首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
1. Growth of a biotin-requiring strain of Saccharomyces cerevisiae in a medium containing a suboptimum concentration of biotin for growth caused a decreased synthesis of ornithine carbamoyltransferase as compared with yeast grown in a medium containing an optimum concentration of biotin. Inclusion of the biotin homologues norbiotin or homobiotin, but not bishomobiotin, in the biotin-deficient medium caused an appreciable increase in ornithine carbamoyltransferase synthesis without affecting growth or synthesis of total RNA and protein. The addition of norbiotin to biotin-deficient medium had no effect on the respiratory activity of the yeast or on the synthesis of aspartate carbamoyltransferase, acid phosphatase, beta-fructofuranosidase or malate dehydrogenase. 2. Synthesis of acetylornithine deacetylase and acetylornithine acetyltransferase was slightly diminished by the imposition of biotin deficiency, but the effect was not as great as on ornithine carbamoyltransferase synthesis. Incorporation of norbiotin in the biotin-deficient medium had no marked effect on the synthesis of any other arginine-pathway enzyme except ornithine carbamoyltransferase. 3. l-Ornithine induced synthesis of ornithine carbamoyltransferase in yeast grown in biotin-deficient medium, but in yeast grown in this medium supplemented with norbiotin it repressed synthesis of the enzyme. l-Arginine had no detectable effect on ornithine carbamoyltransferase synthesis by the yeast grown in biotin-deficient medium with or without norbiotin. l-Aspartate repressed synthesis of ornithine carbamoyltransferase in biotin-deficient yeast and completely nullified the stimulatory effect of norbiotin on synthesis of the enzyme in this yeast. 4. There was no increase in ornithine carbamoyltransferase synthesis in biotin-deficient yeast incubated in phosphate buffer, pH4.5, containing glucose and biotin or norbiotin. In biotin-deficient yeast suspended in complete medium containing an optimum concentration of biotin, there was an increase in ornithine carbamoyltransferase synthesis only after the onset of growth.  相似文献   

2.
3.
The pattern of cross-pathway regulation of the arginine synthetic enzyme ornithine carbamoyltransferase was investigated in Neurospora crassa, using single and double mutant auxotrophic strains starved for their required amino acids. These experiments show that starvation for histidine, tryptophan, isoleucine, valine or arginine can result in derepression of ornithine carbamoyltransferase. Methionine starvation also gave slight derepression, but starvation for lysine or leucine gave little or no effect.  相似文献   

4.
A cis-dominant mutation linked to argF, the structural gene specifying ornithine carbamoyltransferase, and affecting the control of the synthesis of this enzyme has been obtained. The level of ornithine carbamoyltransferase in this mutation is depressed and less repressible by addition of L-arginine than it is in the wild-type strain. Of 38 tetrads analyzed, resulting from a cross of a strain harboring this mutation with a strain carrying an argF- mutation, none was a tetratype or a nonparental ditype. This operator mutation helps to define a negative mode of control of the synthesis of the arginine biosynthetic enzymes, as had been suggested earlier upon the isolation of argRI- (arg80), argRII- (arg81), and argRIII- (arg82) specific regulatory mutations.  相似文献   

5.
In human colon carcinoma cells (HT-29 cells), l-arginine is the common precursor of l-ornithine which generates polyamines strictly necessary for cellular growth, and nitric oxide which has a strong antiproliferative activity. We show here that proliferative HT-29 cells possess the capacity for de novo synthesis of l-arginine from l-citrulline, but not from l-ornithine. l-Ornithine is apparently not an l-arginine precursor due to the absence of any detectable ornithine carbamoyltransferase activity. In contrast, the newly synthesized l-arginine was competent for urea and thus l-ornithine production in a context of a high putrescine production in the ornithine decarboxylase pathway and a low degradation of this polyamine in the diamine oxidase pathway. However, cells grown in an arginine-free culture medium containing added l-citrulline were unable to reach confluency. Furthermore, the low amount of nitric oxide produced from l-arginine by these cells was apparently not involved in the control of cell growth since inhibition of nitric oxide synthase activity was without effect. On the other hand, the capacity of more differentiated and less proliferative HT-29 cells for de novo l-arginine synthesis from l-citrulline was increased. It is concluded that l-citrulline is a precursor of l-arginine and l-ornithine in proliferative HT-29 cells and that the metabolic fate of l-ornithine in these cells is mainly devoted to polyamine synthesis. The similarity between differentiated HT-29 cells and the enterocytes of newborn animals in terms of l-arginine metabolism is finally discussed.  相似文献   

