首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Leukotriene A4 hydrolase (LTA4H) is a key enzyme in the inflammatory process of mammals. It is an epoxide hydrolase and an aminopeptidase of the M1 family of the MA clan of Zn-metallopeptidases. We have solved the crystal structure of LTA4H in complex with N-[3(R)-[(hydroxyamino)carbonyl]-2-benzyl-1-oxopropyl]-L-alanine, a potent inhibitor of several Zn-metalloenzymes, both endopeptidases and aminopeptidases. The inhibitor binds along the sequence signature for M1 aminopeptidases, GXMEN. It exhibits bidentate chelation of the catalytic zinc and binds to LTA4H’s enzymatically essential carboxylate recognition site. The structure gives clues to the binding of this inhibitor to related enzymes and thereby identifies residues of their S1′ sub sites as well as strategies for design of inhibitors.  相似文献   

2.
The synthesis and biological evaluation of a series of aryl diamines as inhibitors of LTA4-h inhibitors are described. The optimization which led to the identification of the optimal para-substitution on the diphenyl ether moiety and diamine spacer is discussed. The resulting compounds such as 3l have excellent enzyme and cellular potency as well as desirable pharmacokinetic properties.  相似文献   

3.
The leukotriene A(4) hydrolase enzyme is a dual functioning enzyme with the following two catalytic activities: an epoxide hydrolase function that transforms the lipid metabolite leukotriene A(4) to leukotriene B(4) and an aminopeptidase function that hydrolyzes short peptides. To date, all drug discovery efforts have focused on the epoxide hydrolase activity of the enzyme, because of extensive biological characterization of the pro-inflammatory properties of its metabolite, leukotriene B(4). Herein, we have designed a small molecule, 4-methoxydiphenylmethane, as a pharmacological agent that is bioavailable and augments the aminopeptidase activity of the leukotriene A(4) hydrolase enzyme. Pre-clinical evaluation of our drug showed protection against intranasal elastase-induced pulmonary emphysema in murine models.  相似文献   

4.
Leukotriene A4 hydrolase (LTA-H) is a bifunctional protein that has aminopeptidase activity, but also contains an epoxide hydrolase activity that converts leukotriene (LT)A4 to LTB4. The lipid metabolic activity of this enzyme plays a central role in the control of polymorphonuclear leukocyte function and in the development of inflammation. LTA-H is widely spread in many mammalian tissues, although it appears to be inactive in many cases. Regulation of this enzyme’s activity by phosphorylation of a serine at residue 415 has recently been described. Since the activation of LTA-H in the presence of activated PMNL would likely lead to a substantial increase in the production of inflammatory lipids, regulation of LTA-H presents a novel potential target for anti-inflammatory therapy. We have now made a series of site-directed mutants at this site to test the importance of this residue to the activity of LTA-H. Replacement of the critical serine with threonine or glutamine has little effect on either the epoxide hydrolase or aminopeptidase activities. However, replacing serine with a negatively charged amino acid (either aspartate or glutamate), intended to mimic phosphorylation at that site, causes significant reduction in epoxide hydrolase activity (50–70%). These mutations have little effect on the aminopeptidase activity of the LTA-H, suggesting that the mutation models the regulatory event and is not simply due to improper folding of the protein.  相似文献   

5.

Background

Cysteinyl leukotrienes (LTs) are key mediators in inflammation. To explore the structure of the antigen-recognition site of a monoclonal antibody against LTC4 (mAbLTC), we previously isolated full-length cDNAs for heavy and light chains of the antibody and prepared a single-chain antibody comprising variable regions of these two chains (scFvLTC).

Methods

We examined whether mAbLTC and scFvLTC neutralized the biological activities of LTC4 and LTD4 by competing their binding to their receptors.

