首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Escherichia coli contains an inducible enzyme, cyanase, that catalyzes the decomposition of cyanate into ammonia and bicarbonate. The gene encoding cyanase, cynS, was cloned and found to be on a DNA fragment that contained the lac operon. Characterization of a plasmid encoding cyanase indicated that a 26-kilodalton (kDa) protein of unknown function was also induced by cyanate (Y-C. Sung, D. Parsell, P.M. Anderson, and J.A. Fuchs, J. Bacteriol. 169:2639-2642, 1987). The gene encoding the 26-kDa protein was located between cynS and its promoter, indicating the existence of a cyn operon. The 26-kDa protein was identified as a cyanate permease that transports exogenous cyanate by active transport. E. coli was shown to contain a cyanate transport system that is energy dependent and saturable by cyanate.  相似文献   

2.
A plasmid with the structural uspA gene under the control of a tac promoter was used to study the effects of altering uspA expression levels under various growth conditions. We found that increasing UspA synthesis to levels corresponding to physiologically induced levels decreased the cell growth rate in minimal medium and reduced or abolished the cells' capacity to adapt to upshift conditions. As was demonstrated by two-dimensional gel electrophoresis, increased uspA expression caused global changes in the pattern of protein synthesis. In addition, electrophoretic analysis together with V8 protease peptide mapping demonstrated that the pIs of some specific proteins became more acidic as a result of the elevation of the levels of UspA.  相似文献   

3.
The recF gene of Escherichia coli is known to encode an Mr-40,000 protein that is involved in DNA recombinationa nd postreplication DNA repair. To characterize the role of the recF gene product in these processes, the recF gene was cloned downstream of a tac promoter to facilitate overproduction of the recF gene product. The RecF protein was overproduced and purified to apparent homogeneity. N-terminal protein sequence analysis demonstrated that the purified protein had the sequence that was predicted from the DNA sequence of the recF gene, except that the predicted N-terminal Met was not present. The RecF protein bound to single-stranded oligonucleotides in filter binding and gel filtration assays. Maximal binding required 2 to 3 min of incubation at 37 degrees C; the binding reaction had a pH optimum of 7.0, did not require divalent cations, and was inhibited by NaCl concentrations of greater than 250 mM. The Kd of RecF protein binding to a 59-base single-stranded oligonucleotide was on the order of 1.3 X 10(-7) M, and the reaction did not show cooperativity. Experiments measuring the binding to various DNA substrates and competition binding experiments with different DNA molecules demonstrated that RecF protein binds preferentially to single-stranded, linear DNA molecules.  相似文献   

4.
A Iida  S Teshiba    K Mizobuchi 《Journal of bacteriology》1993,175(17):5375-5383
We isolated a transposon Tn10 insertion mutant of Escherichia coli K-12 which could not grow on MacConkey plates containing D-ribose. Characterization of the mutant revealed that the level of the transketolase activity was reduced to one-third of that of the wild type. The mutation was mapped at 63.5 min on the E. coli genetic map, in which the transketolase gene (tkt) had been mapped. A multicopy suppressor gene which complemented the tkt mutation was cloned on a 7.8-kb PstI fragment. The cloned gene was located at 53 min on the chromosome. Subcloning and sequencing of a 2.7-kb fragment containing the suppressor gene identified an open reading frame encoding a polypeptide of 667 amino acids with a calculated molecular weight of 72,973. Overexpression of the protein and determination of its N-terminal amino acid sequence defined unambiguously the translational start site of the gene. The deduced amino acid sequence showed similarity to sequences of transketolases from Saccharomyces cerevisiae and Rhodobacter sphaeroides. In addition, the level of the transketolase activity increased in strains carrying the gene in multicopy. Therefore, the gene encoding this transketolase was designated tktB and the gene formerly called tkt was renamed tktA. Analysis of the phenotypes of the strains containing tktA, tktB, or tktA tktB mutations indicated that tktA and tktB were responsible for major and minor activities, respectively, of transketolase in E. coli.  相似文献   

