共查询到20条相似文献,搜索用时 15 毫秒
1.
When one models impact pathways due to stressors that are caused by the provision of product systems, it results in indicators for environmental damages. These indicators are incommensurable and cannot be compared per se. For example, the statistical life years lost for a human population cannot necessarily be compared with the potentially affected fraction of species within an ecosystem. However, some decision makers who use life-cycle assessment (LCA) prefer a single index, because it facilitates interpretation better than a multi-indicator system. This requires a method for aggregating environmental damages of differing types, thereby confronting LCA with a valuation problem.
The article describes a nonmonetary approach to valuation in LCA that incorporates the findings of a survey among LCA practitioners and users. The survey focuses on the weighting of three safeguard subjects for Eco-indicator 99, a damage-oriented impact-assessment method: human health, ecosystem quality, and resources. Of particular interest here is what influence the context provided in the survey (framing) and an individual's characteristics have on his or her weighting of environmental damages. The results indicate that damages on the European level are easier to compare than damages on a micro level. Additionally, although only half of the survey participants could be classified unequivocally into one of three cultural perspectives, each perspective rated the damage categories presented to them significantly differently from the others. Our conclusions were that framing effects need to be more carefully considered in weighting procedures and that weighting preferences vary significantly according to a group's archetypical attitudes. 相似文献
The article describes a nonmonetary approach to valuation in LCA that incorporates the findings of a survey among LCA practitioners and users. The survey focuses on the weighting of three safeguard subjects for Eco-indicator 99, a damage-oriented impact-assessment method: human health, ecosystem quality, and resources. Of particular interest here is what influence the context provided in the survey (framing) and an individual's characteristics have on his or her weighting of environmental damages. The results indicate that damages on the European level are easier to compare than damages on a micro level. Additionally, although only half of the survey participants could be classified unequivocally into one of three cultural perspectives, each perspective rated the damage categories presented to them significantly differently from the others. Our conclusions were that framing effects need to be more carefully considered in weighting procedures and that weighting preferences vary significantly according to a group's archetypical attitudes. 相似文献
2.
《Journal of Industrial Ecology》2004,8(1-2):11-21
Land use is an increasingly important component of sustainability evaluations, and numerous performance metrics have evolved to meet this need. The selection of appropriate land-use metrics for decision makers, however, remains an ongoing challenge. Additionally, life-cycle practitioners often struggle to provide meaningful impact assessment because of challenges associated with traditional land-use impact metrics. This article is intended to assist decision makers and life-cycle practitioners who wish to more effectively measure and evaluate one aspect of land use: surface area occupation. Existing performance metrics are discussed, and the specific circumstances under which each is appropriate are identified. Building on leading-edge research and analysis in the field of life-cycle impact assessment, a modified methodology for evaluating surface area occupation is proposed. This approach is demonstrated for a series of mining practices including three individual gold mines, a bauxite mine, and a copper mine. The specific data requirements and resulting equivalency factors for each mine are discussed. Results indicate that equivalency factors for gold (average of 700 acre-yr/ton) are expected to be several orders of magnitude higher than for either bauxite (0.004 acre-yr/ ton) or copper (0.03 acre-yr/ton). These dramatic differences in results demonstrate that equivalency factors are appropriate and necessary for including land-use impact potential as part of a life-cycle assessment that includes several different minerals or material requirements. 相似文献
3.
J. W. Owens 《Journal of Industrial Ecology》2001,5(2):37-54
Water is one of many resources, wastes, and pollutants considered in life-cycle assessment (LCA). The widely used indicator for water resources, the total input of water used, is not adequate to assess water resources from a sustainability perspective. More detailed indicators are proposed for water resources in two areas essential to water sustainability: water quantity and water quality. The governing principles for a consideration of water quantity are that (1) the water sources or LCA inputs are renewable and sustainable and (2) the volume of water released or LCA outputs are returned to humans or ecosystems for further use downstream. The governing principle for a consideration of water quality is that the utility of the returned water is not impaired for either humans or ecosystems downstream. Water quantity indicators are defined for water use, consumption, and depletion to reveal the sustainable or nonsustainable nature of the sources. A flexible set of water quality indicators for various factors that may impair water quality are then discussed, including the LCA study choices, technical challenges, and trade-offs involved with such indicators. Indicator selection from this set involves the underlying concern or endpoint represented by the indicator and the level and accuracy of decision-making information that the indicator must provide. With significant differences in emissions among systems studied using LCA and different purposes of the LCA studies themselves, a single, default set of water quality indicators applicable to all systems studied with LCA is problematic. The proposed water quantity and quality indicators for LCA studies are also intended to be compatible with environmental management and reporting systems so that data needs are not duplicated and interpretation for one does not contradict or sow confusion for the other. 相似文献
4.