Results

mAbLTC and scFvLTC inhibited their binding of LTC4 or LTD4 to CysLT1 receptor (CysLT1R) and CysLT2 receptor (CysLT2R) overexpressed in Chinese hamster ovary cells. The induction by LTD4 of monocyte chemoattractant protein-1 and interleukin-8 mRNAs in human monocytic leukemia THP-1 cells expressing CysLT1R was dose-dependently suppressed not only by mAbLTC but also by scFvLTC. LTC4- and LTD4-induced aggregation of mouse platelets expressing CysLT2R was dose-dependently suppressed by either mAbLTC or scFvLTC. Administration of mAbLTC reduced pulmonary eosinophil infiltration and goblet cell hyperplasia observed in a murine model of asthma. Furthermore, mAbLTC bound to CysLT2R antagonists but not to CysLT1R antagonists.

Conclusions

These results indicate that mAbLTC and scFvLTC neutralize the biological activities of LTs by competing their binding to CysLT1R and CysLT2R. Furthermore, the binding of cysteinyl LT receptor antagonists to mAbLTC suggests the structural resemblance of the LT-recognition site of the antibody to that of these receptors.

General significance

mAbLTC can be used in the treatment of inflammatory diseases such as asthma.  相似文献   

6.
In Saccharomyces cerevisiae, the diffusion rate of hydrogen peroxide (H2O2) through the plasma membrane decreases during adaptation to H2O2 by means of a mechanism that is still unknown. Here, evidence is presented that during adaptation to H2O2 the anisotropy of the plasma membrane increases. Adaptation to H2O2 was studied at several times (15min up to 90min) by applying the steady-state H2O2 delivery model. For wild-type cells, the steady-state fluorescence anisotropy increased after 30min, or 60min, when using 2-(9-anthroyloxy) stearic acid (2-AS), or diphenylhexatriene (DPH) membrane probe, respectively. Moreover, a 40% decrease in plasma membrane permeability to H2O2 was observed at 15min with a concomitant two-fold increase in catalase activity. Disruption of the ergosterol pathway, by knocking out either ERG3 or ERG6, prevents the changes in anisotropy during H2O2 adaptation. H2O2 diffusion through the plasma membrane in S. cerevisiae cells is not mediated by aquaporins since the H2O2 permeability constant is not altered in the presence of the aquaporin inhibitor mercuric chloride. Altogether, these results indicate that the regulation of the plasma membrane permeability towards H2O2 is mediated by modulation of the biophysical properties of the plasma membrane.  相似文献   

7.
Leukotriene B4 (LTB4) is a potent chemoattractant and activator of neutrophils, macrophages and T cells. These cells are a key component of inflammation and all express BLT1, a high affinity G-protein-coupled receptor for LTB4. However, little is known about the neuroimmune functions of BLT1. In this study, we describe a distinct role for BLT1 in the pathology of experimental autoimmune encephalomyelitis (EAE) and TH1/TH17 immune responses. BLT1 mRNA was highly upregulated in the spinal cord of EAE mice, especially during the induction phase. BLT1−/− mice had delayed onset and less severe symptoms of EAE than BLT1+/+ mice. Additionally, inflammatory cells were recruited to the spinal cord of asymptomatic BLT1+/+, but not BLT1−/− mice before the onset of disease. Ex vivo studies showed that both the proliferation and the production of IFN-γ, TNF-α, IL-17 and IL-6 were impaired in BLT1−/− cells, as compared with BLT1+/+ cells. Thus, we suggest that BLT1 exacerbates EAE by regulating the migration of inflammatory cells and TH1/TH17 immune responses. Our findings provide a novel therapeutic option for the treatment of multiple sclerosis and other TH17-mediated diseases.  相似文献   

