首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Plasmodium falciparum adenylosuccinate synthetase, a homodimeric enzyme, contains 10 cysteine residues per subunit. Among these, Cys250, Cys328 and Cys368 lie at the dimer interface and are not conserved across organisms. PfAdSS has a positively charged interface with the crystal structure showing additional electron density around Cys328 and Cys368. Biochemical characterization of site directed mutants followed by equilibrium unfolding studies permits elucidation of the role of interface cysteines and positively charged interface in dimer stability. Mutation of interface cysteines, Cys328 and Cys368 to serine, perturbed the monomer-dimer equilibrium in the protein with a small population of monomer being evident in the double mutant. Introduction of negative charge in the form of C328D mutation resulted in stabilization of protein dimer as evident by size exclusion chromatography at high ionic strength buffer and equilibrium unfolding in the presence of urea. These observations suggest that cysteines at the dimer interface of PfAdSS may indeed be charged and exist as thiolate anion.  相似文献   

2.
In the absence of the de novo purine nucleotide biosynthetic pathway in parasitic protozoa, purine salvage is of primary importance for parasite survival. Enzymes of the salvage pathway are, therefore, good targets for anti-parasitic drugs. Adenylosuccinate synthetase (AdSS), catalysing the first committed step in the synthesis of AMP from IMP, is a potential target for anti-protozoal chemotherapy. We report here the crystal structure of adenylosuccinate synthetase from the malaria parasite, Plasmodium falciparum, complexed to 6-phosphoryl IMP, GDP, Mg2+ and the aspartate analogue, hadacidin at 2 A resolution. The overall architecture of P. falciparum AdSS (PfAdSS) is similar to the known structures from Escherichia coli, mouse and plants. Differences in substrate interactions seen in this structure provide a plausible explanation for the kinetic differences between PfAdSS and the enzyme from other species. Additional hydrogen bonding interactions of the protein with GDP may account for the ordered binding of substrates to the enzyme. The dimer interface of PfAdSS is also different, with a pronounced excess of positively charged residues. Differences highlighted here provide a basis for the design of species-specific inhibitors of the enzyme.  相似文献   

3.
Mehrotra S  Balaram H 《Biochemistry》2007,46(44):12821-12832
Adenylosuccinate synthetase (AdSS) catalyzes the Mg2+ dependent condensation of a molecule of IMP with aspartate to form adenylosuccinate, in a reaction driven by the hydrolysis of GTP to GDP. AdSS from the thermophilic archaea, Methanocaldococcus jannaschii (MjAdSS) is 345 amino acids long against an average length of 430-457 amino acids for most mesophilic AdSS. This short AdSS has two large deletions that map to the middle and C-terminus of the protein. This article discusses the detailed kinetic characterization of MjAdSS. Initial velocity and product inhibition studies, carried out at 70 degrees C, suggest a rapid equilibrium random AB steady-state ordered C kinetic mechanism for the MjAdSS catalyzed reaction. AdSS are known to exhibit monomer-dimer equilibrium with the dimer being implicated in catalysis. In contrast, our studies show that MjAdSS is an equilibrium mixture of dimers and tetramers with the tetramer being the catalytically active form. The tetramer dissociates into dimers with a minor increase in ionic strength of the buffer, while the dimer is extremely stable and does not dissociate even at 1.2 M NaCl. Phosphate, a product of the reaction, was found to be a potent inhibitor of MjAdSS showing biphasic inhibition of enzyme activity. The inhibition was competitive with IMP and noncompetitive with GTP. MjAdSS, like the mouse acidic isozyme, exhibits substrate inhibition, with IMP inhibiting enzyme activity at subsaturating GTP concentrations. Regulation of enzyme activity by the glycolytic intermediate, fructose 1,6 bisphosphate, was also observed with the inhibition being competitive with IMP and noncompetitive against GTP.  相似文献   

4.
Vertebrates have muscle and non-muscle isozymes of adenylosuccinate synthetase (AdSS, EC 6.3.4.4), which catalyzes the first committed step in AMP synthesis. A novel muscle isozyme of adenylosuccinate synthetase, human AdSSL1, is identified from human bone marrow stromal cells. AdSSL1 is 98% identical to mouse muscle type AdSS1 and contains conserved sequence and structural features of adenylosuccinate synthetase. Human AdSSL1 gene is mapped to chromosome 14p32.33. After stimulation, leukemia cells express AdSSL1 in a time-dependent manner different from that of non-muscle adenylosuccinate synthetase. The human AdSSL1 is predominantly expressed in skeletal muscle and cardiac tissue consistent with the potential role for the enzyme in muscle metabolism. Overexpressed AdSSL1 protein in COS-7 cells locates in cytoplasm. Recombinant AdSSL1 protein possesses typical enzymatic activity to catalyze adenylosuccinate formation. The identification of human AdSSL1 with predominant expression in muscle tissue will facilitate future genetic and biochemical analysis of the enzyme in muscle physiology. (Mol Cell Biochem 269: 85–94, 2005)  相似文献   

