HSL-family.  相似文献   

5.

Background  

EstE1 is a hyperthermophilic esterase belonging to the hormone-sensitive lipase family and was originally isolated by functional screening of a metagenomic library constructed from a thermal environmental sample. Dimers and oligomers may have been evolutionally selected in thermophiles because intersubunit interactions can confer thermostability on the proteins. The molecular mechanisms of thermostabilization of this extremely thermostable esterase are not well understood due to the lack of structural information.  相似文献   

6.
(R)-2-Chloromandelic acid (R­CM) is one of the chiral building blocks used in the pharmaceutical industry. As a result of screening for microorganisms that asymmetrically hydrolyze racemic 2­chloromandelic acid methyl ester (CMM), Exophiala dermatitidis NBRC6857 was found to produce R­CM at optical purity of 97% ee. The esterase that produces R­CM, EstE, was purified from E. dermatitidis NBRC6857, and the optimal temperature and pH of EstE were 30°C and 7.0, respectively. The estE gene that encodes EstE was isolated and overexpressed in Escherichia coli JM109. The activity of recombinant E. coli JM109 cells overexpressing estE was 553 times higher than that of E. dermatitidis NBRC6857. R­CM was produced at conversion rate of 49% and at optical purity of 97% ee from 10% CMM with 0.45 mg-dry-cell/L recombinant E. coli JM109 cells. Based on these findings, R­CM production by bioconversion of CMM may be of interest for future industrial applications.  相似文献   

7.
Hydrophobic interactions are known to play an important role for cold-adaptation of proteins; however, the role of amino acid residue, Trp, has not been systematically investigated. The extracellular esterase, EstK, which was isolated from the cold-adapted bacterium Pseudomonas mandelii, has 5 Trp residues. In this study, the effects of Trp mutation on thermal stability, catalytic activity, and conformational change of EstK were investigated. Among the 5 Trp residues, W208 was the most crucial in maintaining structural conformation and thermal stability of the enzyme. Surprisingly, mutation of W208 to Tyr (W208Y) showed an increased catalytic site thermal stability at ambient temperatures with a 13-fold increase in the activity at 40 °C compared to wild-type EstK. The structure model of W208Y suggested that Y208 could form a hydrogen bond with D308, which is located next to catalytic residue H307, stabilizing the catalytic domain. Interestingly, Tyr was conserved in the corresponding position of hyper-thermophilic esterases EstE1 and AFEST, which are active at high temperatures. Our study provides a novel insight into the engineering of the catalytic site of cold-adapted enzymes with increased thermal stability and catalytic activity at ambient temperatures.  相似文献   

8.
Esterase D1 and esterase D2, two common esterase D (EC 3.1.1.1) isozymes, were isolated and purified from human erythrocytes. Their substrate specificity, pH profile and Km values were essentially identical. Their molecular mass was the same at 34 kDa on sodium dodecyl sulfate/polyacrylamide electrophoresis and at 27 kDa on Sephadex G-100 gel filtration. Antisera to each of the esterase D1 and esterase D2 isozymes were successfully raised in chickens; each antiserum reacted identically with both isozymes. These findings indicate that the isozymes are close to each other in structure. The fact that the molecular mass of the esterase D1 and esterase D2 isozymes computed on sodium dodecyl sulfate/polyacrylamide electrophoresis was close to that obtained on Sephadex G-100 gel filtration in non-dissociating buffer indicates that the isozymes are not dimers bound by disulfide bonds or a noncovalent force. These facts together indicate that the esterase D isozymes are monomers, contrary to the prevailing view that they are dimers.  相似文献   

9.
AIMS: Isolation and identification of bacterial isolates with specific ferulic acid (FA) esterase activity and cloning of a gene encoding activity. METHODS AND RESULTS: A micro-organism with ethyl ferulate hydrolysing (EFH) activity was isolated by culture enrichment techniques. Detailed molecular identification based on species-specific primers and two conserved genes (16S rRNA and recA) led to the identification of the isolate as Burkholderia multivorans UWC10. A gene (designated estEFH5) encoding an EFH enzyme was cloned and its nucleotide sequence determined. Translational analysis revealed that estEFH5 encoded a polypeptide of 326 amino acids with an estimated molecular weight of 34.83 kDa. The EstEFH5 primary structure showed a typical serine hydrolase motif (G-H-S-L-G). The estEFH5 gene was over-expressed in Escherichia coli in an insoluble form. Following urea denaturation and in vitro refolding, the enzyme was purified using one-step His Select Nickel chromatographic column. CONCLUSION: Purified EstEFH5 showed a preference for short-chain rho-nitrophenyl esters (C2 and C3) a typical feature for carboxylesterase. Furthermore, the recombinant enzyme also retained the activity against ethyl ferulate (EF). SIGNIFICANCE AND IMPACT OF THE STUDY: A biocatalytic process for the production of FA from EF as a model substrate was demonstrated. This is the first report that describes the cloning and expression of a gene encoding FA esterase activity from the genus Burkholderia.  相似文献   

