首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A high-affinity (Km = 2.7 x 10(-7) M) energy-requiring methionine-transport system has been characterized in RM 46 and RM 48, two different PAO methionine auxotrophs of Pseudomonas aeruginosa. After 8 s of transport 40--60% of the methionine label in the alcohol extract appears in S-adenosyl-L-methionine (SAM) with the remaining activity in free methionine. Methionine transport required a high degree of structural specificity for transport. Stimulation of transport occurred by addition of glucose or organic acids. The ability of a given substrate to stimulate transport was related to the type of carbon source used for growth. Transport was sensitive to sulfhydryl reagents and required oxidative phosphorylation, as indicated by the inhibitory effects of anaerobiosis, cyanide, and arsenate. The degree of inhibition by arsenate correlated with the level of ATP in the cell. Rapid transport in a SAM-deficient mutant (TM 1) and inhibition by arsenate of transport in this mutant suggested that SAM formation was not directly linked to transport and that ATP supplied energy for transport. Inhibition by arsenate was more severe in glucose- compared to citrate-stimulated cells. This result was also observed with proline transport indicating that this was not a peculiarity of the methionine-transport system. These data emphasize the close link between glucose metabolism, ATP levels, and transport. This ATP level is not so critical for transport in cells metabolizing citrate.  相似文献   

2.
The inhibitory effects of arsenate and arsenite on binding-protein-dependent transport systems are reconsidered. It is shown that arsenate inhibits binding-protein-dependent galactose transport in proteoliposomes energized either by dihydrolipoamide and NAD+ or by a membrane potential (under conditions where ATP metabolism is not implicated); this result is in contradiction with the current interpretation of arsenate inhibition of binding-protein-dependent transport systems (which is based on ATP depletion) and can be explained by reference to the recently discovered ATP inhibition of the binding-protein-dependent galactose transport. In whole cells, the greater inhibition by arsenate of lipoamide-dependent transport than of protonmotive-force-dependent transport may be explained by a modification by arsenate of the pools of several compounds metabolized by 2-oxo-acid dehydrogenases (which have been implicated in binding-protein-dependent transport). The inhibition of binding-protein-dependent galactose transport by arsenite is probably linked to the inhibition by arsenite of the galactose-stimulated lipoamide dehydrogenase activity implicated in this transport and is reminiscent of the known arsenite inhibition of lipoamide dehydrogenases.  相似文献   

3.
Transport of vitamin B12 in Escherichia coli: energy dependence.   总被引:9,自引:9,他引:0       下载免费PDF全文
This paper presents some evidence that the osmotic shock-sensitive, energy-dependent transfer of vitamin B12 from outer membrane receptor sites into the interior of cells of Escherichia coli requires an energized inner membrane, without obligatory intermediation of adenosine 5'-triphosphate (ATP). The experiments measured the effects of glucose, D-lactate, anaerobiosis, arsenate, cyanide, and 2,4-dinitrophenol upon the rates of B12 transport by starved cells of E. coli KBT001, which possesses a functional Ca2+, Mg2+-stimulated adenosine triphosphatase (Ca,MgATPase), and of E. coli AN120, which lacks this enzyme. Both strains were able to utilize glucose and D-lactate aerobically to potentiate B12 transport, indicating that the Ca,MgATPase was not essential for this process. When respiratory electron transport was blocked, either by cyanide or by anaerobic conditions, and the primary source of energy for the cells was presumably ATP from glucose fermentation, the rate of B12 transport was much reduced in E. coli AN120 but not in E.coli KBT001. These results support the view that the CaMgATPase can play a role in B12 transport but only when the energy for this process must be derived from ATP. The results of experiments with arsenate also supported the conclusion that the generation of phosphate bond energy was not absolutely required for B12 transport.  相似文献   