5.
The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.  相似文献   

6.
B F Cooper  H J Fromm  F B Rudolph 《Biochemistry》1986,25(23):7323-7327
The kinetic mechanism of rat muscle adenylosuccinate synthetase was studied by determining the rates of isotope exchange at equilibrium. A random sequential binding mechanism was indicated for both the forward and reverse reactions. Aspartate, adenylosuccinate, GDP, and Pi were determined to bind in rapid equilibrium. GTP exchanges with both GDP and Pi at the same rate, which is similar to the exchange rate of IMP with adenylosuccinate. Aspartate exchanges with adenylosuccinate at a higher rate than does IMP over the range of concentrations tested. The slower IMP and GTP exchange rates suggest a forward binding mechanism containing a preferred path in which the quaternary complex is most often formed by aspartate binding to the E-GTP-IMP complex. This preferred path is consistent with an interaction between IMP and GTP in the absence of aspartate as determined by isotope scrambling experiments [Bass, M. B., Fromm, H. J., & Rudolph, F. B. (1984) J. Biol. Chem. 259, 12330-12333]. However, the products of such an interaction are tightly bound to the enzyme as no partial exchange reactions between adenylosuccinate and aspartate in the presence or absence of Pi were detected.  相似文献   

7.
Adenylosuccinate synthetases from different sources contain an N-terminal glycine-rich sequence GDEGKGK, which is homologous to the conserved sequence GXXXXGK found in many other guanine nucleotide-binding proteins or enzymes. To determine the role of this sequence in the structure and function of Escherichia coli adenylosuccinate synthetase, site-directed mutagenesis was performed to generate five mutant enzymes: G12V (Gly12----Val), G15V (Gly15----Val), G17V (Gly17----Val), K18R (Lys18----Arg), and I19T (Ile19----Thr). Comparison of the kinetic properties of the wild-type enzyme and those of the mutant enzymes revealed that the sequence is critical for enzyme activity. Replacement of Gly12, Gly15, or Gly17 with Val, or replacement of Lys18 with Arg, resulted in significant decreases in the kcat/Km values of the enzyme. Because the consensus sequence GXXXXGK(T/S) has been found in many GTP-binding proteins, isoleucine at position 19 in the E. coli adenylosuccinate synthetase was changed to threonine to produce the sequence GDEGKGKT. This mutation, which more closely resembles the consensus sequence, resulted in a 160-fold increase in the Km value for substrate GTP; however, there were no great changes for the other two substrates, IMP and aspartate. Based on these data, we suggest that the N-terminal glycinerich sequence in E. coli adenylosuccinate synthetase plays a more important role in enzyme catalysis than in substrate binding. In addition, a hydrophobic amino acid residue such as isoleucine, leucine, or valine, rather than threonine, may play a critical role in GTP binding in adenosuccinate synthetase. These findings suggest that the glycine-rich sequence in adenylosuccinate synthetase functions differently relative to those in other GTP binding proteins or enzymes.  相似文献   

8.
Adenylosuccinate synthetase (AdSS) is an enzyme at regulatory point of purine metabolism. In pathogenic organisms which utilise only the purine salvage pathway, AdSS asserts itself as a promising drug target. One of these organisms is Helicobacter pylori, a wide-spread human pathogen involved in the development of many diseases. The rate of H. pylori antibiotic resistance is on the increase, making the quest for new drugs against this pathogen more important than ever. In this context, we describe here the properties of H. pylori AdSS. This enzyme exists in a dimeric active form independently of the presence of its ligands. Its narrow stability range and pH-neutral optimal working conditions reflect the bacterium’s high level of adaptation to its living environment. Efficient inhibition of H. pylori AdSS with hadacidin and adenylosuccinate gives hope of finding novel drugs that aim at eradicating this dangerous pathogen.  相似文献   

