首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
AngII (angiotensin II)-induced excessive ROS (reactive oxygen species) generation and proliferation of VSMCs (vascular smooth muscle cells) is a critical contributor to the pathogenesis of atherosclerosis. PGC-1α [PPARγ (peroxisome-proliferator-activated receptor γ) co-activator-1α] is involved in the regulation of ROS generation, VSMC proliferation and energy metabolism. The aim of the present study was to investigate whether PGC-1α mediates AngII-induced ROS generation and VSMC hyperplasia. Our results showed that the protein content of PGC-1α was negatively correlated with an increase in cell proliferation and migration induced by AngII. Overexpression of PGC-1α inhibited AngII-induced proliferation and migration, ROS generation and NADPH oxidase activity in VSMCs. Conversely, Ad-shPGC-1α (adenovirus-mediated PGC-1α-specific shRNA) led to the opposite effects. Furthermore, the stimulatory effect of Ad-shPGC-1α on VSMC proliferation was significantly attenuated by antioxidant and NADPH oxidase inhibitors. Analysis of several key subunits of NADPH oxidase (Rac1, p22phox, p40phox, p47phox and p67phox) and mitochondrial ROS revealed that these mechanisms were not responsible for the observed effects of PGC-1α. However, we found that overexpression of PGC-1α promoted NOX1 degradation through the proteasome degradation pathway under AngII stimulation and consequently attenuated NOX1 (NADPH oxidase 1) expression. These alterations underlie the inhibitory effect of PGC-1α on NADPH oxidase activity. Our data support a critical role for PGC-1α in the regulation of proliferation and migration of VSMCs, and provide a useful strategy to protect vessels against atherosclerosis.  相似文献   

3.
4.
《Free radical research》2013,47(5):422-431
Abstract

Homocysteine (Hcy) at elevated levels is a putative risk factor for many cardiovascular disorders including atherosclerosis. In the present study, we investigated the effect of Hcy on the expression of cyclooxygenase (COX)-2 in murine macrophages and the mechanisms involved. Hcy increased the expression of COX-2 mRNA and protein in dose- and time-dependent manners, but did not affect COX-1 expression. Hcy-induced COX-2 expression was attenuated not only by the calcium chelators, EGTA and BAPTA-AM, but also by an antioxidant, N-acetylcysteine. Calcium chelators also attenuated Hcy-induced reactive oxygen species (ROS) production in macrophages, indicating that Hcy-induced COX-2 expression might be mediated through ROS generated by calcium-dependent signaling pathways. In another series of experiments, Hcy increased the intracellular concentration of calcium in a dose-dependent manner, which was attenuated by MK-801, an N-methyl-D-aspartate (NMDA) receptor inhibitor, but not by bicuculline, a gamma-aminobutyric acid receptor inhibitor. Molecular inhibition of NMDA receptor using small interfering RNA also attenuated Hcy-induced increases in intracellular calcium. Furthermore, both ROS production and Hcy-induced COX-2 expression were also inhibited by MK-801 as well as by molecular inhibition of NMDA receptor. Taken together, these findings suggest that Hcy enhances COX-2 expression in murine macrophages by ROS generated via NMDA receptor-mediated calcium signaling pathways.  相似文献   

5.
Inoue  Ryuji 《Neurophysiology》2003,35(3-4):175-180
The molecular mechanisms underlying Ca2+ entry evoked by cell surface receptors in smooth muscle have long been enigmatic, but an important breakthrough has been made by recent investigations on mammalian homologues of Drosophila transient receptor potential (TRP) protein. There is now growing evidence that TRPC6 plays an integrative role in vascular tone regulation, Ca2+ entry channels activated by the sympathetic nerve stimulation, vasoactive peptides, and mechanosensitive mechanisms. Other TRPC isoforms, such as TRPC1 and TRPC4 (and perhaps TRPC5), are also expressed abundantly in smooth muscle and may contribute to muscle contraction, cell proliferation, and cholinergic control of the gut motility. This paper briefly overviews the current knowledge about these TRP proteins in smooth muscle physiology.  相似文献   