4.
H. Löppert 《Planta》1981,151(3):293-297
The vacuolar electrical potential of Lemna paucicostata 6746 has an active component of about-130 mV. This hyperpolarization above the diffusion potential was maintained when dicyclohexyl carbodiimide (DCCD) or arsenate (0.1 mM or 5 mM final concentrations, respectively) were added in the light or after the plants had been kept in darkness for 1 h. The ATP level was reduced to 11±3% by DCCD and to 56±6% by arsenate under conditions identical to those during the potential measurements. In this report, it is discussed whether these results could be interpreted in terms of a putative electrogenic ATPase in the plasma membrane of Lemna. Rb+-influx in illuminated plants was 12.5% or 52% of the control when ATP generation was inhibited by DCCD or arsenate. This finding is regarded as justifying the assumption that the availability of ATP at plasmalemma-located transport sites is drastically decreased by these inhibitors.A passive proton-permeability in the cell membrane was induced with different concentrations of carbonyl cyanide m-chlorophenyl hydrazone (CCCP). The potential decrease, caused by the current through this shunt, was not affected by DCCD. It therefore seems less conceivable that the cell membrane remains hyperpolarized because of an increase of membrane resistance concomitant to the inhibition of the pump.The significance of respiratory processes for membrane hyperpolarization is displayed by the depolarizing action of anoxia or KCN. As ATP was found to be non-limiting under these conditions, the inhibition of the electrogenic pump is regarded as being in discord with the concept of an electrogenic ATPase, which is solely responsible for membrane hyperpolarization.Abbreviations CCCP carbonyl cyanide m-chlorophenyl hydrazone - DCCD N, N-dicyclohexyl carbodiimide - DES diethylstilbestro - DNP 2,4-dinitrophenol - POPOP 1,4-bis (2-(5-phenyloxazolyl))-benzene - PPO 2,5-diphenyloxazole  相似文献   

5.
S Brer  G Ji  A Brer    S Silver 《Journal of bacteriology》1993,175(11):3480-3485
The arsenic resistance operon of Staphylococcus aureus plasmid pI258 determined lowered net cellular uptake of 73As by an active efflux mechanism. Arsenite was exported from the cells; intracellular arsenate was first reduced to arsenite and then transported out of the cells. Resistant cells showed lower accumulation of 73As originating from both arsenate and arsenite. Active efflux from cells loaded with arsenite required the presence of the plasmid-determined arsB gene. Efflux of arsenic originating as arsenate required the presence of the arsC gene and occurred more rapidly with the addition of arsB. Inhibitor studies with S. aureus loaded with arsenite showed that arsenite efflux was energy dependent and appeared to be driven by the membrane potential. With cells loaded with 73AsO4(3-), a requirement for ATP for energy was observed, leading to the conclusion that ATP was required for arsenate reduction. When the staphylococcal arsenic resistance determinant was cloned into Escherichia coli, lowered accumulation of arsenate and arsenite and 73As efflux from cells loaded with arsenate were also found. Cloning of the E. coli plasmid R773 arsA gene (the determinant of the arsenite-dependent ATPase) in trans to the S. aureus gene arsB resulted in increased resistance to arsenite.  相似文献   

6.
A procedure for the purification of sex pili is described. Escherichia coli K-12 carrying Rldrd19 was grown in nutrient broth and blended at the time of peak sex pilus production. The cells were removed by centrifugation, and the supernatant fraction was concentrated, dialyzed, and clarified in an ultrafiltration system. After an additional blend and a clearing spin, the material was centrifuged in a CsCl gradient, and the fractions containing the sex pili were subjected to isoelectric focusing. About 5 mg of intact pili of approximately 98% purity were obtained by this method from about 100 g (wet weight) of cells.  相似文献   