8.
Obesity results in increased macrophage recruitment to adipose tissue that promotes a chronic low-grade inflammatory state linked to increased fatty acid efflux from adipocytes. Activated macrophages produce a variety of pro-inflammatory lipids such as leukotriene C4 (LTC4) and 5-, 12-, and 15-hydroxyeicosatetraenoic acid (HETE) suggesting the hypothesis that fatty acids may stimulate eicosanoid synthesis. To assess if eicosanoid production increases with obesity, adipose tissue of leptin deficient ob/ob mice was analyzed. In ob/ob mice, LTC4 and 12-HETE levels increased in the visceral (but not subcutaneous) adipose depot while the 5-HETE levels decreased and 15-HETE abundance was unchanged. Since macrophages produce the majority of inflammatory molecules in adipose tissue, treatment of RAW264.7 or primary peritoneal macrophages with free fatty acids led to increased secretion of LTC4 and 5-HETE, but not 12- or 15-HETE. Fatty acid binding proteins (FABPs) facilitate the intracellular trafficking of fatty acids and other hydrophobic ligands and in vitro stabilize the LTC4 precursor leukotriene A4 (LTA4) from non-enzymatic hydrolysis. Consistent with a role for FABPs in LTC4 synthesis, treatment of macrophages with HTS01037, a specific FABP inhibitor, resulted in a marked decrease in both basal and fatty acid-stimulated LTC4 secretion but no change in 5-HETE production or 5-lipoxygenase expression. These results indicate that the products of adipocyte lipolysis may stimulate the 5-lipoxygenase pathway leading to FABP-dependent production of LTC4 and contribute to the insulin resistant state.  相似文献   

9.
Erik Kish-Trier 《FEBS letters》2009,583(19):3121-3126
The peripheral stalk of the archaeal ATP synthase (A1A0)-ATP synthase is formed by the heterodimeric EH complex and is part of the stator domain, which counteracts the torque of rotational catalysis. Here we used nuclear magnetic resonance spectroscopy to probe the interaction of the C-terminal domain of the EH heterodimer (ECT1HCT) with the N-terminal 23 residues of the B subunit (BNT). The data show a specific interaction of BNT peptide with 26 residues of the ECT1HCT domain, thereby providing a molecular picture of how the peripheral stalk is anchored to the A3B3 catalytic domain in A1A0.

Structured summary

MINT-7260681: Hct (refseq:NP_393485), Ect1 (uniprotkb:Q9HM68) and Bnt (uniprotkb:Q9HM64) physically interact (MI:0915) by nuclear magnetic resonance (MI:0077)  相似文献   

10.
Some allergic sheep respond to inhalation of antigen with both immediate and late increases in airflow resistance (late response). The mechanism of the late response is unknown but recent evidence suggests that the initial generation of slow-reacting substance of anaphylaxis (SRS-A) immediately after antigen challenge is a necessary pre-requisite for the physiologic expression of this late response. Based on this evidence we hypothesized that airway challenge with leukotriene D4 (LTD4), an active component of SRS-A would produce acute and late airway responses in allergenic sheep similar to those observed with antigen. In five allergic sheep with documented early and late pulmonary responses to antigen, inhalation of leukotriene D4 aerosol (delivered dose {mean ±SE} 0.55±0.08 ug) resulted in significant early and late increases in specific lung resistance (SRL). In three allergic sheep which only demonstrated acute responses to antigen, LTD4 aerosol (delivered dose 0.59±0.09ug) only produced an acute increase in SRL. In the late responders pretreatment with aerosol cromolyn sodium (1 mg/kg) did not affect the acute response but blunted the late increase in SRL. Pretreatment with aerosol FPL-57231 (1% w/v solution) completely blocked both the acute and late responses. These data support the hypothesis that initial release of LTD4 in the airways of sensitive animals is important for the physiologic expression of the late response.  相似文献   

11.
To clarify the effects of leukotriene C4 (LTC4) on human ciliated epithelium, ciliary activity of the ethmoid sinus mucosa was measured photoelectrically in tissue culture. At concentrations ranging from 10−6M to 10−9M, LTC4 showed minimal effects on the ciliated epithelium during the initial 30 minutes of exposure; thereafter, ciliary inhibition was observed in a concentration- and time-dependent manner. Irrigation of the mucosa with culture medium 15 minutes after exposure prevented the LTC4-induced ciliary inhibition. However, irrigation 60 minutes after exposure failed to inhibit 10−8M LTC4-induced ciliary dysfunction and mucosal damage. The LTC4-induced ciliary inhibition was blocked in the presence of FPL-55712 and/or Ly-171883, both leukotriene receptor antagonists. L-serine and sodium tetraborate complex (SBC), a γ-glutamyl transpeptidase (γ-GTP) inhibitor, also inhibited the LTC4-induced ciliary inhibition. These findings indicate that LTC4 is converted to LTD4 by γ-GTP during 60 minutes of exposure, and LTC4 itself has minimal direct effects on the ciliated cells.  相似文献   

