首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Dystrophin and its associated proteins were originally identified in skeletal muscle, where the complex provides mechanical stabilization to the sarcolemma during contraction. However, the dystrophin complex is also present at membrane specializations in many non-muscle cells, including synaptic sites in neurons. The function of the dystrophin complex at these sites is still unknown, but emerging results suggest that the dystrophin complex can function as a scaffold for signaling proteins. In this review, we examine the growing body of evidence that suggests the dystrophin complex may have a dual function: membrane stabilization and transmembrane signaling. We focus on the role of two dystrophin-associated proteins, syntrophin and dystrobrevin, in the formation of a signaling scaffold and review evidence suggesting a role in synapse formation and maintenance.  相似文献   

3.
Cytolinkers are giant proteins that can stabilize cells by linking actin filaments, intermediate filaments, and microtubules (MTs) to transmembrane complexes. Dystrophin is functionally similar to cytolinkers, as it links the multiple components of the cellular cytoskeleton to the transmembrane dystroglycan complex. Although no direct link between dystrophin and MTs has been documented, costamere-associated MTs are disrupted when dystrophin is absent. Using tissue-based cosedimentation assays on mice expressing endogenous dystrophin or truncated transgene products, we find that constructs harboring spectrinlike repeat 24 through the first third of the WW domain cosediment with MTs. Purified Dp260, a truncated isoform of dystrophin, bound MTs with a Kd of 0.66 µM, a stoichiometry of 1 Dp260/1.4 tubulin heterodimer at saturation, and stabilizes MTs from cold-induced depolymerization. Finally, α- and β-tubulin expression is increased ∼2.5-fold in mdx skeletal muscle without altering the tubulin–MT equilibrium. Collectively, these data suggest dystrophin directly organizes and/or stabilizes costameric MTs and classifies dystrophin as a cytolinker in skeletal muscle.  相似文献   

4.
 Dystrophin is an actin-binding protein of the membrane cytoskeleton that binds to dystroglycan, an integral membrane protein of the plasma membrane that is posttranslationally cleaved into a transmembrane dystrophin-binding β-moiety and an extracellular laminin- and agrin-binding α-moiety. Mutations of dystrophin may not only cause Duchenne muscular dystrophy but may also be associated with abnormal electroretinograms assumed to result from disturbed neurotransmission between retinal photoreceptors and bipolar cells. Here we show by confocal laser microscopy and immunogold electron microscopy that dystrophin and β-dystroglycan are colocalized in bovine rod photoreceptor synaptic complexes distal from the ribbon-containing active synaptic zones. Both proteins are restricted to a microdomain of the photoreceptor plasma membrane that forms the lateral wall of the synaptic cavity and projects with finger-like extensions into the postsynaptic dendritic complex. Within the cavity these processes eventually come into close contact with bipolar cell dendritic endings. We speculate that the dystrophin-dystroglycan complex of the cavital plasma membrane stabilizes the elaborate synaptic morphology or plays a role in the immobilization of still unknown transporters and receptors involved in certain aspects of neurotransmission to bipolar cells. A further outcome of this study is that dystrophin and dystroglycan are located along the vitread membrane surface of Müller cell endfeet where this protein complex may be important for the attachment of the retina to the basal lamina and the vitreous. Accepted: 15 May 1997  相似文献   

