首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Raffinose family oligosaccharides (RFOs) are synthesized by a set of galactosyltransferases, which sequentially add galactose units from galactinol to sucrose. The accumulation of RFOs was studied in maturing seeds of two pea (Pisum sativum) lines with contrasting RFO composition. Seeds of the line SD1 accumulated stachyose as the predominant RFO, whereas verbascose, the next higher homolog of stachyose, was almost absent. In seeds of the line RRRbRb, a high level of verbascose was accumulated alongside with stachyose. The increase in verbascose in developing RRRbRb seeds was associated with galactinol-dependent verbascose synthase activity. In addition, a galactinol-independent enzyme activity was detected, which catalyzed transfer of a galactose residue from one stachyose molecule to another. The two enzyme activities synthesizing verbascose showed an optimum at pH 7.0. Both activities were almost undetectable in SD1. Maximum activity of stachyose synthase was about 4-fold higher in RRRbRb compared with SD1, whereas the activities of galactinol synthase and raffinose synthase were only about 1.5-fold higher in RRRbRb. The levels of galactinol synthase and stachyose synthase activity were reflected by steady-state levels of corresponding mRNAs. We suggest that the accumulation of verbascose in RRRbRb was controlled by a coordinated up-regulation of the last steps of verbascose biosynthesis.  相似文献   

2.
植物中棉子糖系列寡糖代谢及其调控关键酶研究进展   总被引:2,自引:0,他引:2  
棉子糖系列寡糖代谢与植物生长发育、逆境胁迫、种子耐贮性及脱水耐性等关系密切.棉子糖系列寡糖的合成从棉子糖的合成开始,由半乳糖苷肌醇上的半乳糖基的转移依次生成棉子糖、水苏糖、毛蕊花糖等.寡糖代谢是一个复杂的调控体系,其中肌醇-1-磷酸合成酶、肌醇半乳糖苷合成酶、蔗糖合成酶、棉子糖合成酶、水苏糖合成酶和毛蕊花糖合成酶等参与了棉子糖系列寡糖的生物合成过程.本文对植物中棉子糖系列寡糖的代谢及其重要调控酶的特性、功能及分子生物学研究进展进行综述.  相似文献   

3.
Raffinose oligosaccharides are major soluble carbohydrates in seeds and other tissues of plants. Their biosynthesis proceeds by stepwise addition of galactose units to sucrose, which are provided by the unusual donor galactinol (O-alpha-d-galactopyranosyl-(1-->1)-l-myo-inositol). Chain elongation may also proceed by transfer of galactose units between raffinose oligosaccharides. We here report on the purification, characterization, and heterologous expression of a multifunctional stachyose synthase (EC ) from developing pea (Pisum sativum L.) seeds. The protein, a member of family 36 of glycoside hydrolases, catalyzes the synthesis of stachyose, the tetrasaccharide of the raffinose series, by galactosyl transfer from galactinol to raffinose. It also mediates the synthesis of the pentasaccharide verbascose by galactosyl transfer from galactinol to stachyose as well as by self-transfer of the terminal galactose residue from one stachyose molecule to another. These activities show optima at pH 7.0. The enzyme also catalyzes hydrolysis of the terminal galactose residue of its substrates, but is unable to initiate the synthesis of raffinose oligosaccharides by galactosyl transfer from galactinol to sucrose. A minimum reaction mechanism which accounts for the broad substrate specificity and the steady-state kinetic properties of the protein is presented.  相似文献   

4.
Sucrose was present in seeds of 31 species at all ages and stages of their development. The raffinose family of oligosaccharides is present in most mature and dry seeds; tomato and tobacco seeds contain planteose, whereas sesame seeds contain this sugar and a higher member of the planteose series. Cotton seeds contain raffinose, stachyose, verbascose and an unidentified ketose. Free monosaccharides were not detected in any of the dry seeds; although free glucose and fructose were detected in some immature seeds, these sugars decreased in amount and eventually disappeared during seed maturation. Sucrose, stachyose, raffinose and verbascose accumulated, in developing soybeans, in that sequence. Maltose, a sugar rarely found in plant tissues, is present in immature soybean and honey locust seeds but does not occur in the other seeds examined. It increases to a maximum during development, subsequently decreases in amount during maturation and ripening and eventually disappears completely. The petioles of old leaves and stems of the soybean plant contain maltose, but the petioles of young soybean leaves, empty pods, leaf blades and roots do not.  相似文献   