6.
A N-lambda bacteriophage transducing the structural genes for Escherichia coli K-12 carbamoylphosphate synthase (glutamine) (CPSase; EC 2.7.2.9) has been isolated and analyzed both genetically and physically. The whole int-N region is substituted for a short chromosomal segment corresponding almost exactly to the car locus. The study of CPSase, ornithine carbamoyltransferase, and aspartate carbamoyltransferase regulation in carriers of lambdadcar confirms the previously reported participation of the argR gene product in the control of CPSase synthesis and points to the existence of a regulatory molecule involved in the control of both CPSase and aspartate carbamoyltransferase synthesis. The general usefulness of using N- lambda transducing bacteriophages for the recovery of large amounts of gene products is discussed.  相似文献   

7.
Purified catabolic ornithine carbamoyltransferase of Pseudomonas putida and anabolic ornithine carbamoyltransferase (argF product) of Escherichia coli K-12 were used to prepare antisera. The two specific antisera gave heterologous cross-reactions of various intensities with bacterial catabolic ornithine carbamoyltransferases formed by Pseudomonas and representative organisms of other bacterial genera. The immunological cross-reactivity observed only between the catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria suggests that these proteins share some structural similarities. Indeed, the amino acid composition of the anabolic ornithine carbamoyltransferase of E. coli K-12 (argF and argI products) closely resembles the amino acid compositions of the catabolic enzymes of Pseudomonas putida, Aeromonas formicans, Streptococcus faecalis, and Bacillus licheniformis. Comparison of the N-terminal amino acid sequence of the E. coli anabolic ornithine carbamoyltransferase with that of the A. formicans and Pseudomonas putida catabolic enzymes shows, respectively, 45 and 28% identity between the compared positions; the A. formicans sequence reveals 53% identity with the Pseudomonas putida sequence. These results favor the conclusion that anabolic ornithine carbamoyltransferases of enterobacteria and catabolic ornithine carbamoyltransferases derive from a common ancestral gene.  相似文献   

8.
Cell-free extracts from phaseolotoxin-producing strains of Pseudomonas syringae pv. phaseolicola grown at 18 degrees C, the optimum temperature for phaseolotoxin production, contain an ornithine carbamoyltransferase activity that is insensitive to phaseolotoxin. Extracts from the same strains grown at 30 degrees C, a temperature at which little or no detectable phaseolotoxin is produced, and from phaseolotoxin-nonproducing strains contain a phaseolotoxin-sensitive ornithine carbamoyltransferase activity. The phaseolotoxin-insensitive ornithine carbamoyltransferase activity is also less senstive to N delta-(phosphonacetyl)-L-ornithine than the phaseolotoxin-sensitive ornithine carbamoyltransferase activity of the corresponding strain.  相似文献   

9.
Although the existence of isozymes of ornithine carbamoyltransferase (carbamoylphosphate:l-ornithine carbamoyltransferase, EC 2.1.3.3) in higher plants has been reported, and the possibility exists that one or more of these operates catabolically to produce ornithine and carbamoylphosphate from citrulline and inorganic phosphate, no proof has been forthcoming. In view of the fact that many unicellular algae degrade arginine via arginine deiminase to citrulline and ammonium, and that the pathway of utilization of citrulline is unknown, we decided to investigate the possibility of the presence of a catabolic form of ornithine carbamoyltransferase in three microalgae known to have arginine deiminase activity. These were Chlorella autotrophica, Chlorella saccharophila, and Dunaliella tertiolecta. Our results show that the properties of OCT from these three algae are similar to OCTs from many higher plants with respect to general kinetics (Km values for ornithine and carbamoylphosphate), substrate inhibition by ornithine at high pHs, apparent sequential ordered kinetic mechanisms and paucity of apparent regulatory properties. Our data indicate an exclusively anabolic role of ornithine carbamoyltransferase in these algae.  相似文献   

10.
Differential centrifugation of the Aspergillus nidulans cell lysate shows that ornithine carbamoyltransferase (EC 2.1.3.3) appears mainly in the particulate (organellar) fraction. The enzyme was located to the mitochondria by co-sedimentation with cytochrome oxidase in isopycnic density gradient and by cytochemical-electron microscopic means. Arginase (EC 3.5.3.1) and ornithine delta-aminotransferase (E.C. 2.6.1.13) were found to reside in cytosol. The release of ornithine carbamoyltransferase from the organellar fraction by various agents indicates that the enzyme resides in the mitochondrial matrix. In Saccharomyces cerevisiae the plasmid pSAL43, carrying cloned Aspergillus nidulans ornithine carbamoyltransferase gene, directs the synthesis of the enzyme partially associated with yeast mitochondria even though the homologous yeast enzyme is exclusively cytosolic. The implications of these findings are discussed.  相似文献   