5.
Dystrophin plays an important role in skeletal muscle by linking the cytoskeleton and the extracellular matrix. The amino terminus of dystrophin binds to actin and possibly other components of the subsarcolemmal cytoskeleton, while the carboxy terminus associates with a group of integral and peripheral membrane proteins and glycoproteins that are collectively known as the dystrophin-associated protein (DAP) complex. We have generated transgenic/mdx mice expressing "full-length" dystrophin constructs, but with consecutive deletions within the COOH- terminal domains. These mice have enabled analysis of the interaction between dystrophin and members of the DAP complex and the effects that perturbing these associations have on the dystrophic process. Deletions within the cysteine-rich region disrupt the interaction between dystrophin and the DAP complex, leading to a severe dystrophic pathology. These deletions remove the beta-dystroglycan-binding site, which leads to a parallel loss of both beta-dystroglycan and the sarcoglycan complex from the sarcolemma. In contrast, deletion of the alternatively spliced domain and the extreme COOH terminus has no apparent effect on the function of dystrophin when expressed at normal levels. The proteins resulting from these latter two deletions supported formation of a completely normal DAP complex, and their expression was associated with normal muscle morphology in mdx mice. These data indicate that the cysteine-rich domain is critical for functional activity, presumably by mediating a direct interaction with beta-dystroglycan. However, the remainder of the COOH terminus is not required for assembly of the DAP complex.  相似文献   

6.
Dystrophin and beta-dystroglycan are components of the dystrophin-glycoprotein complex (DGC), a multimolecular assembly that spans the cell membrane and links the actin cytoskeleton to the extracellular basal lamina. Defects in the dystrophin gene are the cause of Duchenne and Becker muscular dystrophies. The C-terminal region of dystrophin binds the cytoplasmic tail of beta-dystroglycan, in part through the interaction of its WW domain with a proline-rich motif in the tail of beta-dystroglycan. Here we report the crystal structure of this portion of dystrophin in complex with the proline-rich binding site in beta-dystroglycan. The structure shows that the dystrophin WW domain is embedded in an adjacent helical region that contains two EF-hand-like domains. The beta-dystroglycan peptide binds a composite surface formed by the WW domain and one of these EF-hands. Additionally, the structure reveals striking similarities in the mechanisms of proline recognition employed by WW domains and SH3 domains.  相似文献   

7.
Syntrophin binds to an alternatively spliced exon of dystrophin   总被引:15,自引:2,他引:13       下载免费PDF全文
  相似文献   

8.
Dystrophin forms part of a vital link between actin cytoskeleton and extracellular matrix via the transmembrane adhesion receptor dystroglycan. Dystrophin and its autosomal homologue utrophin interact with beta-dystroglycan via their highly conserved C-terminal cysteine-rich regions, comprising the WW domain (protein-protein interaction domain containing two conserved tryptophan residues), EF hand and ZZ domains. The EF hand region stabilizes the WW domain providing the main interaction site between dystrophin or utrophin and dystroglycan. The ZZ domain, containing a predicted zinc finger motif, stabilizes the WW and EF hand domains and strengthens the overall interaction between dystrophin or utrophin and beta-dystroglycan. Using bacterially expressed ZZ domain, we demonstrate a conformational effect of zinc binding to the ZZ domain, and identify two zinc-binding regions within the ZZ domain by SPOTs overlay assays. Epitope mapping of the dystrophin ZZ domain was carried out with new monoclonal antibodies by ELISA, overlay assay and immunohistochemistry. One monoclonal antibody defined a discrete region of the ZZ domain that interacts with beta-dystroglycan. The epitope was localized to the conformationally sensitive second zinc-binding site in the ZZ domain. Our results suggest that residues 3326-3332 of dystrophin form a crucial part of the contact region between dystrophin and beta-dystroglycan and provide new insight into ZZ domain organization and function.  相似文献   

9.
《FEBS letters》1993,320(3):276-280
Duchenne muscular dystrophy (DMD) patients and mdx mice are characterized by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoproteins, including dystroglycan which provides a linkage to the extarcellular matrix component, laminin. The finding that all of the dystrophin-associated proteins (DAPs) are drastically reduced in DMD and mdx skeletal muscle supports the primary function of dystrophin as an anchor of the sarcolemmal glycoprotein complex to the subsarcolemmal cytoskeleton. These findings indicate that the efficacy of dystrophin gene therapy will depend not only on replacing dystrophin but also on restoring all of the DAPs in the sarcolemma. Here we have investigated the status of the DAPs in the skeletal muscle of mdx mice transgenic for the dystrophin gene. Our results demonstrate that transfer of dystrophin gene restores all of the DAPs together with dystrophin, suggesting that dystrophin gene therapy should be effective in restoring the entire dystrophin-glycoprotein complex.  相似文献   