5.
The previously uncharacterized third and fourth genes (pulE and pulF) of the pullulanase secretion gene operon of Klebsiella oxytoca strain UNF5023 are, respectively, predicted to encode a 55 kDa polypeptide with a putative nucleotide-binding site, and a highly hydrophobic 44 kDa polypeptide that probably spans the cytoplasmic membrane several times. Expression of pulE in minicells or under the control of a strong bacteriophage T7 promoter resulted in the production of a c. 58 kDa cytoplasmic protein. A representative PulE-beta-galactosidase hybrid protein created by Tnlac mutagenesis was also found mainly in the cytoplasm. These results are in line with the predicted absence from PulE of a region of sufficient hydrophobicity to function as a signal sequence. The PulF polypeptide could not be detected either in minicells or when the gene was transcribed from the T7 promoter, but the acquirement of three pulF-lacZ gene fusions that encoded hybrid proteins with relatively high levels of beta-galactosidase activity indicates that this gene can be transcribed and translated. Gene disruption experiments indicated that both pulE and pulF are required for pullulanase secretion in Escherichia coli K-12. Both proteins exhibit considerable homology throughout their entire lengths with other proteins involved in protein secretion, pilin assembly, conjugation and transformation competence in a variety of bacteria. In addition, PulE protein has consensus sequences found in a wide variety of nucleotide-binding proteins. This study completes the initial characterization of the pullulanase secretion gene operon, which comprises 13 genes that are all essential for the transport of pullulanase across the outer membrane.  相似文献   

6.
We used the cloned tolC gene to identify, locate, and purify its gene product. Strains carrying pPR13 or pPR42 overproduced a cell envelope protein (molecular weight, 52,000). A protein of the same molecular weight was identified in radioactively labeled minicells carrying pPR13; this protein was absent in pPR11-carrying minicells. This protein was the tolC gene product, since pPR11 differed from pPR13 in having a Tn10 insertion in the tolC gene. The protein seen in cell envelopes of whole cells (TolC protein) was found to exist in an aggregated state in the outer membrane; under conditions in which OmpC and OmpF were peptidoglycan associated, TolC protein was not likewise associated. Using these properties, we purified the TolC protein and determined the sequence of twelve amino acids from the amino-terminal end. The location of the TolC protein in the outer membrane was consistent with the proposed function for the tolC gene product as a processing protein in the outer membrane.  相似文献   

7.
An RNA-binding activity has been identified in Escherichia coli that provides physical protection of RNA against ribonucleases in an ATP- and Mg2+-dependent manner. This binding activity is stimulated under growth conditions known to cause a decrease in the rate of mRNA decay. RNA protection is mediated by a protein complex that contains a modified form of the chaperonin GroEL as an indispensable constituent. These results suggest a new role for GroEL as an RNA chaperone.  相似文献   

8.
9.
Gamma-aminobutyraldehyde dehydrogenase (ABALDH) from wild-type E. coli K12 was purified to apparent homogeneity and identified as YdcW by MS-analysis. YdcW exists as a tetramer of 202+/-29 kDa in the native state, a molecular mass of one subunit was determined as 51+/-3 kDa. Km parameters of YdcW for gamma-aminobutyraldehyde, NAD+ and NADP+ were 41+/-7, 54+/-10 and 484+/-72 microM, respectively. YdcW is the unique ABALDH in E. coli K12. A coupling action of E. coli YgjG putrescine transaminase and YdcW dehydrogenase in vitro resulted in conversion of putrescine into gamma-aminobutyric acid.  相似文献   