7.
The spatio-temporal relationship between a decrease in the mitochondrial membrane potential (MMP) and externalization of phosphatidylserines (PS) during induction of apoptosis was investigated in single freshly isolated hepatocytes. Apoptosis was induced in the hepatocytes in three different ways: attack by activated Natural Killer cells, exposure to ATP, or exposure to the inhibitor of protein synthesis cycloheximide. Fluorescence microscopy showed staining of externalized PS at those areas where the staining for MMP was lost whereas in other areas the mitochondria remained intact for longer periods of time, indicating coupling between local loss of MMP and local PS exposure. To discriminate whether the decrease in MMP itself or a decrease in ATP induced PS externalization, hepatocytes were treated with rotenone, which resulted in a rapid collapse of cellular ATP but left the MMP intact for a much longer period. Addition of fructose prevented the decrease of ATP to approximately 30% and also delayed the collapse of the MMP. This indicates that ATP was needed for the maintenance of the MMP probably via reverse action of the ATP synthase. In a subsequent study hepatocytes were incubated with Natural Killer cells for induction of apoptosis followed by addition of rotenone to deplete ATP. Under these conditions the PS staining co-localized with mitochondrial MMP indicating that PS externalization does not require a collapse in MMP. Moreover, exposure of PS was evenly distributed over the whole plasma membrane. In conclusion, we propose that after an apoptotic stimulus some mitochondria start to loose their MMP, which results in cessation of ATP production and perhaps even consumption of ATP. This results in an overall decrease in cellular ATP. ATP-consuming enzyme reactions most distal from still intact mitochondria will be most sensitive to such a decrease. Apparently the translocase that keeps phosphatidylserines inward-oriented is such a sensitive enzyme.  相似文献   

8.
The uptake of the siderophore-iron complex ferrienterochelin was found to be strongly dependent upon an energized membrane state, as demonstrated by its sensitivity to dinitrophenol, azide, and cyanide. Ferrienterochelin uptake may also be dependent upon phosphate bond energy, as indicated by sensitivity to arsenate and iodoacetic acid. Although the adenosine triphosphatase does not appear to be involved in this energy coupling mechanism, ferrienterochelin uptake was shown to be less dependent upon phosphate bond energy than was glutamine uptake. Sensitivity of ferrienterochelin uptake to osmotic shock was shown to be due to the release of a ferrienterochelin binding compound located in the outer membrane of the cells and probably identical to the colicin B receptor protein.  相似文献   

9.
1. There was no apparent correlation between the rate of respiration and rate of accumulation of proline in Candida albicans cells. 2. In contrast to normal cells, the respiration in the starved cells became completely cyanide insensitive. The starvation of cells in the presence of cycloheximide prevented the cells from becoming cyanide insensitive. The addition of Fe(III), however, accelerated the process. 3. Oxidizable substrates e.g. NADH, acetate and glucose, when added to cyanide-insensitive starved cells, exhibited 40--280% stimulation in respiration rate. However, this enhancement in oxidation by various substrates was not coupled to a simultaneous increase in the proline uptake or in intracellular ATP levels. 4. There was 6-fold stimulation in proline uptake when cyanide-insensitive cells were preincubated with 50 mM glucose. The preincubation of starved cells resulted in a partial restoration of cyanide sensitivity and increased intracellular ATP levels. The preincubation of starved cells with other oxidizable substrates resulted in a partial restoration of cyanide sensitivity but had no stimulatory effect on intracellular ATP levels and proline accumulation. 5. Both the enhanced uptake and ATP levels in glucose preincubated cells were found to be completely abolished by iodoacetate. 6. It is proposed that the increased proline uptake in cells preincubated with glucose was mainly due to the production of glycolytic energy.  相似文献   

10.
The reaction of cyanide with the oxidized form of cytochrome c oxidase in mitochondria is strongly inhibited by adenosine triphosphate (ATP). This inhibition is strictly dependent on the ATP concentration and is insensitive to changes in the concentrations of adenosine diphosphate (ADP) and orthophosphate. It is completely prevented by oligomycin or uncouplers of oxidative phosphorylation. The ATP is kinetically competitive with respect to cyanide and has a measured inhibitor constant of less than 2 μm The stoichiometry is one ATP/cyanide. This ATP effect is proposed to result from a structural interaction of ATP synthetase with cytochrome c oxidase, such that the formation of an ATP complex of the synthetase results in a decrease in the affinity of the oxidized form of cytochrome c oxidase for cyanide in the formation of an intermediate in the overall measured cyanide reaction.  相似文献   