10.
Dystrophin, a component of the muscle membrane cytoskeleton, is the protein altered in Duchenne Muscular Dystrophy (DMD) and Becker Muscular Dystrophy (BMD). Dystrophin shares significant homology with other cytoskeletal proteins, such as α-actinin and spectrin. On the basis of its sequence similarity with α-actinin and spectrin, dystrophin has been proposed to function as dimer. However, the existence of both dimers and monomers have been observed by electron microscopy. To address this apparent discrepancy, we expressed dystrophin fragments composed of different domains in an in vitro translation system. The expressed fragments were tested for their ability to interact with each other and full-length dystrophin by both immunoprecipitation and blot overlay assays. These assays were successfully used to demonstrate the dimerization of α-actinin and spectrin, yet failed to detect any interaction between dystrophin fragments. Although these in vitro results do not prove that dystrophin is not a dimer in vivo, they do indicate that this interaction is not like that of the α-actinin and spectrin.  相似文献   

11.
Dystrophin constitutes 5% of membrane cytoskeleton in skeletal muscle   总被引:6,自引:0,他引:6  
Dystrophin, which is absent in skeletal muscle of Duchenne muscular dystrophy patients, has not been considered to play a major structural role in the cell membrane of skeletal muscle because of its low abundance (approximately 0.002% of total muscle protein). Here, we have determined the relative abundance of dystrophin in a membrane cytoskeleton preparation and found that dystrophin constitutes approximately 5% of the total membrane cytoskeleton fraction of skeletal muscle sarcolemma. In addition, dystrophin can be removed from sarcolemma by alkaline treatment. Thus, our results have demonstrated that dystrophin is a major component of the subsarcolemmal cytoskeleton in skeletal muscle and suggest that dystrophin could play a major structural role in the cell membrane of skeletal muscle.  相似文献   

12.
Dystrophin links the transmembrane dystrophin-glycoprotein complex to the actin cytoskeleton. We have shown that dystrophin-glycoprotein complex subunits are markers for airway smooth muscle phenotype maturation and together with caveolin-1, play an important role in calcium homeostasis. We tested if dystrophin affects phenotype maturation, tracheal contraction and lung physiology. We used dystrophin deficient Golden Retriever dogs (GRMD) and mdx mice vs healthy control animals in our approach. We found significant reduction of contractile protein markers: smooth muscle myosin heavy chain (smMHC) and calponin and reduced Ca2+ response to contractile agonist in dystrophin deficient cells. Immunocytochemistry revealed reduced stress fibers and number of smMHC positive cells in dystrophin-deficient cells, when compared to control. Immunoblot analysis of Akt1, GSK3β and mTOR phosphorylation further revealed that downstream PI3K signaling, which is essential for phenotype maturation, was suppressed in dystrophin deficient cell cultures. Tracheal rings from mdx mice showed significant reduction in the isometric contraction to methacholine (MCh) when compared to genetic control BL10ScSnJ mice (wild-type). In vivo lung function studies using a small animal ventilator revealed a significant reduction in peak airway resistance induced by maximum concentrations of inhaled MCh in mdx mice, while there was no change in other lung function parameters. These data show that the lack of dystrophin is associated with a concomitant suppression of ASM cell phenotype maturation in vitro, ASM contraction ex vivo and lung function in vivo, indicating that a linkage between the DGC and the actin cytoskeleton via dystrophin is a determinant of the phenotype and functional properties of ASM.  相似文献   