10.
D Missiakas  F Schwager    S Raina 《The EMBO journal》1995,14(14):3415-3424
Previous studies have established that DsbA and DsbC, periplasmic proteins of Escherichia coli, are two key players involved in disulfide bond formation. A search for extragenic mutations able to compensate for the lack of dsbA function in vivo led us to the identification of a new gene, designated dsbD. Lack of DsbD protein leads to some, but not all, of the phenotypic defects observed with other dsb mutations, such as hypersensitivity to dithiothreitol and to benzylpenicillin. In addition, unlike the rest of the dsb genes, dsbD is essential for bacterial growth at temperatures above 42 degrees C. Cloning of the wild-type gene and sequencing and overexpression of the protein show that dsbD is part of an operon and encodes an inner membrane protein. A 138 amino acid subdomain of the protein was purified and shown to possess an oxido-reductase activity in vitro. Expressing this subdomain in the periplasmic space helped restore the phenotypic defects associated with a dsbD null mutation. Interestingly, this domain shares 45% identity with the portion of the eukaryotic protein disulfide isomerase carrying the active site. We further show that in dsbD mutant bacteria the dithiol active sites of DsbA and DsbC proteins are mostly oxidized, as compared with wild-type bacteria. Our results argue that DsbD generates a reducing source in the periplasm, which is required for maintaining proper redox conditions. The finding that overexpression of DsbD leads to a Dsb- phenotype, very similar to that exhibited by dsbA null mutants, is in good agreement with such a model.  相似文献   

11.
12.
13.
A series of COOH-terminal deletions of the chaperonin GroEL have been examined for effects in vivo at haploid copy number on the essential requirement of GroEL for cell growth. Strains with a deletion of up to 27 COOH-terminal amino acids were viable, but not viable strain could be isolated with a deletion of 28 or more codons. When substitutions were placed in the COOH-terminal amino acid Val-521 of the 27-amino-acid-deleted (delta 27) mutant, we found variable effect--Trp and Glu led to inviability, whereas Arg and Gly were viable but slow growing. The effects of the Arg substitution plus deletion (V521R delta) were examined in more detail. Whereas the delta 27 mutant with the wild-type residue Val-521 grew as well as a strain with wild-type GroEL, the V521R delta mutant strain (groEL202) exhibited a broad range of phenotypic defects. These include slow growth; filamentous morphology; a defect in plating lambda; absence of activity of expressed human ornithine transcarbamylase, as seen in other GroEL mutants; and several newly observed defects, such as absence of motility, sensitivity to UV light and mitomycin, a defect in one mode of specialized transduction, and inability to grow on rhamnose. Sucrose gradient analysis of extracts from the V521R delta cells showed a substantially reduced level of GroEL sedimenting at the normal 20S position of the assembled tetradecamer and a relatively large amount of more lightly sedimenting subunits. This indicates that the substitution-deletion mutation interferes with oligomeric assembly of GroEL into its functional form. This is discussed in light of the recently determined crystal structure of GroEL.  相似文献   

14.
RNase D, a putative tRNa processing nuclease, has been purified about 1,000-fold from extracts of Escherichia coli to apparent homogeneity, as judged by acrylamide gel electrophoresis under nondenaturing and denaturing conditions and by gel electrofocusing. The purified enzyme is a single chain protein with a molecular weight of 40,000 and an isoelectric point of about 6.2. Spectral analysis indicated that RNase D is devoid of nucleic acid. Amino acid analysis suggested a low content of cysteine, and this was confirmed by the relative insensitivity of the enzyme to sulfhydryl group reagents. RNase D is sensitive to inactivation by elevated temperatures but can be protected by a variety of RNAs, including those which are not substrates for hydrolysis. The relation of RNase D to other known E. coli ribonucleases and to other previously identified processing activities, is discussed.  相似文献   

15.
Identification of a novel genetic element in Escherichia coli K-12.   总被引:10,自引:35,他引:10       下载免费PDF全文
Induction of the SOS repair processes of Escherichia coli K-12 caused a 14.4-kilobase species of circular deoxyribonucleic acid, called element e14, to be excised from the chromosome. To aid further characterization of this species, an 11.6-kilobase segment of e14 was inserted into the HindIII site of plasmid pBR313. To map e14 on the E. coli K-12 chromosome, the recombinant plasmid, pAG2, was used to transform a polA recipient, an event which required integration of pAG2 into the recipient chromosome. This recombinational event was dependent upon the region of homology between the incoming plasmid and the chromosome, as no transformants were scored when either a strain cured of the element was the recipient or pBR313 was the transforming deoxyribonucleic acid. Using these transformants, we have shown that e14 maps between the purB and pyrC loci near min 25. Several strains of E. coli K-12 were found to contain e14; however, one strain, Ymel trpA36, did not. In addition, e14 was found to be absent in both E. coli B/5 and E. coli C. The approach to mapping developed for this work could be used to map other fragments of E. coli deoxyribonucleic acid which have no known phenotype.  相似文献   

