首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Lian WX  Yin RH  Kong XZ  Zhang T  Huang XH  Zheng WW  Yang Y  Zhan YQ  Xu WX  Yu M  Ge CH  Guo JT  Li CY  Yang XM 《FEBS letters》2012,586(10):1431-1438
THAP11 is an essential factor involved in ES cell pluripotency and cell growth. Here, we identified THAP11 as a novel physiological binding partner of PCBP1. In HepG2 cells, THAP11 overexpression inhibited CD44 v6 expression and cell invasion. However, when deleting the binding domain with PCBP1 or endogenous PCBP1 was knocked down, THAP11 failed to inhibit CD44 v6 expression, indicating that THAP11 regulates CD44 v6 expression through interacting with PCBP1. In HCC patients, the expression of THAP11 mRNA significantly correlated with PCBP1 mRNA expression. Our results suggest a novel role of THAP11 in CD44 alternative splicing and hepatoma invasion.  相似文献   

3.
4.
5.
6.
Utilization of internal ribosome entry segment (IRES) structures in the 5′ noncoding region (5′NCR) of picornavirus RNAs for initiation of translation requires a number of host cell factors whose distribution may vary in different cells and whose requirement may vary for different picornaviruses. We have examined the requirement of the cellular protein poly(rC) binding protein 2 (PCBP2) for hepatitis A virus (HAV) RNA translation. PCBP2 has recently been identified as a factor required for translation and replication of poliovirus (PV) RNA. PCBP2 was shown to be present in FRhK-4 cells, which are permissive for growth of HAV, as it is in HeLa cells, which support translation of HAV RNA but which have not been reported to host replication of the virus. Competition RNA mobility shift assays showed that the 5′NCR of HAV RNA competed for binding of PCBP2 with a probe representing stem-loop IV of the PV 5′NCR. The binding site on HAV RNA was mapped to nucleotides 1 to 157, which includes a pyrimidine-rich sequence. HeLa cell extracts that had been depleted of PCBP2 by passage over a PV stem-loop IV RNA affinity column supported only low levels of HAV RNA translation. Translation activity was restored upon addition of recombinant PCBP2 to the depleted extract. Removal of the 5′-terminal 138 nucleotides of the HAV RNA, or removal of the entire IRES, eliminated the dependence of HAV RNA translation on PCBP2.  相似文献   

7.
8.
Npro is a multifunctional autoprotease unique to pestiviruses. The interacting partners of the Npro protein of classical swine fever virus (CSFV), a swine pestivirus, have been insufficiently defined. Using a yeast two-hybrid screen, we identified poly(C)-binding protein 1 (PCBP1) as a novel interacting partner of the CSFV Npro protein and confirmed this by coimmunoprecipitation, glutathione S-transferase (GST) pulldown, and confocal assays. Knockdown of PCBP1 by small interfering RNA suppressed CSFV growth, while overexpression of PCBP1 promoted CSFV growth. Furthermore, we showed that type I interferon was downregulated by PCBP1, as well as Npro. Our results suggest that cellular PCBP1 positively modulates CSFV growth.  相似文献   

9.
The cellular protein, poly(rC) binding protein 2 (PCBP2), is known to function in picornavirus cap-independent translation. We have further examined the RNA binding properties and protein-protein interactions of PCBP2 necessary for translation. We have studied its putative multimerization properties utilizing the yeast two-hybrid assay and in vitro biochemical methods, including glutathione S-transferase (GST) pull-down assays and gel filtration. Through genetic analysis, the multimerization domain has been localized to the second K-homologous (KH) RNA binding domain of the protein between amino acids 125 and 158. To examine the function of multimerization in poliovirus translation, we utilized the truncated protein, DeltaKH1-PCBP2, which is capable of multimer formation, but does not bind poliovirus stem-loop IV RNA (an interaction required for translation). Utilizing RNA binding and in vitro translation assays, this protein was shown to act as a dominant negative, suggesting that PCBP2 multimerization functions in poliovirus translation and RNA binding. Additionally, PCBP2 containing a deletion in the multimerization domain (DeltaKH2-PCBP2) was not able to bind poliovirus stem-loop IV RNA and could not rescue translation in extracts that were depleted of endogenous PCBP2. Results from these experiments suggest that the multimerization of PCBP2 is required for efficient RNA binding and cap-independent translation of poliovirus RNA. By examining the functional interactions of the cellular protein PCBP2, we have discovered a novel determinant in the mechanism of picornavirus cap-independent translation.  相似文献   