12.
Human leukotriene A4 hydrolase/aminopeptidase (LTA4H) is a zinc metalloenzyme with a dual catalytic activity; conversion of LTA4 into LTB4 and degradation of chemotactic tripeptide Pro-Gly-Pro (PGP). Existing inhibitors, such as SC-57461A, block both catalytic activities of the enzyme, leading to drug failures. Recently, a novel compound, ARM1, was reported to selectively inhibit the hydrolase activity of LTA4H while sparing its aminopeptidase activity. However, the molecular understanding of such preferential inhibitory mechanism remains obscure. The discovery of ARM1 prompted us to further explore its binding theme and provide more insight into the structural and dual mechanistic features of LTA4H protein. To accomplish this, we embarked on wide range of computational tools, including comparative molecular dynamics (MDs) simulations and postdynamic analyses for LTA4H and in complex with ARM1, PGP, ARM1-PGP, and SC-57461A. MD analysis reveals that the binding of ARM1 exhibits a more stable active site and overall stable protein conformation when compared to the nonselective inhibitor SC-57461A. In addition, MM/GBSA-binding free energy calculation also reveals that ARM1 exhibit a lower binding affinity, when compared to the nonselective inhibitor SC-57461A – which is in a great agreement with experimental data. Per residue energy decomposition analysis showed that Phe314, Val367, Tyr378, Trp311, Pro382, and Leu369 are key residues critical for the selective inhibition of the epoxide hydrolase activity of LTA4H by ARM1. Findings from this report will not only provide more understanding into the structural, dynamic, and mechanistic features of LTA4H but would also assist toward the rational design of novel and selective hydrolase inhibitors of LTA4H as anti-inflammatory drugs.  相似文献   

13.
Previous work in our laboratory described the in vitro killing of Borrelia burgdorferi when co-cultured with saliva from adult Amblyomma americanum. Borreliacidal activity was not evident using Ixodes scapularis saliva. Mixing trypsin with saliva eliminated the borreliacidal activity of A. americanum saliva, while incorporating a trypsin inhibitor restored all borreliacidal activity, indicating this factor was of protein or peptide origin. One-dimensional PAGE indicated at least 7 major protein differences between I. scapularis and A. americanum saliva. To determine the borreliacidal factor, A. americanum saliva was fractionated by gel filtration and subsequent killing of B. burgdorferi was associated with a single fraction. Two-dimensional gel analysis indicated protein and/or peptide(s) in borreliacidal fractions running between 38 and 64 kDa. Finally, admixing saliva with the phospholipase A2 inhibitor oleyloxyethyl phosphorylcholine completely eliminated the ability of A. americanum saliva to kill B. burgdorferi. These studies indicate the borreliacidal activity found in A. americanum saliva is likely due to phospholipase A2 enzymatic activity.  相似文献   

14.
Venomous snakes such as Gloydius brevicaudus have three distinct types of phospholipase A2 inhibitors (PLIα, PLIβ, and PLIγ) in their blood so as to protect themselves from their own venom phospholipases A2 (PLA2s). Expressions of these PLIs in G. brevicaudus liver were found to be enhanced by the intramuscular injection of its own venom. The enhancement of gene expressions of PLIα and PLIβ in the liver was also found to be induced by acidic PLA2 contained in this venom. Furthermore, these effects of acidic PLA2 on gene expression of PLIs were shown to be unrelated to its enzymatic activity. These results suggest that these venomous snakes have developed the self-protective system against their own venom, by which the venom components up-regulate the expression of anti-venom proteins in their liver.  相似文献   