9.
Inosine triphosphate pyrophosphatases, which are ubiquitous house-cleaning enzymes, hydrolyze noncanonical nucleoside triphosphates (inosine triphosphate (ITP) and xanthosine triphosphate (XTP)) and prevent the incorporation of hypoxanthine or xanthine into nascent DNA or RNA. Here we present the 1.5-Å-resolution crystal structure of the inosine triphosphate pyrophosphatase RdgB from Escherichia coli in a free state and in complex with a substrate (ITP + Ca2 +) or a product (inosine monophosphate (IMP)). ITP binding to RdgB induced a large displacement of the α1 helix, closing the enzyme active site. This positions the conserved Lys13 close to the bridging oxygen between the α- and β-phosphates of the substrate, weakening the Pα-O bond. On the other side of the substrate, the conserved Asp69 is proposed to act as a base coordinating the catalytic water molecule. Our data provide insight into the molecular mechanisms of the substrate selectivity and catalysis of RdgB and other ITPases.  相似文献   

10.
11.
Chemical modification of adenylosuccinate synthetase from Escherichia coli with phenylglyoxal resulted in an inhibition of enzyme activity with a second-order rate constant of 13.6 M-1 min-1. The substrates, GTP or IMP, partially protected the enzyme against inactivation by the chemical modification. The other substrate, aspartate, had no such effect even at a high concentration. In the presence of both IMP and GTP during the modification, nearly complete protection of the enzyme against inactivation was observed. Stoichiometry studies with [7-14C]phenylglyoxal showed that only 1 reactive arginine residue was modified by the chemical reagent and that this arginine residue could be shielded by GTP and IMP. Sequence analysis of tryptic peptides indicated that Arg147 is the site of phenylglyoxal chemical modification. This arginine has been changed to leucine by site-directed mutagenesis. The mutant enzyme (R147L) showed increased Michaelis constants for IMP and GTP relative to the wild-type system, whereas the Km for aspartate exhibited a modest decrease as compared with the native enzyme. In addition, kcat of the R147L mutant decreased by a factor of 1.3 x 10(4). On the bases of these observations, it is suggested that Arg147 is critical for enzyme catalysis.  相似文献   

12.

Background

Development of the mathematical models that adequately describe biochemical reactions and molecular-genetic mechanisms is one of the most important tasks in modern bioinformatics. Because the enzyme adenylosuccinate synthetase (AdSS) has long been extensively studied, a wealth of kinetic data has been accumulated.

Results

We describe a mathematical model for the reaction catalyzed by AdSS. The model's parameters were fitted to experimental data obtained from published literature. The advantage of our model is that it includes relationships between the reaction rate, the concentrations of three substrates (GTP, IMP and ASP), the effects of five inhibitors (GMP, GDP, AMP, ASUC and SUCC), and the influence of Mg2+ ions.

Conclusion

Our model describes the reaction catalyzed by AdSS as a fully random process. The model structure implies that each of the inhibitors included in it is only competitive to one of the substrates. The model was tested for adequacy using experimental data published elsewhere. The values obtained for the parameters are as follows: V max = 1.35·10-3 mM/min, Km GTP = 0.023 mM, Km IMP = 0.02 mM, Km ASP = 0.3 mM, Ki GMP = 0.024 mM, Ki GDP = 8·10-3 mM, Ki AMP = 0.01 mM, Ki ASUC = 7.5·10-3 mM, Ki SUCC = 8 mM, Km Mg = 0.08 mM.  相似文献   

13.
AdeH and adeI are two auxotrophic mutants of Chinese hamster ovary (CHO-K1) cells which specifically require adenine as the purine source to grow. The enzymatic defects of these mutants were examined in cell-free extracts. It was found that adeH did not have any detectable adenylosuccinate synthetase activity and adeI was defective in the adenylosuccinate lyase enzyme. The relevance of adenine-requiring mutants to the study of the regulation of purine metabolism in mammalian cells is discussed.This work was supported by research grants from the National Institute of Aging (AG00029) and the National Foundation, March of Dimes (1-423), and by a contract from the Center for Toxicological Research, Food and Drug Administration (72-213). David Patterson is a recipient of a Research Career Development Award from the National Institute of Arthritis, Metabolic and Digestive Diseases (AM00044).Contribution (No. 218) from the Eleanor Roosevelt Institute for Cancer Research.  相似文献   