11.
A method is described for the isolation of large amounts of physiologically active protoplasts from leaves of Pisum sativum L. Rubidium uptake was determined after separation of the intact protoplasts from the loading medium by rapid centrifugation through a phthalate step gradient. In freshly isolated mesophyll protoplasts of Pisum sativum , rubidium uptake was carbonylcyanide- p -trifluoromethoxyphenylhydrazone reduced by metabolic inhibitors such as 5 μ M , 0.1 mW cyanide, 2 μ M DCMU and 5 m M arsenate and by dark incubation. Reduction of rubidium uptake by inhibition of aerobic respiration or the photosynthetic electron transport system demonstrates that both processes play a role in the energy supply for membrane transport in these protoplasts.  相似文献   

12.
《Cell differentiation》1981,10(6):333-342
Large blebs devoid of receptors for hemocyanin-labeled concanavalin A appear on neural retina cells from 8-day chick embryos exposed to low temperature or to potassium cyanide or 2,4(α)-dinitrophenol at room temperature. Labeling with mixed antibodies against a crude retina membrane preparation and with goat anti-rabbit-hemocyanin conjugate showed the same results. Determination of cell ATP content indicated a drop in ATP concentration after exposure to low temperature or to respiration inhibitors. Disruption of microtubules by colchicin inhibited the formation of ‘naked’ large blebs, whereas cytochalasin B had no such inhibitory effect.  相似文献   

13.
Respiration, membrane potential generation and motility of the marine alkalotolerant Vibrio alginolyticus were studied. Subbacterial vesicles competent in NADH oxidation and delta psi generation were obtained. The rate of NADH oxidation by the vesicles was stimulated by Na+ in a fashion specifically sensitive to submicromolar HQNO (2-heptyl-4-hydroxyquinoline N-oxide) concentrations. The same amounts of HQNO completely suppressed the delta psi generation. Delta psi was also inhibited by cyanide, gramicidin D and by CCCP + monensin. CCCP (carbonyl cyanide m-chlorophenylhydrazone) added without monensin exerted a much weaker effect on delta psi. Na+ was required to couple NADH oxidation with delta psi generation. These findings are in agreement with the data of Tokuda and Unemoto on Na+-motive NADH oxidase in V. alginolyticus. Motility of V. alginolyticus cells was shown to be (i) Na+-dependent, (ii) sensitive to CCCP + monensin combination, whereas CCCP and monensin, added separately, failed to paralyze the cells, (iii) sensitive to combined treatment by HQNO, cyanide or anaerobiosis and arsenate, whereas inhibition of respiration without arsenate resulted only in a partial suppression of motility. Artificially imposed delta pNa, i.e., addition of NaCl to the K+ -loaded cells paralyzed by HQNO + arsenate, was shown to initiate motility which persisted for several minutes. Monensin completely abolished the NaCl effect. Under the same conditions, respiration-supported motility was only slightly lowered by monensin. The artificially-imposed delta pH, i.e., acidification of the medium from pH 8.6 to 6.5 failed to activate motility. It is concluded that delta mu Na+ produced by (i) the respiratory chain and (ii) an arsenate-sensitive anaerobic mechanism (presumably by glycolysis + Na+ ATPase) can be consumed by an Na+ -motor responsible for motility of V. alginolyticus.  相似文献   