11.
Bacillus licheniformis has two pathways of arginine catabolism. In well-aerated cultures, the arginase route is present, and levels of catabolic ornithine carbamoyltransferase were low. An arginase pathway-deficient mutant, BL196, failed to grow on arginine as a nitrogen source under these conditions. In anaerobiosis, the wild type contained very low levels of arginase and ornithine transaminase. BL196 grew normally on glucose plus arginine in anaerobiosis and, like the wild type, had appreciable levels of catabolic transferase. Nitrate, like oxygen, repressed ornithine carbamoyltransferase and stimulated arginase synthesis. In aerobic cultures, arginase was repressed by glutamine in the presence of glucose, but not when the carbon-energy source was poor. In anaerobic cultures, ammonia repressed catabolic ornithine carbamoyltransferase, but glutamate and glutamine stimulated its synthesis. A second mutant, derived from BL196, retained the low arginase and ornithine transaminase levels of BL196 but produced high levels of deiminase pathway enzymes in the presence of oxygen.  相似文献   

12.
Summary All the five enzymes of urea synthesis and the formation of urea in vitro can already be demonstrated in human liver as early as the 9th week of fetal development. At this stage the activity of carbamoyl phosphate synthetase is the highest, whereas that of ornithine carbamoyltransferase is the lowest as compared to those in the adult. The kinetic parameters of the urea cycle enzymes are the same in fetal liver as in adult liver, except that the Km values of ornithine carbamoyltransferase for L-ornithine are 3.5 mM and 0.42 mM in the fetus and in adult liver, respectively.Urea formation in vivo seems to begin in the second half of fetal life, and a gradual increase can be detected in the activity of the enzymes of urea synthesis. The activity of ortnithine decarboxylase, the glutamine-dependent carbamoyl phosphate synthetase and aspartate carbamoyltransferase, however, changes in the opposite direction.The concentration of carbamoyl phosphate and aspartate remains constant, but that of ornithine gradually decreases during ontogenesis. The ornithine, carbamoyl phosphate and aspartate pools are probably utilized in the polyamine, pyrimidine and urea syntheses at varying rates.  相似文献   

13.
In Pseudomonas aeruginosa arginine can be degraded by the arginine "dihydrolase" system, consisting of arginine deiminase, catabolic ornithine carbamoyltransferase, and carbamate kinase. Mutants of P. aeruginosa strain PAO affected in the structural gene (arcB) of the catabolic ornithine carbamoyltransferase were isolated. Firt, and argF mutation (i.e., a block in the anabolic ornithine carbamoyltransferase) was suppressed specifically by a mutationally altered catabolic ornithine carbamoyltransferase capable of functioning in the anabolic direction. The suppressor locus arcB (Su) was mapped by transduction between hisII and argA. Second, mutants having lost suppressor activity were obtained. The Su- mutations were very closely linked to arcB (Su) and caused strongly reduced ornithine carbamoyltransferase activities in vitro. Under aerobic conditions, a mutant (PA0630) which had less than 1% of the wild-type catabolic ornithine carbamoyltransferase activity grew on arginine as the only carbon and nitrogen source, at the wild-type growth rate. When oxygen was limiting, strain PA0630 grown on arginine excreted citrulline in the stationary growth phase. These observations suggest that during aerobic growth arginine is not degraded exclusively via the dihydrolase pathway.  相似文献   

14.
Abstract Pseudomonas aeruginosa has a pair of distinct ornithine carbamoyltransferases. The anabolic ornithine carbamoyltransferase encoded by the argF gene catalyzes the formation of citrulline from ornithine and carbamoylphosphate. The catabolic ornithine carbamoyltransferase encoded by the arcB gene promotes the reverse reaction in vivo; although this enzyme can be assayed in vitro for citrulline synthesis, its unidirectionality in vivo is determined by its high concentration at half maximum velocity for carbamoylphosphate ([S]0.5) and high cooperativity toward this substrate. We have mutant forms of catabolic ornithine carbamoyltransferase catalyzing the anabolic reaction in vivo. The corresponding arcB mutant alleles on a multicopy plasmid specifically suppressed an argF mutation of P. aeruginosa . Two new mutant enzymes were obtained. When methionine 321 was replaced by isoleucine, the mutant enzyme showed loss of homotropic cooperativity at physiological carbamoylphosphate concentrations. Substitution of glutamate 105 by lysine resulted in a partial loss of the sigmoidal response to increasing carbamoylphosphate concentrations. However, both mutant enzymes were still sensitive to the allosteric activator AMP and to the inhibitor spermidine. These results indicate that at least two residues of catabolic ornithine carbamoyltransferase are critically involved in positive carbamoylphisphate cooperativity: glutamate 105 (previously known to be important) and methionine 321. Mutational changes in either amino acid will affect the geometry of helix H2, which contains several residues required for carbamoylphosphate binding.  相似文献   