5.
《Journal of Industrial Ecology》2002,6(3-4):79-101
The tool for the reduction and assessment of chemical and other environmental impacts (TRACI) is a set of life-cycle impact assessment (LCIA) characterization methods that has been developed by a series of U.S. Environmental Protection Agency research projects. TRACI facilitates the characterization of stressors that may have potential effects, including ozone depletion, global warming, acidification, eutrophication, tropospheric ozone (smog) formation, eco-toxicity, human particulate effects, human carcinogenic effects, human non-carcinogenic effects, fossil fuel depletion, and land-use effects. This article describes the methodologies developed to address acidification, eutrophication, and smog. Each of these methods offers the ability to take account of differences in expected strength of impact as a function of pollution release location within North America. Specifically, the methods employ regionalized fate and transport modeling. The resulting factors differ regionally by up to more than an order of magnitude. 相似文献
6.
《Journal of Industrial Ecology》2006,10(1-2):61-77
Sustainable management of materials and products requires continuous evaluation of numerous complex social, ecological, and economic factors. A number of tools and methods are emerging to support this. One of the most rigorous is life-cycle assessment (LCA). But LCAs often lack a sustainability perspective and bring about difficult trade-offs between specificity and depth, on the one hand, and comprehension and applicability, on the other. This article applies a framework for strategic sustainable development (often referred to as The Natural Step (TNS) framework) based on backcasting from basic principles for sustainability. The aim is to foster a new general approach to the management of materials and products, here termed "strategic life-cycle management". This includes informing the overall analysis with aspects that are relevant to a basic perspective on (1) sustainability, and (2) strategy to arrive at sustainability. The resulting overview is expected to help avoid costly assessments of flows and practices that are not critical from a sustainability and/or strategic perspective and to help identify strategic gaps in knowledge or potential problems that need further assessment. Early experience indicates that the approach can complement some existing tools and concepts by informing them from a sustainability perspective-for example, current product development and LCA tools. 相似文献
7.
8.
This article describes a decision support framework for the evaluation of scenarios for the integrated management of municipal solid waste within a local government area (LGA).
The work is initially focused on local government (i.e., municipal councils) in the state of Queensland, Australia; however, it is broadly applicable to LGAs anywhere. The goal is to achieve sustainable waste management practices by balancing global and regional environmental impacts, social impacts at the local community level, and economic impacts. The framework integrates life-cycle assessment (LCA) with other environmental, social, and economic tools. For this study, social and economic impacts are assumed to be similar across developed countries of the world. LCA was streamlined at both the life-cycle inventory and life-cycle impact assessment stages.
For this process, spatial resolution is introduced into the LCA process to account for impacts occurring at the local and regional levels. This has been done by considering social impacts on the local community and by use of a regional procedure for LCA data for emissions to the environment that may have impacts at the regional level.
The integration follows the structured approach of the pressure-state-response (PSR) model suggested by the Organisation for Economic Cooperation and Development (OECD). This PSR model has been extended to encompass nonenvironmental issues and to guide the process of applying multiple tools.
The framework primarily focuses on decision analysis and interpretation processes. Multiattribute utility theory (MAUT) is used to assist with the integration of qualitative and quantitative information. MAUT provides a well-structured approach to information assessment and facilitates objective, transparent decisions. A commercially available decision analysis software package based on MAUT has been used as the platform for the framework developed in this study. 相似文献
The work is initially focused on local government (i.e., municipal councils) in the state of Queensland, Australia; however, it is broadly applicable to LGAs anywhere. The goal is to achieve sustainable waste management practices by balancing global and regional environmental impacts, social impacts at the local community level, and economic impacts. The framework integrates life-cycle assessment (LCA) with other environmental, social, and economic tools. For this study, social and economic impacts are assumed to be similar across developed countries of the world. LCA was streamlined at both the life-cycle inventory and life-cycle impact assessment stages.