6.
Increased blood plasma concentration of the sulphur amino acid homocysteine (Hcy) is considered as an independent risk factor of the neurodegenerative diseases. However, the detailed molecular mechanisms by which Hcy leads to neurotoxicity have yet to be clarified. Recent research has suggested that neurotoxicity of Hcy may involve negative regulation of neural stem cell (NSC) proliferation. In the current study, primary NSCs were isolated from neonatal rat brain hippocampus and the inhibition in cell growth was observed after exposure to l50 μM and 500 μM L-Hcy. The changes in protein expression were monitored with densitometric 2D–gel electrophoresis coupled with MALDI-TOF mass spectrometry. Proteomic analysis revealed that the expression levels of two mitochondrial proteins, cytochrome bc1 complex2 (UQCRC2, the major component of electron transport chain complex III) and aconitase (an enzyme involved in the tricarboxylic acid cycle), were decreased in Hcy treatment group, compared to control group. Protein expression was further verified by Western blot, and their enzymatic activities were also down-regulated in NSCs after Hcy treatment. Restoration of aconitase and UQCRC2 protein levels using their expression vectors could partly rescue the cell viability inhibition caused by Hcy. Moreover, Hcy caused the increase in the intracellular levels of reactive oxygen species (ROS) and the decrease in ATP content, which are known to play important roles in the cellular stress response of the cell growth. Altogether, the results suggest that the decreased expression and enzymatic activities of the mitochondrial proteins may be possible causes of the overproduction of ROS and depletion of ATP. The inhibition in cell growth at the end of Hcy treatment was probably due to the changes in protein expression and mitochondrial dysfunction in vitro cultures of NSCs.  相似文献   

7.
扑草净对远志幼苗根系活力及氧化胁迫的影响   总被引:4,自引:0,他引:4  
以远志(Polygala tenuifolia Willd.)为材料,应用组织化学和生物化学的方法研究不同浓度扑草净(0—400 mg/L)对远志幼苗生长、根系活力、膜脂过氧化、活性氧含量及抗氧化酶活性等的影响。10 mg/L扑草净对远志幼苗根系活力、细胞膜完整性及活性氧的积累几乎无显著影响,而25—400 mg/L扑草净处理则显著增加活性氧的积累,明显抑制根系活力且破坏细胞膜完整性;上述结果进一步被膜脂过氧化、质膜完整性、活性氧产生(O.2-和H2O2)的非损伤组织化学染色所证明。远志幼苗可通过多种抗氧化酶(SOD、POD、CAT、APX等)和非酶抗氧化剂(如脯氨酸)的相互协调作用,清除低浓度扑草净胁迫诱发产生的活性氧,减轻对细胞的伤害。研究结果表明,发芽期是远志对扑草净处理的敏感时期,较为安全的扑草净临界浓度为10 mg/L;25mg/L扑草净处理即引起远志幼苗氧化胁迫和膜脂过氧化,使细胞膜的完整性受到破坏,根系活力下降,抑制了远志幼苗的生长发育。该研究为远志抗除草剂胁迫机制及其栽培过程中除草剂的安全合理使用提供理论依据。  相似文献   

8.
9.
10.
11.
We investigated the effect of a periodontal pathogen, Porphyromonas gingivalis, on human aortic smooth muscle cell (hAOSMC) proliferation as mechanisms of atherosclerosis. Cultured hAOSMCs exposed to the supernatant of plasma incubated with P. gingivalis showed a marked transformation from a contractile to proliferative phenotype, resulting in enhancement of cell growth. DNA microarray analysis revealed a P. gingivalis-dependent upregulation of S100A9 in hAOSMCs. Small interference-RNA for S100A9 dramatically attenuated the effect of P. gingivalis on transformation and proliferation of hAOSMCs. Our data suggested that upregulation of S100A9 mediated by P. gingivalis is an important event in the development of aortic intimal hyperplasia.  相似文献   