5.
棉子糖半乳糖苷系列寡糖广泛分布在许多种植物种子中,并存在于干燥后仍能保持活力的组织内,如禾谷类种子的胚及糊粉层,豆类及其他双子叶植物的子叶和胚轴组织等。棉子糖半乳糖苷系列寡糖在禾谷类种子的非自溶性中央胚乳中不合成,但存在于蓖麻种子的自溶性胚乳细胞中。棉子糖半乳糖苷系列寡糖在种子发育后期累积,并持续到种子大量成熟直到脱水阶段。棉子糖半乳糖苷系列寡糖主要包括棉子糖、水苏糖和毛蕊花糖,是种子中最广泛的低分子量α_半乳糖苷。许多植物正常性种子的发育伴随着棉子糖半乳糖苷系列寡糖的累积,这些糖的累积已被认为在种子脱水耐性获得、种子活力、糖的运输及植物的抗冷驯化等过程 中起重要作用。本文从种子的脱水耐性获得、植物的冷驯化、细胞内定位及生物合成等方面综述了棉子糖半乳糖苷系列寡糖的研究进展。  相似文献   

6.
种子中的棉子糖半乳糖苷系列寡糖研究进展   总被引:7,自引:0,他引:7  
棉子糖半乳糖苷系列寡糖广泛分布在许多种植物种子中,并存在于干燥后仍能保持活力的组织内,如禾谷类种子的胚及糊粉层,豆类及其他双子叶植物的子叶和胚轴组织等。棉子糖半乳糖苷系列寡糖在禾谷类种子的非自溶性中央胚乳中不合成,但存在于蓖麻种子的自溶性胚乳细胞中。棉子糖半乳革系列寡糖在种子发育后期累积,并持续到种子大量成熟直到脱水阶段。棉子糖半乳糖苷系列寡糖主要包括棉子糖、水苏糖和毛蕊花糖,是种子中最广泛的低分子量α-半乳糖苷。许多植物正常性种子的发育伴随着棉子糖半乳糖苷系列寡糖的累积,这些糖的累积已被认为在种子脱水耐性获得、种子活力、糖的运输及植物的抗冷驯化等过程中起重要作用。本文从种子的脱水耐性获得、植物的冷驯化、细胞内定位及生物合成等方面综述了棉子糖半乳糖苷系列寡糖的研究进展。  相似文献   

7.
Changes in the carbohydrate profiles in the mesocarp, endocarp, and seeds of maturing cucumber (Cucumis sativus, L.) fruit were analyzed. Fruit maturity was measured by a decrease in endocarp pH, which was found to correlate with a loss in peel chlorophyll and an increase in citric acid content. Concentrations of glucose and fructose (8.6-10.3 milligrams per gram fresh weight, respectively) were found to be higher than the concentration of sucrose (0.3 milligrams per gram fresh weight) in both mesocarp and endocarp tissue. Neither raffinose nor stachyose were found in these tissues. The levels of glucose and fructose in seeds decreased during development, but sucrose, raffinose, and stachyose accumulated during the late stages of maturation. Both raffinose and stachyose were found in the seeds of six lines of Cucumis sativus L. This accumulation of raffinose saccharides coincided with an increase in galactinol synthase activity in the seeds. Funiculi from maturing fruit were found to be high in sucrose concentration (4.8 milligrams per gram fresh weight) but devoid of both raffinose and stachyose. The results indicated that sucrose is the transport sugar from the peduncle to seed, and that raffinose saccharide accumulation in the seed is the result of in situ biosynthesis and not from direct vascular transport of these oligosaccharides into the seeds.  相似文献   