14.
The commonest mitochondrial diseases are probably those impairing the function of complex I of the respiratory electron transport chain. Such complex I impairment may contribute to various neurodegenerative disorders e.g. Parkinson's disease. In the following, using hepatocytes as a model cell, we have shown for the first time that the cytotoxicity caused by complex I inhibition by rotenone but not that caused by complex III inhibition by antimycin can be prevented by coenzyme Q (CoQ1) or menadione. Furthermore, complex I inhibitor cytotoxicity was associated with the collapse of the mitochondrial membrane potential and reactive oxygen species (ROS) formation. ROS scavengers or inhibitors of the mitochondrial permeability transition prevented cytotoxicity. The CoQ1 cytoprotective mechanism required CoQ1 reduction by DT-diaphorase (NQO1). Furthermore, the mitochondrial membrane potential and ATP levels were restored at low CoQ1 concentrations (5 microM). This suggests that the CoQ1H2 formed by NQO1 reduced complex III and acted as an electron bypass of the rotenone block. However cytoprotection still occurred at higher CoQ1 concentrations (>10 microM), which were less effective at restoring ATP levels but readily restored the cellular cytosolic redox potential (i.e. lactate: pyruvate ratio) and prevented ROS formation. This suggests that CoQ1 or menadione cytoprotection also involves the NQO1 catalysed reoxidation of NADH that accumulates as a result of complex I inhibition. The CoQ1H2 formed would then also act as a ROS scavenger.  相似文献   

15.
The effect of temperature and various energy inhibitors on the formation of a complex between Escherichia coli male cells and filamentous phage fd was studied by a novel filtration method. Centrifuged male cells were observed by electron microscopy to have lost the majority of pili and to produce complexes with fd only above 25 degrees C. After preincubation of the cells at 37 degrees C without addition of the phage, nearly half the level of complex formation observed at 37 degrees C was detected at 0 degrees C and fd was at a minimum at about 20 degrees C. Several energy inhibitors and uncouplers drastically reduced complex formation at 37 degrees C, and also at 0 degrees C if the cells were briefly exposed to the reagents at the end of preincubation. Alteration of the cellular ATP concentration, either by shift-down of temperature or by the addition of the reagents, accompanied alteration in the ability of cells to form a complex with fd as well as alteration of the number of pili on the cell surface. In contrast to earlier reports, these results indicate that the complex formation between male cells and filamentous phage does not proceed either when pili disappear from the cell surface because of a decrease in the cellular energy level or when pili are removed by mechanical forces. The results also show that phage fd adsorption itself is not energy-dependent.  相似文献   

16.
The commonest mitochondrial diseases are probably those impairing the function of complex I of the respiratory electron transport chain. Such complex I impairment may contribute to various neurodegenerative disorders e.g. Parkinson's disease. In the following, using hepatocytes as a model cell, we have shown for the first time that the cytotoxicity caused by complex I inhibition by rotenone but not that caused by complex III inhibition by antimycin can be prevented by coenzyme Q (CoQ 1 ) or menadione. Furthermore, complex I inhibitor cytotoxicity was associated with the collapse of the mitochondrial membrane potential and reactive oxygen species (ROS) formation. ROS scavengers or inhibitors of the mitochondrial permeability transition prevented cytotoxicity. The CoQ 1 cytoprotective mechanism required CoQ 1 reduction by DT-diaphorase (NQO 1 ). Furthermore, the mitochondrial membrane potential and ATP levels were restored at low CoQ 1 concentrations (5 &#119 M). This suggests that the CoQ 1 H 2 formed by NQO 1 reduced complex III and acted as an electron bypass of the rotenone block. However cytoprotection still occurred at higher CoQ 1 concentrations (>10 &#119 M), which were less effective at restoring ATP levels but readily restored the cellular cytosolic redox potential (i.e. lactate: pyruvate ratio) and prevented ROS formation. This suggests that CoQ 1 or menadione cytoprotection also involves the NQO 1 catalysed reoxidation of NADH that accumulates as a result of complex I inhibition. The CoQ 1 H 2 formed would then also act as a ROS scavenger.  相似文献   