12.
13.
Curcuma phaeocaulis Valeton is a commonly prescribed Chinese medical herb for tumor therapy. In this study, an extract of Curcuma phaeocaulis Valeton referred as Cpv was prepared and its anti-tumor effect was evaluated with MCF-7 and MDA-MB-231 cells. Curcuma phaeocaulis Valeton power was extracted with ethanol and the main components of the extract (Cpv) were analyzed with HPLC. The effect of Cpv on MCF-7 cells proliferation, intracellular reactive oxygen species (ROS) formation, mitochondrial membrane potential (ΔΨm), apoptosis, apoptotic related proteins, MDA-MB-231 cell migration, and integrins expression were determined. Furthermore, the effect of Cpv on some key signal transduction molecules was also investigated. Furanodienone, germacrone and furanodiene were identified as the main components of Cpv. Cpv treatment significantly inhibited cell proliferation, increased LDH release, induced intracellular ROS formation, and decreased ΔΨm in a dose-dependent manner in MCF-7 cells. Cpv induced apoptosis without affecting cell migration. Cpv increased protein expression of Bax, PARP, cleaved PARP, caspase-3, 7, JNK1, p-p42/44MAPK, NF-κB, IKKα, IKKβ, decreased protein expression of Bcl-2, Bcl-xL, Bim, Bik, Bad, integrin β5, p42/44MAPK without affecting integrin α5, β1, and p38MAPK protein expression. We concluded that Cpv inhibited MCF-7 cells proliferation by inducing apoptosis mediated by increasing ROS formation, decreasing ΔΨm, regulating Bcl-2 family proteins expression, and activating caspases. Cpv treatment also modulated several signaling transduction pathways. These results might provide some molecular basis for the anti-tumor activity of Curcuma phaeocaulis Valeton.  相似文献   

14.
15.
16.
Heme oxygenase-1 (HO-1) is known as an oxidative stress protein that is up-regulated by various stimuli. HO-1 has been shown to protect cells against oxidative damage. Cigarette smoke is a potential inflammatory mediator that causes chronic obstructive pulmonary disease and asthma. In this study, we report that cigarette smoke particle-phase extract (CSPE) is an inducer of HO-1 expression mediated through various signaling pathways in human tracheal smooth muscle cells (HTSMCs). CSPE-induced HO-1 protein, mRNA expression, and promoter activity were attenuated by pretreatment with a ROS scavenger (N-acetyl-l-cysteine) and inhibitors of c-Src (PP1), NADPH oxidase [diphenylene iodonium chloride (DPI) and apocynin (APO)], MEK1/2 (U0126), p38 MAPK (SB202190), and JNK1/2 (SP600125) or transfection with siRNAs for Src, p47phox, NOX2, p42, p38, JNK2, or NF-E2-related factor 2 (Nrf2). CSPE-stimulated translocation of p47phox and Nrf2, ROS production, and NADPH oxidase activity was attenuated by transfection with siRNAs for Src, p47phox, and NOX2 or pretreatment with PP1, DPI, or APO. Furthermore, CSPE-induced NOX2, c-Src, and p47phox complex formation was revealed by immunoprecipitation using an anti-NOX2, anti-p47phox, or anti-c-Src Ab followed by Western blot against anti-NOX2, anti-p47phox, or anti-c-Src Abs. These results demonstrate that CSPE-induced ROS generation is mediated through a c-Src/NADPH oxidase/MAPK pathway and in turn initiates the activation of Nrf2 and ultimately induces HO-1 expression in HTSMCs.  相似文献   