10.
A ferulic acid esterase (FAE) from the thermophilic fungus Myceliophthora thermophila (synonym Sporotrichum thermophile), belonging to the carbohydrate esterase family 1 (CE-1), was functionally expressed in methylotrophic yeast Pichia pastoris. The putative FAE from the genomic DNA was successfully cloned in P. pastoris X-33 to confirm that the enzyme exhibits FAE activity. The recombinant FAE was purified to its homogeneity (39 kDa) and subsequently characterized using a series of model substrates including methyl esters of hydroxycinnamates, alkyl ferulates and monoferuloylated 4-nitrophenyl glycosides. The substrate specificity profiling reveals that the enzyme shows a preference for the hydrolysis of methyl caffeate and p-coumarate and a strong preference for the hydrolysis of n-butyl and iso-butyl ferulate. The enzyme was active on substrates containing ferulic acid ester linked to the C-5 and C-2 linkages of arabinofuranose, whilst it was found capable of de-esterifying acetylated glucuronoxylans. Ferulic acid (FA) was efficiently released from destarched wheat bran when the esterase was incubated together with an M3 xylanase from Trichoderma longibrachiatum (a maximum of 41% total FA released after 1 h incubation). Prediction of the secondary structure of MtFae1a was performed in the PSIPRED server whilst modelling the 3D structure was accomplished by the use of the HH 3D structure prediction server.  相似文献   

11.
The intracellular localization and properties of the chymotrypsin-like esterase activity (N-acetyl-DL-phenlylalanine β-naphthyl esterase acitivity) of the rabbit peritoneal neutrophil has been studied and shown to differ from that of the human neutrophil.The major portion of the esterase activity in the rabbit neutrophil is in the 100 000 × g supernatant fraction with distinctly less activity in the lysosomal fraction. The 100 000 × g supernatant contained the highest relative specific activity of any of the subcellular fractions. Rabbit peripheral blood neutrophils gave the same distribution.The 100 000 × g supernatant esterase is 95% esterase 1 and 5% esterase 3, whereas, the lysosomal esterase is 78% esterase 1, 10–16% esterase 2 and 9% esterase 3 as defined by their ability to be inhibited by p-nitrophenyllethyl-5-chloropentylphosphonate. The 100 000 × g supernatant The 100 000 × g supernatant and lysosomal esterase activities further differ in their susceptibility to other inhibitors, their pH optima, ease of elution from DEAE and isoelectric points. Two molecular weight species of 174 000 and 70 000 were found in the 100 000 × g supernatant fraction and extracts of the lysosomal fraction but usually in differing proportions.In confirmation of others, essentially all of the chymotrypsin-like esterase activity (N-acetyl-DL-phenlylalanine β-naphthyl esterase activity) of the human neutrophil is in the lysosomal fraction, unlike the rabbit cell. The human neutrophil esterase was less susceptible to inhibition by p-nitrophenylethyl-5-chloropentylphosphonate and diisopropylphosphofluoridate but more susceptible to soybean trypsin inhibitor than rabbit esterase activity. The pH optimum of the human neutrophil esterase differed from either the rabbit lysosomal or 100 000 × g supernatant esterase, as did the isoelectric point and molecular weights.  相似文献   