15.
Ornithine and putrescine carbamoyltransferases from Streptococcus faecalis ATCC11700 have been purified and their structural properties compared. The molecular weight of native ornithine carbamoyltransferase, measured by molecular sieving, is 250 000. It is composed of six apparently identical subunits with a molecular weight of 39 000, as determined by cross-linking with the bifunctional reagent glutaraldehyde followed by polyacrylamide gel electrophoresis in the presence of sodium dodecylsulfate. Using the same method, putrescine carbamoyltransferase is a trimer of 140 000 consisting of three identical subunits with a molecular weight of 40 000. Ornithine carbamoyltransferase displays a narrow specificity towards its substrate, ornithine. In contrast, putrescine carbamoyltransferase carbamoylates ornithine and several diamines (diaminopropane, diaminohexane, spermine, spermidine, cadaverine) in addition to its preferred substrate, putrescine, but with a considerable lower efficiency than for putrescine. The kinetic mechanism of putrescine carbamoyltransferase has been investigated. Initial velocity studies yield intersecting plots using either putrescine or ornithine as substrate, indicating a sequential mechanism. The patterns of protection of the enzyme by the reactants during heat inactivation as well as the results of product and dead-end inhibition studies provide evidence for a random addition of the substrates. The putrescine inhibition that is induced by phosphate does, however, suggest that a preferred pathway exists in which carbamoylphosphate is the leading substrate. The different kinetic constants have been established. The properties of putrescine carbamoyltransferase are compared to the known properties of other carbamoyltransferases. The evolutionary implications of this comparison are discussed.  相似文献   

16.
The anabolic and catabolic ornithine carbamoyltransferases of Pseudomonas putida display an undirectional catalytic specialization: in citrulline synthesis for the anabolic enzyme, in citrulline phosphorolysis for the catabolic one. The irreversibility of the anabolic enzyme in vitro has been previously explained by its kinetic properties, whereas the irreversibility of the catabolic transferase in vivo was shown to be due to its allosteric behaviour. In this work a steady-state kinetic analysis has been carried out on the catabolic ornithine carbamoyltransferase at pH 6.8 in the presence of the allosteric activator, phosphate. The kinetic mechanism of Escherichia coli ornithine carbamoyltransferase serving as a reference was also determined. For the E. coli enzyme in the reverse direction, the initial velocity patterns converging on the abscissa were obtained with either citrulline or arsenate as variable substrate. The inhibition by the product ornithine was linear competitive with respect to citrulline and linear non-competitive with respect to arsenate. In the forward direction phosphate and its analogs induce an inhibition by ornithine which is partial and competitive with respect to carbamoylphosphate. Together with the results of thermo-inactivation studies in the presence of each reactant, this observation suggests a random kinetic mechanism, but with most of the reaction flux following the path where carbamoylphosphate adds before ornithine, when substrates are present at Km levels. The allosteric catabolic ornithine carbamoyltransferase of Pseudomonas displays qualitatively the same pattern as the E. coli enzyme.  相似文献   

17.
Repression of biosynthetic enzyme synthesis in Pseudomonas putida is incomplete even when the bacteria are growing in a nutritionally complex environment. The synthesis of four of the enzymes of the arginine biosynthetic pathway (N-acetyl-alpha-glutamokinase/N-acetylglutamate-gamma-semialdehyde dehydrogenase, ornithine carbamoyltransferase and acetylornithine-delta-transaminase) could be repressed and derepressed, but the maximum difference observed between repressed and derepressed levels for any enzyme of the pathway was only 5-fold (for ornithine carbamoyltransferase). No repression of five enzymes of the pyrimidine biosynthetic pathway (aspartate carbamoyltransferase, dihydro-orotase, dihydro-orotate dehydrogenase, orotidine-5'-phosphate pyrophosphorylase and orotidine-5'-phosphate decarboxylase) could be detected on addition of pyrimidines to minimal asparagine cultures of P. putida A90, but a 1-5- to 2-fold degree of derepression was found following pyrimidine starvation of pyrimidine auxotrophic mutants of P. putida A90. Aspartate carbamoyltransferase in crude extracts of P. putida A90 was inhibited in vitro by (in order of efficiency) pyrophosphate, CTP, UTP and ATP, at limiting but not at saturating concentrations of carbamoyl phosphate.  相似文献   