17.
18.
Cancer cells have been found to express immunoglobulin G (IgG), but the exact functions and underlying mechanisms of cancer-derived IgG remain elusive. In this study, we first confirmed that downregulation of IgG restrained the growth and proliferation of cancer cells in vitro and in vivo. To elucidate its mechanism, we carried out a co-immunoprecipitation assay in HeLa cells and identified 27 potential IgG-interacting proteins. Among them, receptor of activated protein kinase C 1 (RACK1), ras-related nuclear protein (RAN) and peroxiredoxin 1 (PRDX1) are closely related to cell growth and oxidative stress, which prompted us to investigate the mechanism of action of IgG in the above phenomena. Upon confirmation of the interactions between IgG and the three proteins, further experiments revealed that downregulation of cancer-derived IgG lowered levels of intracellular reactive oxygen species (ROS) by enhancing cellular total antioxidant capacity. In addition, a few ROS scavengers, including catalase (CAT), dimethylsulfoxide (DMSO), n-acetylcysteine (NAC) and superoxide dismutase (SOD), further inhibited the growth of IgG-deficient cancer cells through suppressing mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK) signaling pathway induced by a low level of intracellular ROS, whereas exogenous hydrogen peroxide (H2O2) at low concentration promoted their survival via increasing intracellular ROS levels. Similar results were obtained in an animal model and human tissues. Taken together, our results demonstrate that cancer-derived IgG can enhance the growth and proliferation of cancer cells via inducing the production of ROS at low level. These findings provide new clues for understanding tumor proliferation and designing cancer therapy.  相似文献   

19.
We earlier showed that vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) exhibit increased expression of Gi proteins. Since the levels of endothelin-1 (ET-1) are enhanced in VSMC from SHR, we undertook the present study to examine the implication of endogenous ET-1 and the underlying mechanisms in the enhanced expression of Giα proteins in VSMC from SHR. The enhanced expression of Giα-2 and Giα-3 proteins in VSMC from SHR was inhibited by ETA and ETB receptor antagonists, BQ123 and BQ788 respectively. In addition, these antagonists also attenuated the enhanced inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of GTPγS and by inhibitory hormones in VSMC from SHR compared to WKY. Furthermore, AG1295, AG1024 and PP2, inhibitors of platelet derived growth factor receptor (PDGFR), insulin-like growth factor 1 receptor (IGF-1R) and c-Src respectively, inhibited the enhanced expression of Giα protein and the enhanced phosphorylation of PDGFR and IGF-1R in VSMC from SHR to WKY levels. In addition, NAD(P)H oxidase inhibitor DPI and N-acetylcysteine (NAC), a scavenger of superoxide anion (O2) also inhibited the enhanced phosphorylation of PDGFR and IGF-1R and c-Src in VSMC from SHR to control levels. Furthermore, the augmented phosphorylation of ERK1/2 in VSMC from SHR was attenuated by BQ123 and BQ788, growth factor receptors inhibitors and PP2. These results suggest that the enhanced levels of endogenous ET-1 in VSMC from SHR increase oxidative stress, which through c-Src-mediated activation of growth factor receptors and associated MAP kinase signaling, contribute to the enhanced expression of Giα proteins.  相似文献   

20.
Reactive oxygen species (ROS) generation, particularly by the endothelial NADPH oxidase family of proteins, plays a major role in the pathophysiology associated with lung inflammation, ischemia/reperfusion injury, sepsis, hyperoxia, and ventilator-associated lung injury. We examined potential regulators of ROS production and discovered that hyperoxia treatment of human pulmonary artery endothelial cells induced recruitment of the vesicular regulator, dynamin 2, the non-receptor tyrosine kinase, c-Abl, and the NADPH oxidase subunit, p47phox, to caveolin-enriched microdomains (CEMs). Silencing caveolin-1 (which blocks CEM formation) and/or c-Abl expression with small interference RNA inhibited hyperoxia-mediated tyrosine phosphorylation and association of dynamin 2 with p47phox and ROS production. In addition, treatment of human pulmonary artery endothelial cells with dynamin 2 small interfering RNA or the dynamin GTPase inhibitor, Dynasore, attenuated hyperoxia-mediated ROS production and p47phox recruitment to CEMs. Using purified recombinant proteins, we observed that c-Abl tyrosine-phosphorylated dynamin 2, and this phosphorylation increased p47phox/dynamin 2 association (change in the dissociation constant (Kd) from 85.8 to 6.9 nm). Furthermore, exposure of mice to hyperoxia increased ROS production, c-Abl activation, dynamin 2 association with p47phox, and pulmonary leak, events that were attenuated in the caveolin-1 knock-out mouse confirming a role for CEMs in ROS generation. These results suggest that hyperoxia induces c-Abl-mediated dynamin 2 phosphorylation required for recruitment of p47phox to CEMs and subsequent ROS production in lung endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号