首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物茎分枝的分子调控   总被引:4,自引:0,他引:4  
植物茎分枝结构决定了不同植物的不同形态结构.本文从腋生分生组织的发生、腋芽的生长两个方面综述了近年来植物分枝发生发育相关的分子机理研究及其进展.发现在不同植物中腋分生组织形成的基本机制是相似的,LS(lateral suppressor)及其同源基因在不同植物中都参与腋生分生组织的形成,而BL(blind)及其同源基因也参与调控腋生分生组织的形成.腋生分生组织的形成可能也是受激素调控的.目前,对腋芽生长的分子调控机制的认识主要集中于生长素通过二级信使的作用调控腋芽的生长.而生长素调控腋芽生长的机制已经较为清楚的有两条途径:一是生长素通过抑制细胞分裂素合成来调控腋芽的生长;另一途径是一种类胡萝卜素衍生的信号物质参与生长素的运输调控(MAX途径)来调控腋芽的生长.最新研究表明,TB1的拟南芥同源基因在MAX途径的下游负调控腋芽的生长.此外,增强表达OsNAC2也促进腋芽的生长.  相似文献   

2.
BACKGROUND: Plants achieve remarkable plasticity in shoot system architecture by regulating the activity of secondary shoot meristems, laid down in the axil of each leaf. Axillary meristem activity, and hence shoot branching, is regulated by a network of interacting hormonal signals that move through the plant. Among these, auxin, moving down the plant in the main stem, indirectly inhibits axillary bud outgrowth, and an as yet undefined hormone, the synthesis of which in Arabidopsis requires MAX1, MAX3, and MAX4, moves up the plant and also inhibits shoot branching. Since the axillary buds of max4 mutants are resistant to the inhibitory effects of apically supplied auxin, auxin and the MAX-dependent hormone must interact to inhibit branching. RESULTS: Here we show that the resistance of max mutant buds to apically supplied auxin is largely independent of the known, AXR1-mediated, auxin signal transduction pathway. Instead, it is caused by increased capacity for auxin transport in max primary stems, which show increased expression of PIN auxin efflux facilitators. The max phenotype is dependent on PIN1 activity, but it is independent of flavonoids, which are known regulators of PIN-dependent auxin transport. CONCLUSIONS: The MAX-dependent hormone is a novel regulator of auxin transport. Modulation of auxin transport in the stem is sufficient to regulate bud outgrowth, independent of AXR1-mediated auxin signaling. We therefore propose an additional mechanism for long-range signaling by auxin in which bud growth is regulated by competition between auxin sources for auxin transport capacity in the primary stem.  相似文献   

3.
4.
Cline MG  Oh C 《Annals of botany》2006,98(4):891-897
BACKGROUND AND AIMS: Evidence from pea rms1, Arabidopsis max4 and petunia dad1 mutant studies suggest an unidentified carotenoid-derived/plastid-produced branching inhibitor which moves acropetally from the roots to the shoots and interacts with auxin in the control of apical dominance. Since the plant hormone, abscisic acid (ABA), known to inhibit some growth processes, is also carotenoid derived/plastid produced, and because there has been indirect evidence for its involvement with branching, a re-examination of the role of ABA in apical dominance is timely. Even though it has been determined that ABA probably is not the second messenger for auxin in apical dominance and is not the above-mentioned unidentified branching inhibitor, the similarity of their derivation suggests possible relationships and/or interactions. METHODS: The classic Thimann-Skoog auxin replacement test for apical dominance with auxin [0.5 % naphthalene acetic acid (NAA)] applied both apically and basally was combined in similar treatments with 1 % ABA in Ipomoea nil (Japanese Morning Glory), Solanum lycopersicum (Better Boy tomato) and Helianthus annuus (Mammoth Grey-striped Sunflower). KEY RESULTS: Auxin, apically applied to the cut stem surface of decapitated shoots, strongly restored apical dominance in all three species, whereas the similar treatment with ABA did not. However, when ABA was applied basally, i.e. below the lateral bud of interest, there was a significant moderate repression of its outgrowth in Ipomoea and Solanum. There was also some additive repression when apical auxin and basal ABA treatments were combined in Ipomoea. CONCLUSION: The finding that basally applied ABA is able partially to restore apical dominance via acropetal transport up the shoot suggests possible interactions between ABA, auxin and the unidentified carotenoid-derived branching inhibitor that justify further investigation.  相似文献   