13.
Dystrophin is a 427 kDa sub-membrane cytoskeletal protein, associated with the inner surface membrane and incorporated in a large macromolecular complex of proteins, the dystrophin-associated protein complex (DAPC). In addition to dystrophin the DAPC is composed of dystroglycans, sarcoglycans, sarcospan, dystrobrevins and syntrophin. This complex is thought to play a structural role in ensuring membrane stability and force transduction during muscle contraction. The multiple binding sites and domains present in the DAPC confer the scaffold of various signalling and channel proteins, which may implicate the DAPC in regulation of signalling processes. The DAPC is thought for instance to anchor a variety of signalling molecules near their sites of action. The dystroglycan complex may participate in the transduction of extracellular-mediated signals to the muscle cytoskeleton, and β-dystroglycan was shown to be involved in MAPK and Rac1 small GTPase signalling. More generally, dystroglycan is view as a cell surface receptor for extracellular matrix proteins. The adaptor proteins syntrophin contribute to recruit and regulate various signalling proteins such as ion channels, into a macromolecular complex. Although dystrophin and dystroglycan can be directly involved in signalling pathways, syntrophins play a central role in organizing signalplex anchored to the dystrophin scaffold. The dystrophin associated complex, can bind up to four syntrophin through binding domains of dystrophin and dystrobrevin, allowing the scaffold of multiple signalling proteins in close proximity. Multiple interactions mediated by PH and PDZ domains of syntrophin also contribute to build a complete signalplex which may include ion channels, such as voltage-gated sodium channels or TRPC cation channels, together with, trimeric G protein, G protein-coupled receptor, plasma membrane calcium pump, and NOS, to enable efficient and regulated signal transduction and ion transport. This article is part of a Special Issue entitled: Reciprocal influences between cell cytoskeleton and membrane channels, receptors and transporters. Guest Editor: Jean Claude Hervé.  相似文献   

14.
BACKGROUND: Dystrophin is an essential component of skeletal muscle cells. Its N-terminal domain binds to F-actin and its C terminus binds to the dystrophin-associated glycoprotein (DAG) complex in the membrane. Dystrophin is therefore thought to serve as a link from the actin-based cytoskeleton of the muscle cell through the plasma membrane to the extracellular matrix. Pathogenic mutations in dystrophin result in Duchenne or Becker muscular dystrophy. RESULTS: The crystal structure of the dystrophin actin-binding domain (ABD) has been determined at 2.6 A resolution. The structure is an antiparallel dimer of two ABDs each comprising two calponin homology domains (CH1 and CH2) that are linked by a central alpha helix. The CH domains are both alpha-helical globular folds. Comparisons with the structures of utrophin and fimbrin ABDs reveal that the conformations of the individual CH domains are very similar to those of dystrophin but that the arrangement of the two CH domains within the ABD is altered. The dystrophin dimer reveals a change of 72 degrees in the orientation of one pair of CH1 and CH2 domains (from different monomers) relative to the other pair when compared with the utrophin dimer. The dystrophin monomer is more elongated than the fimbrin ABD. CONCLUSIONS: The dystrophin ABD structure reveals a previously uncharacterised arrangement of the CH domains within the ABD. This observation has implications for the mechanism of actin binding by dystrophin and related proteins. Examining the position of three pathogenic missense mutations within the structure suggests that they exert their effects through misfolding of the ABD, rather than through disruption of the binding to F-actin.  相似文献   

15.
Dystrophin and utrophin link the F-actin cytoskeleton to the cell membrane via an associated glycoprotein complex. This functionality results from their domain organization having an N-terminal actin-binding domain followed by multiple spectrin-repeat domains and then C-terminal protein-binding motifs. Therapeutic strategies to replace defective dystrophin with utrophin in patients with Duchenne muscular dystrophy require full-characterization of both these proteins to assess their degree of structural and functional equivalence. Here the high resolution structures of the first spectrin repeats (N-terminal repeat 1) from both dystrophin and utrophin have been determined by x-ray crystallography. The repeat structures both display a three-helix bundle fold very similar to one another and to homologous domains from spectrin, α-actinin and plectin. The utrophin and dystrophin repeat structures reveal the relationship between the structural domain and the canonical spectrin repeat domain sequence motif, showing the compact structural domain of spectrin repeat one to be extended at the C-terminus relative to its previously defined sequence repeat. These structures explain previous in vitro biochemical studies in which extending dystrophin spectrin repeat domain length leads to increased protein stability. Furthermore we show that the first dystrophin and utrophin spectrin repeats have no affinity for F-actin in the absence of other domains.  相似文献   