18.
Function of arginase in lactating mammary gland   总被引:5,自引:3,他引:2  
The potential for a considerable formation of ornithine exists in lactating mammary gland because of its arginase content. Late in lactation arginase reaches an activity in the gland higher than that present in any rat tissue except liver. Occurrence of the urea cycle can be excluded since two enzymes for the further reaction of ornithine in the cycle, carbamoyl phosphate synthetase I and ornithine carbamoyltransferase, are both absent from this tissue. Instead, carbamoyl phosphate synthetase II appears early in lactation, associated with accumulation of aspartate carbamoyltransferase and DNA, consistent with the proposed role of these enzymes in pyrimidine synthesis. The facts require another physiological role for arginase apart from its known function in the urea cycle. Significant activity of ornithine aminotransferase develops in mammary gland in close parallel with the arginase. By this reaction, ornithine can be converted into glutamic semialdehyde and subsequently into proline. The enzymic composition of the lactating mammary gland is therefore appropriate for the major conversion of arginine into proline that is known to occur in the intact gland.  相似文献   

19.
We have determined the complete nucleotide sequence of the arcB gene from Pseudomonas aeruginosa strain PAO and we have purified the arcB product, the catabolic ornithine carbamoyltransferase (EC 2.1.3.3), to apparent homogeneity from the same strain. The N-terminal amino acid sequence, the total amino acid composition and the subunit size of the purified enzyme were in agreement with nucleotide sequencing results, which predict a polypeptide of 336 amino acids (Mr 38,108). Crosslinking experiments suggest that the native enzyme (apparent Mr approx. 420,000) basically consists of a trimer aggregating to form nonamers or dodecamers. The arcB gene of P. aeruginosa had strong homology with the argF and argI genes which code for the anabolic ornithine carbamoyltransferase isoenzymes in Escherichia coli; 63% of the nucleotides and 57% of the amino acids were absolutely conserved in arcB and argF. This indicates a close evolutionary relationship between these genes although their products have different physiological functions in the cell. Under conditions of induction (energy depletion) the catabolic ornithine carbamoyltransferase represented greater than or equal to 10% of the total cellular protein. Like other highly expressed Pseudomonas genes, the arcB gene was found not to use seven codons which correspond to minor or weakly interacting tRNA species in E. coli.  相似文献   

20.
Previous studies of serine dehydratase (EC 4.2.1.13) and ornithine aminotransferase (EC 2.6.1.13) adaptation in rat liver showed that in rats on a high protein diet, glucocorticoid administration increased serine dehydratase activity while simultaneously reducing the activity of ornithine aminotransferase. The present study examines the role of enzyme synthesis in the expression of these and other dissimilar adaptive characteristics of the two enzymes. Both enzymes were purified to crystallinity and used to prepare specific antibodies. Changes in the rate of synthesis of each enzyme during adaptation were then measured immunochemically. In rats fed ad libitum, the synthetic rates for both enzymes exhibited circadian rhythm, although enzyme levels remained relatively constant. The circadian cycle for ornithine aminotransferase synthesis was in phase with the cycles for body weight and relative liver weight (maxima at 9 a.m., minima at 9 p.m.) but was approximately 12 hours out of phase with the cycle for serine dehydratase synthesis. 9alpha-Fluoro-11beta, 21-dihydroxy-16alpha, 17alpha-isopted at 9 a.m., increased serine dehydratase synthesis and simultaneously decreased the synthesis of ornithine aminotransferase. When triamcinolone was injected at 9 p.m., however, serine dehydratase synthesis was not stimulated, although the reduction of ornithine aminotransferase synthesis was still produced. These results suggest that: (a) circadian cycling of synthesis may be a general phenomenon in enzyme regulation even though for enzymes with relatively long half-lives, such cycling may not be reflected as fluctuations in enzyme levels; (b) such circadian rhythmicity may also involve cyclic changes in the responsiveness of the enzyme-forming system to regulatory stimuli; (c) whereas the adaptive behavior of serine dehydratase typifies that of amino acid-catabolizing enzymes in general, the responses of ornithine aminotransferase denote a functional association of this enzyme with anabolic processes. On this basis, the possibility that ornithine aminotransferase plays a pivotal role in the regulation of urea cycle activity and nitrogen balance is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号