10.
11.
Xin Z  Han W  Zhao Z  Xia Q  Yin B  Yuan J  Peng X 《PloS one》2011,6(10):e25419
Interferon-α (IFN-α) is a natural choice for the treatment of hepatitis C, but half of the chronically infected individuals do not achieve sustained clearance of hepatitis C virus (HCV) during treatment with IFN-α alone. The virus can impair IFN-α signaling and cellular factors that have an effect on the viral life cycles. We found that the protein PCBP2 is down-regulated in HCV-replicon containing cells (R1b). However, the effects and mechanisms of PCBP2 on HCV are unclear. To determine the effect of PCBP2 on HCV, overexpression and knockdown of PCBP2 were performed in R1b cells. Interestingly, we found that PCBP2 can facilitate the antiviral activity of IFN-α against HCV, although the RNA level of HCV was unaffected by either the overexpression or absence of PCBP2 in R1b cells. RIP-qRT-PCR and RNA half-life further revealed that PCBP2 stabilizes the mRNA of STAT1 and STAT2 through binding the 3'Untranslated Region (UTR) of these two molecules, which are pivotal for the IFN-α anti-HCV effect. RNA pull-down assay confirmed that there were binding sites located in the C-rich tracts in the 3'UTR of their mRNAs. Stabilization of mRNA by PCBP2 leads to the increased protein expression of STAT1 and STAT2 and a consistent increase of phosphorylated STAT1 and STAT2. These effects, in turn, enhance the antiviral effect of IFN-α. These findings indicate that PCBP2 may play an important role in the IFN-α response against HCV and may benefit the HCV clinical therapy.  相似文献   

12.
13.
14.
The limited coding capacity of picornavirus genomic RNAs necessitates utilization of host cell factors in the completion of an infectious cycle. One host protein that plays a role in both translation initiation and viral RNA synthesis is poly(rC) binding protein 2 (PCBP2). For picornavirus RNAs containing type I internal ribosome entry site (IRES) elements, PCBP2 binds the major stem-loop structure (stem-loop IV) in the IRES and is essential for translation initiation. Additionally, the binding of PCBP2 to the 5'-terminal stem-loop structure (stem-loop I or cloverleaf) in concert with viral protein 3CD is required for initiation of RNA synthesis directed by poliovirus replication complexes. PCBP1, a highly homologous isoform of PCBP2, binds to poliovirus stem-loop I with an affinity similar to that of PCBP2; however, PCBP1 has reduced affinity for stem-loop IV. Using a dicistronic poliovirus RNA, we were able to functionally uncouple translation and RNA replication in PCBP-depleted extracts. Our results demonstrate that PCBP1 rescues RNA replication but is not able to rescue translation initiation. We have also generated mutated versions of PCBP2 containing site-directed lesions in each of the three RNA-binding domains. Specific defects in RNA binding to either stem-loop I and/or stem-loop IV suggest that these domains may have differential functions in translation and RNA replication. These predictions were confirmed in functional assays that allow separation of RNA replication activities from translation. Our data have implications for differential picornavirus template utilization during viral translation and RNA replication and suggest that specific PCBP2 domains may have distinct roles in these activities.  相似文献   