16.
The yiaMNO genes of Escherichia coli K-12 encode a binding protein-dependent secondary, or tri-partite ATP-independent periplasmic (TRAP), transporter. Since only a few members of this family have been functionally characterized to date, we aimed to identify the substrate for this transporter. Cells that constitutively express the yiaK-S gene cluster metabolized the rare pentose L-xylulose, while deletion of the yiaMNO transporter genes reduced L-xylulose metabolism. The periplasmic substrate-binding protein YiaO was found to bind L-xylulose, and stimulated L-xylulose uptake by spheroplasts. These date indicate that the yiaMNO transporter mediates uptake of this rare pentose.  相似文献   

17.
The effect of the ilvG671, ilvG468, and ilvG603 mutations (phenotype, IlvG+ Valr; formerly ilvO) upon proteins synthesized was determined by infection of irradiated Escherichia coli K-12 cells, using specifically constructed derivatives of lambda dilv phage. These ilvG alleles are similar to the previously studied ilvG2096(Valr) allele in that they activate the latent ilvG gene which is present in the wild-type strain, leading to the synthesis of a 62,000-dalton protein. In addition, all of these ilvG (Valr) alleles increase the synthesis of a 15,000-dalton protein. To localize the gene coding for the 15,000-dalton protein, the proteins produced in maxicells containing plasmids with specific deletions of ilv and rrnX DNA segments were analyzed. The gene coding for the 15,000-dalton protein was located within a region about 1,000 base pairs long between ilv and trpT. The function of the 15,000-dalton protein is not known.  相似文献   

18.
Bacterial chemotaxis results from the ability of flagellated bacteria to control the frequency of switching between smooth-swimming and tumbling episodes in response to changes in concentration of extracellular substances. High levels of phosphorylated CheY protein are the intracellular signal for inducing the tumbling mode of swimming. The CheZ protein has been shown to control the level of phosphorylated CheY by regulating its rate of dephosphorylation. To identify functional domains in the CheZ protein, we made mutants by random mutagenesis of the cheZ gene and constructed a series of deletions. The map position and the in vivo and in vitro activity of the resulting gain- or loss-of-function mutant proteins define separate functional domains of the CheZ protein.  相似文献   

19.
The FhuA protein in the outer membrane of Escherichia coli actively transports ferrichrome and the antibiotics albomycin and rifamycin CGP 4832 and serves as a receptor for the phages T1, T5, and phi80 and for colicin M and microcin J25. The crystal structure reveals a beta-barrel with a globular domain, the cork, which closes the channel formed by the barrel. Genetic deletion of the cork resulted in a beta-barrel that displays no FhuA activity. A functional FhuA was obtained by cosynthesis of separately encoded cork and the beta-barrel domain, each endowed with a signal sequence, which showed that complementation occurs after secretion of the fragments across the cytoplasmic membrane. Inactive complete mutant FhuA and an FhuA fragment containing 357 N-proximal amino acid residues complemented the separately synthesized wild-type beta-barrel to form an active FhuA. Previous claims that the beta-barrel is functional as transporter and receptor resulted from complementation by inactive complete FhuA and the 357-residue fragment. No complementation was observed between the wild-type cork and complete but inactive FhuA carrying cork mutations that excluded the exchange of cork domains. The data indicate that active FhuA is reconstituted extracytoplasmically by insertion of separately synthesized cork or cork from complete FhuA into the beta-barrel, and they suggest that in wild-type FhuA the beta-barrel is formed prior to the insertion of the cork.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号