8.
In white spruce ( Picea glauca [Moench.] Voss.) seeds, the raffinose family oligosaccharides (RFOs) provide carbon reserves for the early stages of germination prior to radicle protrusion. Some seedlots contain seeds that are dormant, failing to complete germination under optimal conditions. Since dormancy may be imposed through a metabolic block in reserve mobilization, the goal of this project was to identify any impediment to RFO mobilization in dormant relative to nondormant seeds. Desiccated seeds contain primarily, and in order of abundance on a molar basis, sucrose and the first 3 members of the RFOs, raffinose, stachyose and verbascose. Upon radicle protrusion at 25°C, the contents of RFOs decreased to low amounts in all seed parts, regardless of prior dormancy status and sucrose was metabolized to glucose and fructose, which increased in seed parts. During moist chilling at 4°C, RFO content initially decreased before stabilizing and then increasing. In seeds that did not complete germination, the synthesis of RFOs at 4°C favored verbascose, so that at the end of 14 (nondormant) or 35 (dormant) weeks, verbascose contents in megagametophytes exceeded the amount initially present in the desiccated seed. This was also true in the embryos of the dormant seedlot. In seed parts from both seedlots after months of moist chilling, stachyose amounts exceeded raffinose amounts. Upon radicle protrusion at 4°C, RFO contents decreased to amounts most similar to those present in seeds that completed germination at 25°C. Hence, the RFOs are utilized as a source of energy, regardless of the temperature at which white spruce seeds complete germination. Based on the similarity of sugar contents in seed parts between dormant and nondormant seeds that did not complete germination, differences in sugar metabolism are probably not the basis of dormancy in white spruce seeds.  相似文献   

9.
Stachyose is present in the highest amount in the soluble sugar fraction of dry bambarra groundnut cotyledons, followed in descending order by raffinose, sucrose and verbascose. During germination in the dark, the stachyose and raffinose content decrease rapidly, but there is little change in the relatively small amount of verbascose present. The sucrose content increases rapidly during the first two weeks and decreases thereafter. Free glucose and fructose were present in the cotyledons after the 7th day and gradually increased in amount with time of germination. Free galactose and other galactose-containing oligosaccharides were not detected in either the dry or germinated bambarra seeds. During germination, galactose was the only identifiable sugar, aside from traces of sucrose, glucose and fructose, in the extracted soluble sugar fraction in the embryonic axes of all ages when the tissue was incubated with D-[114C] galactose. With the cotyledons, however, most of the radioactivity was in glucose and fructose during the early period of germination and in sucrose later. A small fraction of the radioactivity was lost as CO2.  相似文献   

10.
Genetic analysis of the raffinose oligosaccharide pathway in lentil seeds   总被引:2,自引:0,他引:2  
Two lentil (Lens culinaris) cultivars, Syrian Local Large (SLL) and PANT-L-406 (PL), have been used to study the genetics of the raffinose family of oligosaccharides (RFO) and a related compound, ciceritol, which is a galactosyl cyclitol. The RFO and ciceritol are the major soluble -galactosides in lentil seeds. Crosses were made between the two lentil lines and the patterns of inheritance for the total -galactoside content and for individual RFO compounds (raffinose, stachyose, verbascose) and ciceritol were determined in the embryos and seed coats from single seeds of the reciprocal F1s, the F2s and ten F3 families. The inheritance patterns for each of the -galactosides were complex and much of this complexity was attributed to an interaction between the embryo and its surrounding testa. A clear-cut segregation pattern was observed for verbascose. This was the result of PL embryos having very low, or no, verbascose. The F2 embryos had a segregation ratio of 3 high to 1 low level for this compound, suggesting that within this cross a low verbascose content was determined by a single recessive gene. There was good evidence from the F2 and F3 generations of a negative correlation between low levels of verbascose and high levels of ciceritol, which suggests a metabolic link between the RFO pathway and the pathway leading to ciceritol. The data are discussed in terms of defining strategies for genetically manipulating the-galactoside composition in lentil seeds, such that their negative effects on nutrition may be overcome without reducing significantly their positive role in abiotic stress resistance.  相似文献   

11.
A short-term water deficit (WD) imposed during the pre-storage phase of lupin seed development [15-22 d after anthesis (DAA)] accelerated seed maturation and led to smaller and lighter seeds. During seed development, neutral invertase (EC 3.2.1.26) and sucrose synthase (EC 2.4.1.13) have a central role in carbohydrate metabolism. Neutral invertase is predominant during early seed development (up to 40 DAA) and sucrose synthase during the growing and storage phase (40-70 DAA). The contribution of acid invertase is marginal. WD decreased sucrose synthase activity by 2-fold and neutral invertase activity by 5-6-fold. These changes were linked to a large decrease in sucrose ( approximately 60%) and an increase of the hexose:sucrose ratio. Rewatering restored sucrose synthase activity to control levels while neutral invertase activity remained depressed (30-60%). A transient accumulation of starch observed in control seeds was abolished by WD. Despite the several metabolic changes the final seed composition was largely unaltered by WD except for approximately 60% increase in stachyose and raffinose (raffinose family oligosaccharides). This increase in raffinose family oligosaccharides appears as the WD imprinting on mature seeds.  相似文献   