14.
Dissociation constants of Escherichia coli adenylosuccinate synthetase with IMP, GTP, adenylosuccinate, and AMP (a competitive inhibitor for IMP) were determined by measuring the extent of quenching of the intrinsic tryptophan fluorescence of the enzyme. The enzyme has one binding site for each of these ligands. Aspartate and GDP did not quench the fluorescence to any great extent, and their dissociation constants could not be determined. These ligand binding studies were generally supportive of the kinetic mechanism proposed earlier for the enzyme. Cys291 was modified with the fluorescent chromophores N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonate and tetramethylrhodamine maleimide in order to measure enzyme conformational changes attending ligand binding. The excitation and emission spectra of these fluorophores are not altered by the addition of active site binding ligands. TbGTP and TbGDP were used as native reporter groups, and changes in their fluorescence on complexing with the enzyme and various ligands made it possible to detect conformational changes occurring at the active site. Evidence is presented for abortive complexes of the type: enzyme-TbGTP-adenylosuccinate and enzyme-TbGTP-adenylosuccinate-aspartate. These results suggest that the IMP and aspartate binding sites are spatially separated.  相似文献   

15.
Studies have been made of the regulation of the synthesis of six purine biosynthetic enzymes: P-ribosyl-PP amidotransferase (I), P-ribosyl glycinamide synthetase (II), P-ribosyl formyl glycinamide amidotransferase (IV), adenylosuccinate lyase (VIII-IIA), adenylosuccinate synthetase (IA), and IMP dehydrogenase (IG). Wild type Aerobacter aerogenes and two purine requiring mutants derived from it, were grown with limiting or excess adenine or guanine, cell extracts prepared, and enzyme activities measured.  相似文献   

16.
Nonstandard nucleotide triphosphate pyrophosphatase (NTPase) can efficiently hydrolyze nonstandard purine nucleotides in the presence of divalent cations. The crystal structures of the NTPase from Pyrococcus horikoshii OT3 (PhNTPase) have been determined in two unliganded forms and in three liganded forms with inosine 5′-monophosphate (IMP), ITP and Mn2+, which visualize the recognition of these ligands unambiguously. The overall structure of PhNTPase is similar to that of previously reported crystal structures of the NTPase from Methanococcus jannaschii and the human ITPase. They share a similar protomer folding with two domains and a similar homodimeric quaternary structure. The dimeric interface of NTPase is well conserved, and the dimeric state might be important to constitute the active site of this enzyme. A conformational analysis of the five snapshots of PhNTPase structures using the multiple superposition method reveals that IMP, ITP and Mn2+ bind to the active site without inducing large local conformational changes, indicating that a combination of interdomain and interprotomer rigid-body shifts mainly describes the conformational change of PhNTPase. The interdomain and interprotomer conformations of the ITP liganded form are essentially the same as those observed in the unliganded form 1, indicating that ITP binding to PhNTPase in solution may follow the selection mode in which ITP binds to the subunit that happens to be in the conformation observed in the unliganded form 1. In contrast to the human ITPase inducing a large domain closure upon ITP binding, the interdomain active site cleft is generally closed in PhNTPase and only the IMP binding form shows a remarkable domain opening by 14° only in the B subunit. The interprotomer rigid-body rotation of PhNTPase has a tendency to keep the dimeric 2-fold symmetry, which is also true in human ITPase, thereby suggesting its relevance to the positive cooperativity of the dimeric NTPases. The exception of this rule is observed in the IMP liganded form in which the dimeric 2-fold symmetry is broken by a 3° interprotomer rotation in an unusual direction. A combination of the exceptional interdomain and interprotomer relocations is most likely the reason for the observed asymmetric IMP binding that might be necessary for PhNTPase to release the reaction product IMP.  相似文献   

17.
The glutathione S-transferase from Plasmodium falciparum presents distinct features which are absent from mammalian GST isoenzyme counterparts. Most apparent among these are the ability to tetramerize and the presence of a flexible loop. The loop, situated between the 113–119 residues, has been reported necessary for the tetramerization process. In this article, we report that a residue outside of this loop, Asn112, is a key to the process — to the point where the single Asn112Leu mutation prevents tetramerization altogether. We propose that a structural pattern involving the interaction of the Asn112 and Lys117 residues from two neighboring subunits plays a role in keeping the tetramer structure stable. We also report that, for the tetramerization of the wild-type PfGST to occur, phosphate or pyrophosphate anions must be present. In other words, tetramerization is a phosphate- or pyrophosphate-induced process. Furthermore, the presence of magnesium reinforces this induction. We present experimental evidence for these claims as well as a preliminary calorimetric and kinetic study of the dimeric Asn112Leu PfGST mutant. We also propose a putative binding site for phosphate or pyrophosphate anions through a comparative structural analysis of PfGST and pyrophosphatases from several organisms. Our results highlight the differences between PfGST and the human isoenzymes, which make the parasite enzyme a suitable antimalarial target.  相似文献   