5.
Plants continuously extend their root and shoot systems through the action of meristems at their growing tips. By regulating which meristems are active, plants adjust their body plans to suit local environmental conditions. The transport network of the phytohormone auxin has been proposed to mediate this systemic growth coordination, due to its self-organising, environmentally sensitive properties. In particular, a positive feedback mechanism termed auxin transport canalization, which establishes auxin flow from active shoot meristems (auxin sources) to the roots (auxin sinks), has been proposed to mediate competition between shoot meristems and to balance shoot and root growth. Here we provide strong support for this hypothesis by demonstrating that a second hormone, strigolactone, regulates growth redistribution in the shoot by rapidly modulating auxin transport. A computational model in which strigolactone action is represented as an increase in the rate of removal of the auxin export protein, PIN1, from the plasma membrane can reproduce both the auxin transport and shoot branching phenotypes observed in various mutant combinations and strigolactone treatments, including the counterintuitive ability of strigolactones either to promote or inhibit shoot branching, depending on the auxin transport status of the plant. Consistent with this predicted mode of action, strigolactone signalling was found to trigger PIN1 depletion from the plasma membrane of xylem parenchyma cells in the stem. This effect could be detected within 10 minutes of strigolactone treatment and was independent of protein synthesis but dependent on clathrin-mediated membrane trafficking. Together these results support the hypothesis that growth across the plant shoot system is balanced by competition between shoot apices for a common auxin transport path to the root and that strigolactones regulate shoot branching by modulating this competition.  相似文献   

6.
Sylleptic branches grow out from lateral buds during the same growing season in which the buds are formed. This type of branching is present in poplar and in many tropical species. It results in the production of more branches, more leaves and expanded photosynthetic capacity and is thought to assist in increasing the overall growth and biomass of the tree at a young age. However, very little is known about the physiology of sylleptic branching in poplar, which is an extremely important source of fibre and fuel. In the present study of three hybrid poplar clones (11-11, 47-174 and 49-177) of Populus trichocarpa x P. deltoides exhibiting contrasting degrees of sylleptic branching, an analysis was carried out on parent shoot elongation and sylleptic branching, together with a preliminary comparison of the parent shoots' sensitivity to auxin (naphthaleneacetic acid) as a repressor of lateral bud outgrowth, and cytokinin (benzyladenine) as a promoter. Suggestive evidence was found for an inverse correlation between parent shoot sensitivity to auxin and the degree of sylleptic branching, as well as a partially positive correlation with respect to sensitivity to cytokinin. The present data are consistent with the hypothesis that auxin and cytokinin may play repressive and promotive roles, respectively, in the sylleptic branching of hybrid poplar.  相似文献   

7.
Regulation of shoot branching by auxin   总被引:14,自引:0,他引:14  
The idea that apically derived auxin inhibits shoot branching by inhibiting the activity of axillary buds was first proposed 70 years ago, but it soon became clear that its mechanism of action was complex and indirect. Recent advances in the study of axillary bud development and of auxin signal transduction are allowing a better understanding of the role of auxin in controlling shoot branching. These studies have identified a new role for auxin early in bud development as well as some of the second messengers involved in mediating the branch-inhibiting effects of auxin.  相似文献   

8.
9.
The objectives of this research were to identify auxin gene, AUX1, and to determine the plant auxin content and their role in conferring branching on Kenaf. PCR analysis using AUX1 primer capable to amplify the DNA of non branching (KR11) and branching kenaf mutant, resulting in 800 bp PCR product. The sequence of the PCR product showed high degree of homology with the sequence of AUX1 gene of other plants in the NCBI GenBank database, confirming kenaf possession of the gene AUX1. However, some variation on the DNA sequence was found between branching and non branching phenotype indicated allele differences of the same gene which were responsible for the variation in the type of branching. Identification of auxin content in the roots, apical shoot, and axillary branches using spectrophotometry method showed that the branching plant has higher auxin content in the apical shoot compared to the content in the branches. This indicate that AUX1 controls the formation of branches by controlling either the content of auxin in the apical shoot and branches, or the ratio of auxin content in the shoot and branches.  相似文献   