12.
The objective of this paper was to compare the levels of soluble sugars in seeds of yellow lupin cv. Juno matured at different temperatures. The temperature regimes applied were 1). 26 °C for 24 h (high temperature), 2). 24 °C for 12 h and 19 °C for the next 12 h (optimum temperature regime), 3). 26 °C for 16 h and 4 °C for the next 8 h (high-low temperatures). Six soluble carbohydrates (d-galactose, myo-inositol, sucrose, raffinose, stachyose and verbascose) were quantified. Seeds maturing at constant temperature 26 °C accumulated more raffinose (by 100 %) than seeds maturing at optimum temperature regime. Seeds maturing at high temperature accumulated less stachyose and verbascose than those maturing at optimum temperature conditions, the differences being 45 and 24 %, respectively. In seeds maturing at high-low temperature the level of raffinose decreased while the level of stachyose and verbascose increased, compared to those maturing at optimum conditions. The contents of sucrose, d-galactose and myo-inositol in seeds maturing at optimum temperatures was lower than in seeds maturing at both high and high-low temperature regimes. It was shown, that temperature conditions — constant high temperature, or physiologically optimal thermal oscillations (24 °/19 °C) or high-low temperature regime — differently affect the contents of six soluble carbohydrates in maturing seeds of yellow lupin.  相似文献   

13.
In the present study we have investigated the effect of exogenous cyclitols on accumulation of their galactosides and raffinose family oligosaccharides (RFOs) in maturing smooth tare (Vicia tetrasperma [L.] Schreb) seeds. Feeding d-pinitol to pods of smooth tare increased the amount of free d-pinitol and its galactosides: galactopinitol A, galactopinitol B, di- and trigalactopinitol A in seeds. Similarly, feeding d-chiro-inositol, which does not occur naturally in Vicia seeds, resulted in the transport of this cyclitol in the seed, and caused accumulation of high levels of d-chiro-inositol galactosides (fagopyritol B1, B2 and B3). Accumulation of both cyclitols and their galactosides drastically reduced accumulation of verbascose and, to a lesser extent, stachyose and di-galactosyl- myo-inositol. Feeding d-chiro-inositol also decreased accumulation of di- and tri-galactosyl pinitols, naturally occurring in seeds. Inhibition of RFOs accumulation by elevated levels of free cyclitols indicates competition between biosynthesis of both types galactosides, and similarity of both biosynthetic pathways in smooth tare seeds.  相似文献   

14.
Composition and levels of soluble α-galactosides: raffinose family oligosaccharides (RFOs) and galactosyl cyclitols (Gal-C) in developing seeds were measured by high resolution gas chromatography (HRGC) method. The studies were performed on maturing seeds of several wild and cultivated Vicia species: Vicia angustifolia L. (common vetch), Vicia cracca L. (bird vetch), Vicia grandiflora Scop. (large yellow vetch), Vicia hirsuta (L.) S.F.Gray (tiny vetch), Vicia sativa L. (garden vetch, spring-growing cultivar Kwarta), and Vicia villosa Roth (winter vetch). In all Vicia species similar patterns in the accumulation of RFOs were observed. Galactinol — the donor of galactosyl moieties in α-galactosides biosynthesis was present in the middle stage of seed development, before appearing measurable levels of RFOs. Accumulation of RFOs started parallel with seed desiccation process. At first accumulation of the raffinose, then few days later stachyose and finally verbascose was noticed. In the final stage of seed maturation the verbascose was the main soluble α-galactoside (up to 3% of dry weight, V. sativa). Besides the RFOs seeds of three Vicia species (V. cracca, V. hirsuta, and V. villosa) accumulated d-pinitol and its α-galactosides (Gal-C). Mono-galactosylpinitols (similar to raffinose) appeared in these species 2–4 days after galactinol, di-galactosyl pinitol A (common name: ciceritol) and di-galactosyl myo-inositol were present several days later than raffinose, and accumulation of tri-galactosyl pinitol A (TGPA) began after accumulation of stachyose. Matured seeds of V. hirsuta contained much more RFOs than Gal-C, opposite to seeds of V. villosa, and V. cracca where concentration of Gal-C was 4–8-fold higher than RFOs. In V. cracca seeds RFOs were almost replaced by Gal-C. In seeds of V. cracca and V. villosa the level of d-pinitol was significantly higher, than the level of myo-inositol. Contents of both cyclitols declined rapidly at the beginning of seed desiccation, when accumulation of RFOs and Gal-C quickly increased. We suggest that α-galactosides of d-pinitol can substitute raffinose family oligosaccharides and play similar role during seed maturation and storage.  相似文献   