12.
Summary The development of homozygosity or hemizygosity in the 13q14 region by deletion, mitotic recombination, or chromosomal loss has been interpreted as a primary event in retinoblastoma. This finding is consistent with the hypothesis that inactivation of both alleles of a gene located at 13q14.11 is required for tumorigenesis. Observations reported by Benedict and colleagues in one case of bilateral retinoblastoma, LA-RB 69, provided early evidence in favor of this hypothesis. By examining levels of esterase D, an enzyme also mapping to 13q14.11, it was previously inferred that one chromosome 13 in this patient's somatic cells contained a submicroscopic deletion of the Rb and esterase D loci and that this chromosome was retained in her tumor while the normal chromosome 13 was lost. Using a rabbit anti-esterase D antibody and the esterase D cDNA probe, we have found that (1) low but detectable quantities of esterase D protein and enzymatic activity are present in tumor cells from LA-RB 69; (2) fibroblast from this patient contain two copies of the esterase D gene, indicated by heterozygosity at an ApaI polymorphic site within this gene; and (3) tumor cells from the same patient are homozygous at this site, indicating loss and reduplication of the esterase D locus. These results demonstrate that one of the two esterase D alleles in this patient acted as a null or silent allele — that is, was present in the genome with markedly decreased protein expression. This mutant allele acted as a marker for tumor-associated loss of chromosome 13 heterozygosity, in concordance with previous proposals.  相似文献   

13.
This paper discusses the relation between the geographical distribution of an enzyme polymorphism and population structure in Drosophila pseudoobscura. California populations of this species living in very different montane and lowland habitats separated by several kilometers are similar to each other in the frequency of an esterase allele. Previous estimates suggest that gene flow is too limited to account for this homogeneity of genetic structure, so that it must reflect some balancing force of natural selection. We show, however, that dispersal over unfavorable habitats is much greater than earlier supposed. Isolated populations of D. pseudoobscura separated by 15 km from other populations are subject to large amounts of immigration. This is shown by changes in the seasonal abundance of this species and in the annual pattern of lethal alleles in such populations. The genetic structure of an experimentally perturbed isolated population in an oasis returned to normal within a single year, suggesting that such populations are ephemeral and that the oasis is subject to annual recolonization by distant migrants. Direct assessment of marked flies shows that they can move at least 10 km in 24 hours over a desert. Such extensive gene flow may help explain the distribution of the esterase allele, and is relevant to the high level of molecular polymorphism and its general lack of geographic differentiation throughout the range of D. pseudoobscura.  相似文献   

14.
The microbial degradation of the plant cell wall is of increasing industrial significance, exemplified by the interest in generating biofuels from plant cell walls. The majority of plant cell-wall polysaccharides are acetylated, and removal of the acetyl groups through the action of carbohydrate esterases greatly increases the efficiency of polysaccharide saccharification. Enzymes in carbohydrate esterase family 3 (CE3) are common in plant cell wall-degrading microorganisms but there is a paucity of structural and biochemical information on these biocatalysts. Clostridium thermocellum contains a single CE3 enzyme, CtCes3, which comprises two highly homologous (97% sequence identity) catalytic modules appended to a C-terminal type I dockerin that targets the esterase into the cellulosome, a large protein complex that catalyses plant cell wall degradation. Here, we report the crystal structure and biochemical properties of the N-terminal catalytic module (CtCes3-1) of CtCes3. The enzyme is a thermostable acetyl-specific esterase that exhibits a strong preference for acetylated xylan. CtCes3-1 displays an α/β hydrolase fold that contains a central five-stranded parallel twisted β-sheet flanked by six α-helices. In addition, the enzyme contains a canonical catalytic triad in which Ser44 is the nucleophile, His208 is the acid-base and Asp205 modulates the basic nature of the histidine. The acetate moiety is accommodated in a hydrophobic pocket and the negative charge of the tetrahedral transition state is stabilized through hydrogen bonds with the backbone N of Ser44 and Gly95 and the side-chain amide of Asn124.  相似文献   

15.
Bair R. D. and Etges F. J. 1973. Differences in esterase frequencies in five strains of Biomphalaria glabrata (Say). International Journal for Parasitology, 3: 43–46. Vertical polyacrylamidegel electrophoresis of extracts from hepatopancreas tissue of individual snails of five laboratory strains of Biomphalaria glabrata has shown considerable variation in the frequency of occurrence of ten esterases. Differences in esterase frequencies seemed correlated with strain differences in certain morphological, physiological, and biochemical aspects of the snail strains; however, no causal relationships are apparent in these systems.  相似文献   