10.
植物激素对分枝发育的协同调控作用研究进展   总被引:4,自引:0,他引:4  
植物分枝与其适应环境、生存竞争能力及产量形成密切相关。近年的研究表明植物激素信号在调控植物分枝发育过程中起关键作用。文章主要介绍了生长素、细胞分裂素以及独脚金内酯协同调控植物分枝发育的研究进展,为深入了解植物分枝发育的调控机制提供参考。  相似文献   

11.
The ramosus (rms) mutation (rms1) of pea (Pisum sativum) causes increased branching through modification of graft-transmissible signal(s) produced in rootstock and shoot. Additional grafting techniques have led us to propose that the novel signal regulated by Rms1 moves acropetally in shoots and acts as a branching inhibitor. Epicotyl interstock grafts showed that wild-type (WT) epicotyls grafted between rms1 scions and rootstocks can revert mutant scions to a WT non-branching phenotype. Mutant scions grafted together with mutant and WT rootstocks did not branch despite a contiguous mutant root-shoot system. The primary action of Rms1 is, therefore, unlikely to be to block transport of a branching stimulus from root to shoot. Rather, Rms1 may influence a long-distance signal that functions, directly or indirectly, as a branching inhibitor. It can be deduced that this signal moves acropetally in shoots because WT rootstocks inhibit branching in rms1 shoots, and although WT scions do not branch when grafted to mutant rootstocks, they do not inhibit branching in rms1 cotyledonary shoots growing from the same rootstocks. The acropetal direction of transport of the Rms1 signal supports previous evidence that the rms1 lesion is not in an auxin biosynthesis or transport pathway. The different branching phenotypes of WT and rms1 shoots growing from the same rms1 rootstock provides further evidence that the shoot has a major role in the regulation of branching and, moreover, that root-exported cytokinin is not the only graft-transmissible signal regulating branching in intact pea plants.  相似文献   

12.
13.
14.
Auxin, cytokinin and the control of shoot branching   总被引:3,自引:0,他引:3  
Müller D  Leyser O 《Annals of botany》2011,107(7):1203-1212
BACKGROUND: It has been known for many decades that auxin inhibits the activation of axillary buds, and hence shoot branching, while cytokinin has the opposite effect. However, the modes of action of these two hormones in branching control is still a matter of debate, and their mechanisms of interaction are equally unresolved. SCOPE: Here we review the evidence for various hypotheses that have been put forward to explain how auxin and cytokinin influence axillary bud activity. In particular we discuss the roles of auxin and cytokinin in regulating each other's synthesis, the cell cycle, meristem function and auxin transport, each of which could affect branching. These different mechanisms have implications for the main site of hormone action, ranging from systemic action throughout the plant, to local action at the node or in the bud meristem or leaves. The alternative models have specific predictions, and our increasing understanding of the molecular basis for hormone transport and signalling, cell cycle control and meristem biology is providing new tools to enable these predictions to be tested.  相似文献   

15.
Hormonal control of shoot branching   总被引:13,自引:1,他引:12  
Shoot branching is the process by which axillary buds, located on the axil of a leaf, develop and form new flowers or branches. The process by which a dormant bud activates and becomes an actively growing branch is complex and very finely tuned. Bud outgrowth is regulated by the interaction of environmental signals and endogenous ones, such as plant hormones. Thus these interacting factors have a major effect on shoot system architecture. Hormones known to have a major influence are auxin, cytokinin, and a novel, as yet chemically undefined, hormone. Auxin is actively transported basipetally in the shoot and inhibits bud outgrowth. By contrast, cytokinins travel acropetally and promote bud outgrowth. The novel hormone also moves acropetally but it inhibits bud outgrowth. The aim of this review is to integrate what is known about the hormonal control of shoot branching in Arabidopsis, focusing on these three hormones and their interactions.  相似文献   

16.
对独脚金内酯(strigolactones,SLs)调控植物侧枝发育的分子机制及其与生长素相互作用的相关研究结果进行了总结和归纳,在此基础上提出今后的重点研究方向。相关的研究结果显示:在拟南芥[Arabidops~thaliana(Linn.)Heynh.]、豌豆(Pisum sativum Linn.)和水稻(Oryza sativa Linn.)等植物多枝突变体中SLs作为可转导信号参与侧枝发育的分子调控,从这些植物中已克隆获得参与SLs生物合成及信号应答途径的一些基因。作为一种植物激素,SLs在侧枝发育调控网络中与生长素相互作用;腋芽发育与其中生长素的输出密切相关,SLs通过调控芽中生长素的输出间接抑制腋芽发育和侧枝生长,而生长素则在SLs生物合成中起调节作用。  相似文献   