17.
Disrupted cells of Bdellovibrio bacteriovorus exhibited adenosine triphosphatase activity, 60 to 80% of which was in the soluble fraction. Dicyclohexylcarbodiimide did not inhibit the adenosine triphosphatase activity in membrane particles. The particles did not show energy-linked transhydrogenase activity. The activity of non-energy-linked transhydrogenase as well as the rate of oxygen consumption were higher in membrane particles of the host-independent strain than in the host-dependent strains. The uptake of amino acid uptake was inhibited by cyanide and by carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. Valinomycin, in the presence of K+, did not inhibit the uptake, and only partial inhibition was exerted by arsenate and dicyclohexylarbodiimide. Sulfhydryl reagents inhibited amino acid uptake.  相似文献   

18.
The energy requirement for the second step in pullulanase secretion by the general secretory pathway was studied in Escherichia coli . In order to uncouple the two steps in the secretion pathway (across the cytoplasmic and outer membranes, respectively) and to facilitate kinetic analysis of secretion, a variant form of pullulanase lacking its N-terminal fatty acid membrane anchor was used. The transport of the periplasmic secretion intermediate form of this protein across the outer membrane was not inhibited by concentrations of sodium arsenate in excess of those required to reduce ATP levels to ≤10% of their normal value. Pullulanase secretion was inhibited by the protonophore carbonyl cyanide m -chlorophenyl hydrazone at concentrations which were similar to those reported by others to be required to prevent solute uptake or the export and processing of preproteins across the cytoplasmic membrane, but which were in excess of those required to fully dissipate the proton-motive force and to reduce lactose uptake to a significant extent.  相似文献   

19.
ATP-resistant variants of transformed mouse fibroblasts   总被引:1,自引:0,他引:1  
Addition of ATP to cultures of transformed mouse fibroblasts, 3T6 cells, resulted in cell growth inhibition, whereas the growth of the non-transformed counterparts, 3T3 cells, was only slightly affected. The inhibition was found to be specific for adenine nucleotides, and concentration dependent. At relatively low concentrations (e.g., 1.0 mM) the effect of ATP was cytostatic, whereas at higher concentrations (e.g., 1.0 mM) a cytotoxic effect was exerted. ATP-resistant variants of 3T6 cells were selected by exposure of cultures to gradually elevated concentrations of ATP. The variants were found to resemble the non-transformed counterparts, 3T3 cells, more than the 3T6 parent cells, by the following criteria: ATP-induced alterations in the membrane potential, changes in membrane permeability, cell growth inhibition, and colony formation on soft agar. The data indicate that long exposure of the transformed cells to external ATP results in redifferentiation and reduction in their tumorigenicity.  相似文献   

20.
The mechanism of arsenate inhibition of the glucose active transport system in wild-type cells of Neurospora crassa has been examined. Arsenate treatment results in approximately 65% inhibition of the glucose active transport system with only a small depression of cellular ATP levels. The transport system is not inhibited in cells treated with sodium arsenate in the presence of sodium azide. The transport inhibition is suppressed when orthophosphate is present during arsenate treatment, but is not reversed by orthophosphate when added after the arsenate treatment. The transport inhibition is completely reversed by treatment of the cells with mercaptoethanol. Gel chromatography of sonicates of intact cells which had been treated with [74As]arsenate reveals three radioactive peaks, one with the elution volume of arsenate, one with the elution volume of arsenite, and a high molecular-weight radioactive fraction. Treatment of the high molecular-weight radioactive fraction with mercaptoethanol results in the production of radioactive arsenite. In view of these findings, it is proposed that arsenate inhibition of the glucose active transport system in Neurospora involves transport of arsenate into the cells, probably via the orthophosphate transport system, reduction of the transported arsenate to arsenite, and interaction of arsenite with some component of the glucose active transport system, presumably via covalent binding with vicinal thiol groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号