15.
Li X  Zhuo J  Jing Y  Liu X  Wang X 《Journal of plant physiology》2011,168(15):1761-1770
Desiccation tolerance of seeds is positively correlated with raffinose family oligosaccharides (RFOs). However, RFOs’ role in desiccation tolerance is still a matter of controversy. The aim of this work was to monitor the accumulation of RFO during acquisition of desiccation tolerance in rapeseed (Brassica napus L.). Rapeseeds become desiccation tolerant at 21-24 d after flowering (DAF), and the time was coincident with an accumulation of raffinose and stachyose. A gene encoding galactinol synthase (GolS; EC2.4.1.123), involved in RFO biosynthesis, was cloned and functionally characterized. Enzymatic properties of recombinant galactinol synthase were also determined. Accumulation of BnGOLS-1 mRNA in developing rapeseeds was concomitant with dry weight deposition and the acquisition of desiccation tolerance, and was concurrent with the formation of raffinose and stachyose. The physiological implications of BnGOLS-1 expression patterns in developing seeds are discussed in light of the hypothesized role of RFOs in seed desiccation tolerance.  相似文献   

16.
Seed vigour is important for successful establishment and high yield, especially under suboptimal environmental conditions. In legumes, raffinose oligosaccharide family (RFO) sugars have been proposed as an easily available energy reserve for seedling establishment. In this study, we investigated whether the composition or amount of soluble sugars (sucrose and RFO) is part of the genetic determinants of seed vigour of Medicago truncatula using two recombinant inbred line (RIL) populations. Quantitative trait loci (QTL) mapping for germination rate, hypocotyl and radicle growth under water deficit and nutritional stress, seed weight and soluble sugar content was performed using RIL populations LR1 and LR4. Seven of the 12 chromosomal regions containing QTL for germination rate or post-germinative radicle growth under optimal or stress conditions co-located with Suc/RFO QTL. A significant negative correlation was also found between seed vigour traits and Suc/RFO. In addition, one QTL that explained 80% of the variation in the ratio stachyose/verbascose co-located with a stachyose synthase gene whose expression profile in the parental lines could explain the variation in oligosaccharide composition. The correlation and co-location of Suc/RFO ratio with germination and radicle growth QTL suggest that an increased Suc/RFO ratio in seeds of M. truncatula might negatively affect seed vigour.  相似文献   

17.
Carbohydrate analysis was made of yellow lupin seeds (cv. Juno) and triticale kernels (cv. Dagro), produced by plants exposed to drought stress for 21 days after the initial flowering of the first node of lupin and initial earing of triticale. The seeds of all experimental variants were harvest at full maturity, dried and stored in linen bags at 18–20 °C. Soluble carbohydrates were extracted and analysed as described by Horbowicz and Obendorf (1994). Gas chromatographic separation of carbohydrates showed that raffinose family oligosaccharides (RFO) were dominant in lupin seeds. The other carbohydrates present were sucrose (10 %), cyclitols and galactosyl cyclitols (12–13 %). Soil drought resulted in higher levels of verbascose, but decreased the quantities of the other carbohydrates in lupine seeds. In triticale kernels, over 50 % of soluble sugars were composed of sucrose and maltose, while 17.7 % were raffinose and stachyose. In response to drought the content of mono- and oligosaccharides declined. The decrease of soluble carbohydrates content in seeds of lupin and triticale kernels has no effect on the seed germination and vigour. It is assumed that the changes in the concentration of soluble sugars observed under drought may impair the storability of triticale kernels, but improve it for lupine seeds.  相似文献   