15.
Type-IIA secreted phospholipase A2 (sPLA2-IIA) has been proposed to play a role in the development of inflammatory diseases. It has been shown to release arachidonic acid, the precursor of proinflammatory eicosanoids, to hydrolyze phospholipids of pulmonary surfactant, and to bind to specific receptors located on cell surface membranes. However, the most established biological role of sPLA2-IIA is related to its potent bactericidal property in particular toward Gram-positive bacteria. This enzyme is present in animal and human biological fluids at concentrations sufficient to kill bacteria. Human recombinant sPLA2-IIA is able to kill Gram-positive bacteria at concentrations as low as 1.1 ng/ml. This remarkable property is due to the unique preference of sPLA2-IIA for anionic phospholipids such as phosphatidylglycerol, the main phospholipid component of bacterial membranes. Much higher concentrations of sPLA2-IIA are required for its action on host cell membranes and surfactant both of which are mainly composed by phosphatidylcholine, a poor substrate for sPLA2-IIA. Transgenic mice over-expressing human sPLA2-IIA are resistant to infection by Staphylococcus aureus, Escherichia coli, and Bacillus anthracis, the etiological agent of anthrax. Conversely, certain bacteria, such as B. anthracis, E. coli and Bordetella pertussis are able to inhibit sPLA2-IIA expression by host cells, thus highlighting a mechanism by which these bacteria can subvert the host immune system. Intranasal instillation of recombinant sPLA2-IIA protects mice from mortality caused by pulmonary anthrax. Interestingly, this protective effect was obtained even with B. anthracis strains that down-regulate the expression of endogenous sPLA2-IIA, indicating that instilled sPLA2-IIA can overcome the subversive action of B. anthracis. We conclude that sPLA2-IIA is an efficient endogenous antibiotic of the host and can play a role in host defense against pathogenic bacteria. It can be used as a therapeutic agent in adjunct with current therapy to treat bacteria resistant to multiple antibiotics.  相似文献   

16.
The molecular interaction between adenosine A2A and dopamine D2 receptors (A2ARs and D2Rs, respectively) within an oligomeric complex has been postulated to play a pivotal role in the adenosine–dopamine interplay in the central nervous system, in both normal and pathological conditions (e.g. Parkinson’s disease). While the effects of A2AR challenge on D2R functioning have been largely studied, the reverse condition is still unexplored, a fact that might have impact in therapeutics. Here, we aimed to examine in a real-time mode the D2R-mediated allosteric modulation of A2AR binding when an A2AR/D2R oligomer is established. Thus, we synthesized fluorescent A2AR agonists and evaluated, by means of a flow cytometry homogeneous no-wash assay and a real-time fluorescence resonance energy transfer (FRET)-based approach, the effects on A2AR binding of distinct antiparkinsonian drugs in current clinical use (i.e. pramipexole, rotigotine and apomorphine). Our results provided evidence for the existence of a differential D2R-mediated negative allosteric modulation on A2AR agonist binding that was oligomer-formation dependent, and with apomorphine being the best antiparkinsonian drug attenuating A2AR agonist binding. Overall, the here-developed methods were found valid to explore the ability of drugs acting on D2Rs to modulate A2AR binding, thus serving to facilitate the preliminary selection of D2R-like candidate drugs in the management of Parkinson’s disease.  相似文献   

17.
V.M. Ramesh  Su Lin  Andrew N. Webber 《BBA》2007,1767(2):151-160
The recent crystal structure of photosystem I (PSI) from Thermosynechococcus elongatus shows two nearly symmetric branches of electron transfer cofactors including the primary electron donor, P700, and a sequence of electron acceptors, A, A0 and A1, bound to the PsaA and PsaB heterodimer. The central magnesium atoms of each of the putative primary electron acceptor chlorophylls, A0, are unusually coordinated by the sulfur atom of methionine 688 of PsaA and 668 of PsaB, respectively. We [Ramesh et al. (2004a) Biochemistry 43:1369-1375] have shown that the replacement of either methionine with histidine in the PSI of the unicellular green alga Chlamydomonas reinhardtii resulted in accumulation of A0 (in 300-ps time scale), suggesting that both the PsaA and PsaB branches are active. This is in contrast to cyanobacterial PSI where studies with methionine-to-leucine mutants show that electron transfer occurs predominantly along the PsaA branch. In this contribution we report that the change of methionine to either leucine or serine leads to a similar accumulation of A0 on both the PsaA and the PsaB branch of PSI from C. reinhardtii, as we reported earlier for histidine mutants. More importantly, we further demonstrate that for all the mutants under study, accumulation of A0 is transient, and that reoxidation of A0 occurs within 1-2 ns, two orders of magnitude slower than in wild type PSI, most likely via slow electron transfer to A1. This illustrates an indispensable role of methionine as an axial ligand to the primary acceptor A0 in optimizing the rate of charge stabilization in PSI. A simple energetic model for this reaction is proposed. Our findings support the model of equivalent electron transfer along both cofactor branches in Photosystem I.  相似文献   