17.
PINOID, a serine threonine protein kinase in Arabidopsis, controls auxin distribution through a positive control of subcellular localization of PIN auxin efflux carriers. Compared with the rapid progress in understanding mechanisms of auxin action in dicot species, little is known about auxin action in monocot species. Here, we describe the identification and characterization of OsPID, the PINOID ortholog of rice. Phylogenetic analysis showed that the rice genome contains a single PID ortholog, OsPID. Constitutive overexpression of OsPID caused a variety of abnormalities, such as delay of adventitious root development, curled growth of shoots and agravitropism. Abnormalities observed in the plants that overexpress OsPID could be phenocopied by treatment with an inhibitor of active polar transport of auxin, indicating that OsPID could be involved in the control of polar auxin transport in rice. Analysis of OsPID mRNA distribution showed a complex pattern in shoot meristems, indicating that it probably plays a role in the pattern formation and organogenesis in the rice shoot.  相似文献   

18.
A role for auxin in the regulation of shoot branching was described originally in the Thimann and Skoog model, which proposes that apically derived auxin is transported basipetally directly into the axillary buds, where it inhibits their growth. Subsequent observations in several species have shown that auxin does not enter axillary buds directly. We have found similar results in Arabidopsis. Grafting studies indicated that auxin acts in the aerial tissue; hence, the principal site of auxin action is the shoot. To delineate the site of auxin action, the wild-type AXR1 coding sequence, which is required for normal auxin sensitivity, was expressed under the control of several tissue-specific promoters in the auxin-resistant, highly branched axr1-12 mutant background. AXR1 expression in the xylem and interfascicular schlerenchyma was found to restore the mutant branching to wild-type levels in both intact plants and isolated nodes, whereas expression in the phloem did not. Therefore, apically derived auxin can suppress branching by acting in the xylem and interfascicular schlerenchyma, or in a subset of these cells.  相似文献   

19.
Root architecture is a crucial part of plant adaptation to soil heterogeneity and is mainly controlled by root branching. The process of root system development can be divided into two successive steps: lateral root initiation and lateral root development/emergence which are controlled by different fluxes of the plant hormone auxin. While shoot architecture appears to be highly regular, following rules such as the phyllotactical spiral, root architecture appears more chaotic. We used stochastic modeling to extract hidden rules regulating root branching in Arabidopsis thaliana. These rules were used to build an integrative mechanistic model of root ramification based on auxin. This model was experimentally tested using plants with modified rhythm of lateral root initiation or mutants perturbed in auxin transport. Our analysis revealed that lateral root initiation and lateral root development/emergence are interacting with each other to create a global balance between the respective ratio of initiation and emergence. A mechanistic model based on auxin fluxes successfully predicted this property and the phenotype alteration of auxin transport mutants or plants with modified rhythms of lateral root initiation. This suggests that root branching is controlled by mechanisms of lateral inhibition due to a competition between initiation and development/emergence for auxin.  相似文献   

20.
Apical dominance is the control exerted by the shoot apex over lateral bud outgrowth. The concepts and terminology associated with apical dominance as used by various plant scientists sometimes differ, which may lead to significant misconceptions. Apical dominance and its release may be divided into four developmental stages: (I) lateral bud formation, (II) imposition of inhibition on lateral bud growth, (III) release of apical dominance following decapitation, and (IV) branch shoot development. Particular emphasis is given to discriminating between Stage III, which is accompanied by initial bud outgrowth during the first few hours of release and may be promoted by cytokinin and inhibited by auxin, and Stage IV, which is accompanied by subsequent bud outgrowth occurring days or weeks after decapitation and which may be promoted by auxin and gibberellin. The importance of not interpreting data measured in Stage IV on the basis of conditions and processes occurring in Stage III is discussed as well as the correlation between degree of branching and endogenous auxin content, branching mutants, the quantification of apical dominance in various species (including Arabidopsis ), and apical control in trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号