18.
The raffinose family oligosaccharides (RFOs), including raffinose (Gal-α(1 → 6)-Glc-α(1 → 2)β-Fru), stachyose (Gal-α(1 → 6)-Gal-α(1 → 6)-Glc-α(1 → 2)β-Fru) and higher degree of polymerization RFOs are the most widespread galactosyl-oligosaccharides (GOS) in the plant kingdom. Stellaria media is a typical representative of the Caryophyllaceae, a plant family lacking stachyose and the typical galactosyl extensions of stachyose. During cold treatment raffinose, lychnose (Gal-α(1 → 6)-Glc-α(1 → 2)β-Fru-α(1 → 1)-Gal) and stellariose (Gal-α(1 → 6)-[Gal-α(1 → 4)]-Glc-α(1 → 2)β-Fru-α(1 → 1)-Gal) were found to accumulate in S. media stems. Next to these prominent oligosaccharides, two extra GOS were discovered.Biochemical analyses (enzymatic incubations and mild acid hydrolysis) and mass spectrometry identified the first, most abundant oligosaccharide as Glc-α(1 → 2)β-Fru-α(1 → 1)-Gal, a breakdown product of lychnose. The structure of this trisaccharide was confirmed by full NMR characterization. The second, less abundant compound (termed mediose) was identified as Gal-α(1 → 6)-[Gal-α(1 → 4)]Glc-α(1 → 2)β-Fru after biochemical analyses. By partial enzyme purification the presence of discrete lychnose synthase (raffinose:raffinose 1Fru galactosyltransferase) and stellariose synthase (raffinose:lychnose 4Glc galactosyltransferase) activities were shown.A model is presented explaining the structural diversity of GOS in S. media. In the absence of stachyose, raffinose is further elongated by lychnose synthase and stellariose synthase to produce lychnose, mediose and stellariose. Most likely, these compounds are also subject to partial trimming by endogenous α-galactosidases.  相似文献   

19.
Unimbibed Amaranthus caudatus seeds were found to contain stachyose, raffinose, verbascose, sucrose, galactinol, myo-inositol, glucose and fructose, while no galactose, maltose and maltotriose was detected. During imbibition, seed concentrations of verbascose, stachyose, raffinose, galactinol, myo-inositol (temporary) and fructose (transient) were observed to decrease; concentrations of galactose and maltose remained fairly constant, while those of sucrose, glucose and maltotriose increased, the increase in sucrose concentration was only temporary. Effects of gibberellin A3 (GA3) at 3 × 10−4 M and ethephon at 3 × 10−4 M alone or in the presence of methyl jasmonate (Me-JA) at 10−3 M on concentrations of soluble sugars during germination of A. caudatus seeds were examined. Me-JA was found to inhibit seed germination and fresh weight of the seeds, but did not affect sucrose, myo-inositol, galactose and maltose concentrations during imbibition for up to 20 h. The exogenously applied GA3 was observed to enhance germination, stachyose breakdown and glucose concentration after 20 h of incubation. Ethephon stimulated seed germination as well as utilisation of stachyose, galactinol (both after 14 and 20 h) and raffinose (after 14 h of incubation). Although the stimulatory effect of either GA3 or ethephon on seed germination was blocked by Me-JA; these stimulators increased mobilisation of raffinose and stachyose, but only ethephon enhanced both glucose and fructose after 14 and/or 20 h of incubation in the presence of Me-JA. The maltose concentration was increased by both GA3 and ethephon alone and in the presence of Me-JA. Of the growth regulators studied, ethephon alone and/or in combination with Me-JA significantly increased the concentrations of glucose, fructose, galactose, maltose and maltotriose. The differences in sugar metabolism appear to be linked to ethylene or GA3 applied simultaneously with Me-JA.  相似文献   

20.
Galactinol synthase (UDP-galactose:inositol galactosyltransferase) is the first unique enzyme in the biosynthetic pathway of raffinose saccharides. Its role as a regulator of carbon partitioning between sucrose and raffinose saccharides in developing soybean (Glycine max L. Merrill) seeds was examined. Galactinol synthase activity and concentrations of sucrose, stachyose, and raffinose were compared during seed development between two genotypes that were high and two genotypes that were low in mature seed raffinose saccharide concentration. In all genotypes, sucrose concentration increased as seed development progressed, but in both low raffinose saccharide genotypes, greater increases in sucrose concentration were observed late in seed development. Sucrose to stachyose ratios in mature seeds were 2.3-fold greater in low raffinose saccharide genotypes than in the high raffinose saccharide genotypes. During seed development, higher levels of galactinol synthase activity were observed in the high raffinose saccharide genotypes than in the low raffinose saccharide genotypes. A common linear relationship for all four soybean genotypes was shown to exist between galactinol formed estimated from galactinol synthase activity data and the concentration of galactose present in raffinose saccharides. Results of this study implied that galactinol synthase is an important regulator of carbon partitioning between sucrose and raffinose saccharides in developing soybean seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号