For this process, spatial resolution is introduced into the LCA process to account for impacts occurring at the local and regional levels. This has been done by considering social impacts on the local community and by use of a regional procedure for LCA data for emissions to the environment that may have impacts at the regional level.
The integration follows the structured approach of the pressure-state-response (PSR) model suggested by the Organisation for Economic Cooperation and Development (OECD). This PSR model has been extended to encompass nonenvironmental issues and to guide the process of applying multiple tools.
The framework primarily focuses on decision analysis and interpretation processes. Multiattribute utility theory (MAUT) is used to assist with the integration of qualitative and quantitative information. MAUT provides a well-structured approach to information assessment and facilitates objective, transparent decisions. A commercially available decision analysis software package based on MAUT has been used as the platform for the framework developed in this study. 相似文献
9.
Eva Heiskanen 《Journal of Industrial Ecology》2000,4(4):31-45
The widespread popularity of life-cycle assessment (LCA) is difficult to understand from the point of view of instrumental decision making by economic agents. Ehrenfeld has argued, in a 1997 issue of this journal, that it is the world-shaping potential of LCA that is more important than its use as a decision-making tool. The present study attempts to explore the institutionalization of this \"LCA world view\" among ordinary market actors. This is important because environmental policy relies increasingly on market-based initiatives. Cognitive and normative assumptions in authoritative LCA documents are examined as empirical data and compared with data from focus group interviews concerning products and the environment with \"ordinary\" manufacturers, retailers, and consumers in Finland. These assumptions are (1) the \"cradle-to-grave\" approach, (2) the view that all products have an environmental impact and can be improved, (3) the relativity of environmental merit, and (4) the way responsibility for environmental burdens is attributed. Relevant affinities, but also differences, are identified. It is argued that life-cycle thinking is not primarily instrumental, but rather is gaining a degree of intrinsic value. The study attempts to establish a broader institutional context in which the popularity of LCA can be understood. From the point of view of this broader context, some future challenges for the development of LCA and life-cycle thinking are suggested. 相似文献
10.
Bo Weidema 《Journal of Industrial Ecology》2000,4(3):11-33
Abstract: In a life‐cycle assessment (LCA) involving only one of several products from the same process, how are the resource consumption and the emissions associated with this process to be partitioned and distributed over these co‐products? This is the central question in co‐product allocation, which has been one of the most controversial issues in the development of the methodology for life‐cycle assessment, as it may significantly influence or even determine the result of the assessments. In this article, it is shown that in prospective life‐cycle assessments, co‐product allocation can always be avoided by system expansion. Through a number of examples, it is demonstrated how system expansion is performed, with special emphasis on issues that earlier have been a focus of the allocation debate, such as joint production (e.g., of chlorine and sodium hydroxide, zinc and heavy metals, and electricity and heat), the handling of “near‐to‐waste” by‐products, processes simultaneously supplying services to multiple product systems, and credits for material recycling and downcycling. It is shown that all the different co‐product situations can be covered by the same theoretical model and the same practical procedure, and that it is also possible to include the traditional co‐product allocation as a special case of the presented procedure. The uncertainty aspects of the presented procedure are discussed. A comparison is made with the procedure of ISO 14041, “Life‐cycle assessment—Goal and scope definition and inventory analysis,” the international standard. 相似文献
11.