15.
16.
Zhou X  You F  Chen H  Jiang Z 《Cell research》2012,22(4):717-727
Mitochondrial antiviral signaling (MAVS) is a key adaptor in cellular antiviral innate immunity. We previously identified poly(C)-binding protein 2 (PCBP2) as a feedback inhibitor of MAVS that facilitates its degradation after viral infection, but little is known about the regulatory potential of poly(C)-binding protein 1 (PCBP1), which highly resembles PCBP2. Here we report that PCBP1 mediates housekeeping degradation of MAVS using the same mechanism as PCBP2 employs. Overexpression of PCBP1 impairs MAVS-mediated antiviral responses, while knockdown of PCBP1 exerts the opposite effect. The suppression is due to PCBP1-induced MAVS degradation. We observe that PCBP1 and PCBP2 show synergy in MAVS inhibition, but their expression patterns are distinct: PCBP1 is stably and abundantly expressed, while PCBP2 shows low basal expression with rapid induction after infection. Individual knockdown and subcellular fractionation analyses reveal that unlike the postinfection inhibitor PCBP2, PCBP1 continuously eliminates cellular MAVS. Our findings unravel a critical role of PCBP1 in regulating MAVS for both fine-tuning the antiviral immunity and preventing inflammation.  相似文献   

17.
18.
19.
Poly C binding protein 1 (PCBP1) is an expressional regulator of the mu‐opioid receptor (MOR) gene. We hypothesized the existence of a PCBP1 co‐regulator modifying human MOR gene expression by protein–protein interaction with PCBP1. A human brain cDNA library was screened using the two‐hybrid system with PCBP1 as the bait. Receptor for activated protein kinase C (RACK1) protein, containing seven WD domains, was identified. PCBP1‐RACK1 interaction was confirmed via in vivo validation using the two‐hybrid system, and by co‐immunoprecipitation with anti‐PCBP1 antibody and human neuronal NMB cell lysate, endogenously expressing PCBP1 and RACK1. Further co‐immunoprecipitation suggested that RACK1‐PCBP1 interaction occurred in cytosol alone. Single and serial WD domain deletion analyses demonstrated that WD7 of RACK1 is the key domain interacting with PCBP1. RACK1 over‐expression resulted in a dose‐dependent decrease of MOR promoter activity using p357 plasmid containing human MOR promoter and luciferase reporter gene. Knock‐down analysis showed that RACK1 siRNA decreased the endogenous RACK1 mRNA level in NMB, and elevated MOR mRNA level as indicated by RT‐PCR. Likewise, a decrease of RACK1 resulted in an increase of MOR proteins, verified by 3H‐diprenorphine binding assay. Collectively, this study reports a novel role of RACK1, physically interacting with PCBP1 and participating in the regulation of human MOR gene expression in neuronal NMB cells.  相似文献   

20.
During picornavirus infection, several cellular proteins are cleaved by virus-encoded proteinases. Such cleavage events are likely to be involved in the changing dynamics during the intracellular viral life cycle, from viral translation to host shutoff to RNA replication to virion assembly. For example, it has been proposed that there is an active switch from poliovirus translation to RNA replication mediated by changes in RNA-binding protein affinities. This switch could be a mechanism for controlling template selection for translation and negative-strand viral RNA synthesis, two processes that use the same positive-strand RNA as a template but proceed in opposing directions. The cellular protein poly(rC)-binding protein (PCBP) was identified as a primary candidate for regulating such a mechanism. Among the four different isoforms of PCBP in mammalian cells, PCBP2 is required for translation initiation on picornavirus genomes with type I internal ribosome entry site elements and also for RNA replication. Through its three K-homologous (KH) domains, PCPB2 forms functional protein-protein and RNA-protein complexes with components of the viral translation and replication machinery. We have found that the isoforms PCBP1 and -2 are cleaved during the mid-to-late phase of poliovirus infection. On the basis of in vitro cleavage assays, we determined that this cleavage event was mediated by the viral proteinases 3C/3CD. The primary cleavage occurs in the linker between the KH2 and KH3 domains, resulting in truncated PCBP2 lacking the KH3 domain. This cleaved protein, termed PCBP2-DeltaKH3, is unable to function in translation but maintains its activity in viral RNA replication. We propose that through the loss of the KH3 domain, and therefore loss of its ability to function in translation, PCBP2 can mediate the switch from viral translation to RNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号