16.
17.
We have investigated the features of single-span model membrane proteins based upon leader peptidase that determines whether the proteins insert by a YidC/Sec-independent, YidC-only, or YidC/Sec mechanism. We find that a protein with a highly hydrophobic transmembrane segment that inserts into the membrane by a YidC/Sec-independent mechanism becomes YidC-dependent if negatively charged residues are inserted into the translocated periplasmic domain or if the hydrophobicity of the transmembrane segment is reduced by substituting polar residues for nonpolar ones. This suggests that charged residues in the translocated domain and the hydrophobicity within the transmembrane segment are important determinants of the insertion pathway. Strikingly, the addition of a positively charged residue to either the translocated region or the transmembrane region can switch the insertion requirements such that insertion requires both YidC and SecYEG. To test conclusions from the model protein studies, we confirmed that a positively charged residue is a SecYEG determinant for the endogenous proteins ATP synthase subunits a and b and the TatC subunit of the Tat translocase. These findings provide deeper insights into how pathways are selected for the insertion of proteins into the Escherichia coli inner membrane.  相似文献   

18.
Dystrophin and the dystrophin-associated protein complex (DAPC) have recently been implicated in cell signalling events. These proteins are ideally placed to transduce signals from the extracellular matrix (ECM) to the cytoskeleton. Here we show that beta-dystroglycan is tyrosine-phosphorylated in C2/C4 mouse myotubes. Tyrosine phosphorylation was detected by mobility shifts on SDS-polyacrylamide gels (SDS-PAGE) and confirmed by immunoprecipitation and two-dimensional gel electrophoresis. The potential functional significance of this tyrosine phosphorylation was investigated using peptide 'SPOTs' assays. Phosphorylation of tyrosine in the 15 most C-terminal amino acids of beta-dystroglycan disrupts its interaction with dystrophin. The tyrosine residue in beta-dystroglycan's WW-binding motif PPPY appears to be the most crucial in disrupting the beta-dystroglycan-dystrophin interaction. beta-dystroglycan forms the essential link between dystrophin and the rest of the DAPC. This regulation by tyrosine phosphorylation may have implications in the pathogenesis and treatment of Duchenne's muscular dystrophy (DMD).  相似文献   

19.
Dystrophin, a protein product of the Duchenne muscular dystrophy gene, is thought to associate with the muscle membrane by way of a glycoprotein complex which was co-purified with dystrophin. Here, we firstly demonstrate direct biochemical evidence for association of the carboxy-terminal region of dystrophin with the glycoprotein complex. The binding site is found to lie further inward than previously expected and confined to the cysteine-rich domain and the first half of the carboxy-terminal domain. Since this portion corresponds well to the region that, when missing, results in severe phenotypes, our finding may provide a molecular basis of the disease.  相似文献   

20.
Dystrophin was isolated from the purified large oligomeric dystrophin complex with its associated proteins (DC) of rabbit skeletal muscle by alkaline dissociation followed by gel filtration to remove the associated proteins. Isolated dystrophin and DC were subjected to digestion with calpain or alpha-chymotrypsin, and the generated polypeptide fragments were studied by immunoblot analysis using seven kinds of antibodies raised against antigens corresponding to various regions from the N- to the C-terminal of human dystrophin. For some fragments, the amino acid sequences at the N-termini were determined. Two proteinases, which bear distinct specificities, generated very similar fragments from purified dystrophin with or without the associated proteins. The cleavage sites found by mapping the fragments onto the dystrophin molecule were similar to those found in a previous study using crude mouse muscle cell membrane fraction [Koenig, M. & Kunkel, L.M. (1990) J. Biol. Chem. 265, 4560-4566]. On the basis of these results, we concluded that dystrophin has several unique proteinase-sensitive sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号