18.
Mutants of Saccharomyces cerevisiae defective in the late steps of ergosterol biosynthesis are viable but accumulate structurally altered sterols within the plasma membrane. Despite the significance of pleiotropic abnormalities in the erg mutants, little is known about how sterol alterations mechanically affect the membrane structure and correlate with individual mutant phenotypes. Here we demonstrate that the membrane order and occurrence of voids are determinants of membrane rigidity and hypersensitivity to a drug. Among five ergΔ mutants, the erg2Δ mutant exhibited the most marked sensitivity to cycloheximide. Notably, measurement of time-resolved anisotropy indicated that the erg2Δ mutation decreased the membrane order parameter (S), and dramatically increased the rotational diffusion coefficient (Dw) of 1-[4-(trimethylamino)pheny]-6-phenyl-1,3,5-hexatriene (TMA-DPH) in the plasma membrane by 8-fold, providing evidence for the requirement of ergosterol for membrane integrity. The IC50 of cycloheximide was closely correlated with S/Dw in these strains, suggesting that the membrane disorder and increasing occurrence of voids within the plasma membrane synergistically enhance passive diffusion of cycloheximide across the membrane. Exogenous ergosterol partially restored the membrane properties in the upc2-1erg2Δ strain. In this study, we describe the ability of ergosterol to adjust the dynamic properties of the plasma membrane, and consider the relevance of drug permeability.  相似文献   

19.
Secretory phospholipase A2 is involved in inflammatory processes and was previously shown to be inhibited by lipophilic tetracyclines such as minocycline (minoTc) and doxycycline. Lipophilic tetracyclines might be a new lead compound for the design of specific inhibitors of secretory phospholipase A2, which play a crucial role in inflammatory processes. Our X-ray crystal structure analysis at 1.65 Å resolution of the minoTc complex of phospholipase A2 (PLA2) of the Indian cobra (Naja naja naja) is the first example of nonantibiotic tetracycline interactions with a protein. MinoTc interferes with the conformation of the active-site Ca2+-binding loop, preventing Ca2+ binding, and shields the active site from substrate entrance, resulting in inhibition of the enzyme. MinoTc binding to PLA2 is dominated by hydrophobic interactions quite different from antibiotic recognition of tetracyclines by proteins or the ribosome. The affinity of minoTc for PLA2 was determined by surface plasmon resonance, resulting in a dissociation constant Kd = 1.8 × 10 4 M.  相似文献   

20.
We have monitored the composition of supported phospholipid bilayers during phospholipase A2 hydrolysis using specular neutron reflection and ellipsometry. Porcine pancreatic PLA2 shows a long lag phase of several hours during which the enzyme binds to the bilayer surface, but only 5 ± 3% of the lipids react before the onset of rapid hydrolysis. The amount of PLA2, which resides in a 21 ± 1 Å thick layer at the water-bilayer interface, as well as its depth of penetration into the membrane, increase during the lag phase, the length of which is also proportional to the enzyme concentration. Hydrolysis of a single-chain deuterium labelled d31-POPC reveals for the first time that there is a significant asymmetry in the distribution of the reaction products between the membrane and the aqueous environment. The lyso-lipid leaves the membrane while the number of PLA2 molecules bound to the interface increases with increasing fatty acid content. These results constitute the first direct measurement of the membrane structure and composition, including the location and amount of the enzyme during hydrolysis. These are discussed in terms of a model of fatty-acid mediated activation of PLA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号