16.
《Insect Biochemistry》1990,20(6):593-604
Juvenile hormone (JH) esterase activity was found in the plasma of larvae, pupae and adults of wild-type tobacco hornworms, Manduca sexta. There was a single peak of plasma JH esterase activity approx. 28 h prior to ecdysis in each instar from the second through the fourth instar and a peak of activity prior to both wandering and pupation in the fifth (last) instar. JH esterase activity was high in newly formed male and female pupae but declined to minimal levels by day 1 of the pupal stage. For the remainder of the pupal period, activity was at background levels. JH esterase activity increased again in newly emerged, virgin male and female adults but declined and remained at a low level 1 day after emergence through death. Gel filtration analysis of larval, pupal and adult plasma resolved a single peak of JH esterase activity with an apparent molecular weight of 66,000. However, isoelectric focusing revealed three forms with isoelectric points of 5.5, 5.8 and 6.1. These isoelectric forms were also found in black and white mutants of last instar M. sexta and in purified JH esterase from wild-type larvae. The plasma JH esterase activity metabolized JH I 2–3 times faster than JH III and was sensitive to inhibition by octylthio-1,1,1-trifluoro-2-propanone and insensitive to O,O-diisopropyl phosphorofluoridate. Gel filtration, isoelectric focusing, substrate specificity and developmental studies suggest that the same JH esterases are found in the plasma of larvae, pupae and adults and appear to be different from general (α-NA) esterase.  相似文献   

17.

Background  

Previous studies have established a correlation between electrophoretic polymorphism of esterase B, and virulence and phylogeny of Escherichia coli. Strains belonging to the phylogenetic group B2 are more frequently implicated in extraintestinal infections and include esterase B2 variants, whereas phylogenetic groups A, B1 and D contain less virulent strains and include esterase B1 variants. We investigated esterase B as a marker of phylogeny and/or virulence, in a thorough analysis of the esterase B-encoding gene.  相似文献   

18.
Genetic structure of juvenile fish from the populations of the Atlantic salmon Salmo salar inhabiting the rivers of Murmansk oblast, Arkhangelsk oblast, and Karelia, as well as of juveniles from hatcheries was examined at five allozymic loci: aspartate aminotransferase (AAT-4*), isocitrate dehydrogenase (IDHP-3*), iditol dehydrogenase (IDDH-2*), esterase D (ESTD*), and malic enzyme (MEP-2*). High genetic differentiation of both natural and “hatchery” juvenile fish was revealed. It was demonstrated that the gene pool of juveniles at three of the five loci tested was to a considerable degree formed by natural selection. In this case, the role of limiting factor was played by the duration of critical temperature regime in the rivers. The differentiation factors for juveniles from nature were not established, however, their clusterization pattern pointed to a possible role of natural selection in this process.  相似文献   

19.
Due to potential use for variety of biotechnological applications, genes encoding thermoalkalophilic esterase from three different Geobacillus strains isolated from thermal environmental samples in Balçova (Agamemnon) geothermal site were cloned and respective proteins were expressed in Escherichia coli (E.coli) and characterized in detail. Three esterases (Est1, Est2, Est3) were cloned directly by PCR amplification using consensus degenerate primers from genomic DNA of the strains Est1, Est2 and Est3 which were from mud, reinjection water and uncontrolled thermal leak, respectively. The genes contained an open reading frame (ORF) consisting of 741 bp for Est1 and Est2, which encoded 246 amino acids and ORF of Est3 was 729 bp encoded 242 amino acids. The esterase genes were expressed in E. coli and purified using His-Select HF nickel affinity gel. The molecular mass of the recombinant enzyme for each esterase was approximately 27.5 kDa. The three esterases showed high specific activity toward short chain p-NP esters. Recombinant Est1, Est2, Est3 have exhibited similar activity and the highest esterase activity of 1,100 U/mg with p-nitrophenyl acetate (pNPC2) as substrate was observed with Est1. All three esterase were most active around 65°C and pH 9.5–10.0. The effect of organic solvents, several metal ions, inhibitors and detergents on enzyme activity for purified Est1, Est2, Est3 were determined separately and compared.  相似文献   

20.
In citrate limiting medium the esterase activity of Aspergillus niger had a maximum value at the lowest dilution rate (D=0.013 h-1) and at all higher dilution rates progressively decreased in activity. In glucose limiting medium the esterase activity values were always lower than in citrate limiting medium and did not show much variation with varying dilution rate. Electrophoresis of cell free extracts from all dilution rates revealed a multimolecular esterase profile only at D=0.013 h-1 in citrate limiting medium, which was also the only dilution rate to support good conidiation. The increase in esterase activity at D=0.013 h-1 was observed cytochemically to occur in the phialides. No cytochemical esterase staining occurred in the vegetative cultures at all other dilution rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号