18.
The enzyme adenylosuccinate (sAMP) synthetase has been partially purified from Dictyostelium discoideum using hadacidin-Sepharose 4B affinity chromatography, anion-exchange high-performance liquid chromatography (HPLC), and gel-filtration HPLC, resulting in a 2600-fold purification. Using a newly developed HPLC procedure to assay activity, it has been found that D. discoideum adenylosuccinate synthetase activity has apparent Km values for the substrates IMP, GTP, and aspartate of 36, 23, and 714 microM, respectively. The analog guanosine-5'-(beta, gamma-imino)triphosphate was found to be an inhibitor of GTP with a Ki of 15 microM, and IMP was competitively inhibited by its analog formycin B monophosphate with a Ki of 80 microM. An analysis of these kinetic data showed a pattern consistent with a fully random terter mechanism. Hadacidin, an analog of aspartate, was an inhibitor of that substrate at 86 microM. Other analogs of hadacidin were synthesized and examined for their effect on the sAMP synthetase activity. Compared to hadacidin, which produced 100% inhibition at 5 mM, it was observed that N-acetyl-N-hydroxyglycine, N-formylglycine, N-acetylglycine, and N-hydroxyglycine all inhibited between 50 and 75%, with N-(thiocarboxy)-L-aspartic anhydride less effective at 27%, and N-benzoylglycine at only 6%. N-Formylsarcosine, N-acetylmethionine, O-methylpyruvate oxime, and hadacidin methylester had no effect at this concentration. The adenylosuccinate synthetase activity was dependent on metal ions with maximum activity being obtained with Mg2+. The ability of the aspartate analog hadacidin to bind to the purified adenylosuccinate synthetase was demonstrated using anion-exchange HPLC and [formyl-14C]hadacidin. The radioactivity coeluted with the adenylosuccinate synthetase and the bound, radiolabeled hadacidin was displaced by excess aspartate.  相似文献   

19.
Adenylosuccinate lyase (ADL) catalyzes the breakdown of 5-aminoimidazole- (N-succinylocarboxamide) ribotide (SAICAR) to 5-aminoimidazole-4-carboxamide ribotide (AICAR) and fumarate, and of adenylosuccinate (ADS) to adenosine monophosphate (AMP) and fumarate in the de novo purine biosynthetic pathway. ADL belongs to the argininosuccinate lyase (ASL)/fumarase C superfamily of enzymes. Members of this family share several common features including: a mainly alpha-helical, homotetrameric structure; three regions of highly conserved amino acid residues; and a general acid-base catalytic mechanism with the overall beta-elimination of fumarate as a product. The crystal structures of wild-type Escherichia coli ADL (ec-ADL), and mutant-substrate (H171A-ADS) and -product (H171N-AMP.FUM) complexes have been determined to 2.0, 1.85, and 2.0 A resolution, respectively. The H171A-ADS and H171N-AMP.FUM structures provide the first detailed picture of the ADL active site, and have enabled the precise identification of substrate binding and putative catalytic residues. Contrary to previous suggestions, the ec-ADL structures implicate S295 and H171 in base and acid catalysis, respectively. Furthermore, structural alignments of ec-ADL with other superfamily members suggest for the first time a large conformational movement of the flexible C3 loop (residues 287-303) in ec-ADL upon substrate binding and catalysis, resulting in its closure over the active site. This loop movement has been observed in other superfamily enzymes, and has been proposed to be essential for catalysis. The ADL catalytic mechanism is re-examined in light of the results presented here.  相似文献   

20.
Many studies have reported the role of xeroderma pigmentosum group D (XPD) with prostate cancer risk, but the results remained controversial. To derive a more precise estimation of the relationship, a meta-analysis was performed. Odds ratios (ORs) with 95% confidence intervals (CIs) were estimated to assess the association between XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk. A total of 8 studies including 2620 cases and 3225 controls described Asp312Asn genotypes, among which 10 articles involving 3230 cases and 3582 controls described Lys751Gln genotypes and were also involved in this meta-analysis. When all the eligible studies were pooled into this meta-analysis, a significant association between prostate cancer risk and XPD Asp312Asn polymorphism was found. For Asp312Asn polymorphism, in the stratified analysis by ethnicity and source of controls, prostate cancer risk was observed in co-dominant, dominant and recessive models, while no evidence of any associations of XPD Lys751Gln polymorphism with prostate cancer was found in the overall or subgroup analyses. Our meta-analysis supports that the XPD Asp312Asn polymorphism contributed to the risk of prostate cancer from currently available evidence. However, a study with a larger sample size is needed to further evaluate gene–environment interaction on XPD Asp312Asn and Lys751Gln polymorphisms and prostate cancer risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号