Environmental effects of economic activities are ultimately driven by consumption, via impacts of the production, use, and waste management phases of products and services ultimately consumed. Integrated product policy (IPP) addressing the life‐cycle impacts of products forms an innovative new generation of environmental policy. Yet this policy requires insight into the final consumption expenditures and related products that have the greatest life‐cycle environmental impacts. This review article brings together the conclusions of 11 studies that analyze the life‐cycle impacts of total societal consumption and the relative importance of different final consumption categories. This review addresses in general studies that were included in the project Environmental Impacts of Products (EIPRO) of the European Union (EU), which form the basis of this special issue. Unlike most studies done in the past 25 years on similar topics, the studies reviewed here covered a broad set of environmental impacts beyond just energy use or carbon dioxide (CO2) emissions. The studies differed greatly in basic approach (extrapolating LCA data to impacts of consumption categories versus approaches based on environmentally extended input‐output (EEIO) tables), geographical region, disaggregation of final demand, data inventory used, and method of impact assessment. Nevertheless, across all studies a limited number of priorities emerged. The three main priorities, housing, transport, and food, are responsible for 70% of the environmental impacts in most categories, although covering only 55% of the final expenditure in the 25 countries that currently make up the EU. At a more detailed level, priorities are car and most probably air travel within transport, meat and dairy within food, and building structures, heating, and (electrical) energy‐using products within housing. Expenditures on clothing, communication, health care, and education are considerably less important. Given the very different approaches followed in each of the sources reviewed, this result hence must be regarded as extremely robust. Recommendations are given to harmonize and improve the methodological approaches of such analyses, for instance, with regard to modeling of imports, inclusion of capital goods, and making an explicit distinction between household and government expenditure. 相似文献
12.
Christian Capello Stefanie Hellweg Konrad Hungerbühler 《Journal of Industrial Ecology》2008,12(1):111-127
A comparison of various waste‐solvent treatment technologies, such as distillation (rectification) and incineration in hazardous‐waste‐solvent incinerators and cement kilns, is presented for 45 solvents with respect to the environmental life‐cycle impact. The environmental impact was calculated with the ecosolvent tool that was previously described in Part I of this work. A comprehensive sensitivity analysis was performed, and uncertainties were quantified by stochastic modeling in which various scenarios were considered. The results show that no single treatment technology is generally environmentally superior to any other but that, depending on the solvent mixture and the process conditions, each option may be optimal in certain cases. Nevertheless, various rules of thumb could be derived, and a results table is presented for the 45 solvents showing under which process conditions and amount of solvent recovery distillation is environmentally superior to incineration. On the basis of these results and the ecosolvent tool, an easily usable framework was developed that helps decision makers in chemical industries reduce environmental burdens throughout the solvent life cycle. With clear recommendations on the environmentally optimized waste‐solvent treatment technology, the use of this framework contributes to more environmentally sustainable solvent management and thus represents a practical application of industrial ecology. 相似文献
13.
主要分析了我国生命周期评价的理论与实践研究进展与数据库构建现状,针对当前我国生命周期评价理论与应用研究的关键薄弱环节即不确定性分析、本土化数据库构建、本土化生命周期环境影响评价模型构建,指出了利用泰勒系列展开模型进行符合我国产业链生产现状的精确、完整、具有代表性、具有时空动态特征的生命周期数据库构建的必要性;并指出需要根据我国国情(例如:环境、地理、人口、暴露等)来构建生命周期环境影响评价模型的紧迫性。 相似文献
14.
Satish Joshi 《Journal of Industrial Ecology》1999,3(2-3):95-120
Life-cycle assessment (LCA) facilitates a systems view in environmental evaluation of products, materials, and processes. Life-cycle assessment attempts to quantify environmental burdens over the entire life-cycle of a product from raw material extraction, manufacturing, and use to ultimate disposal. However, current methods for LCA suffer from problems of subjective boundary definition, inflexibility, high cost, data confidentiality, and aggregation.
This paper proposes alternative models to conduct quick, cost effective, and yet comprehensive life-cycle assessments. The core of the analytical model consists of the 498 sector economic input-output tables for the U.S. economy augmented with various sector-level environmental impact vectors. The environmental impacts covered include global warming, acidification, energy use, non-renewable ores consumption, eutrophication, conventional pollutant emissions and toxic releases to the environment. Alternative models are proposed for environmental assessment of individual products, processes, and life-cycle stages by selective disaggregation of aggregate input-output data or by creation of hypothetical new commodity sectors. To demonstrate the method, a case study comparing the life-cycle environmental performance of steel and plastic automobile fuel tank systems is presented. 相似文献
This paper proposes alternative models to conduct quick, cost effective, and yet comprehensive life-cycle assessments. The core of the analytical model consists of the 498 sector economic input-output tables for the U.S. economy augmented with various sector-level environmental impact vectors. The environmental impacts covered include global warming, acidification, energy use, non-renewable ores consumption, eutrophication, conventional pollutant emissions and toxic releases to the environment. Alternative models are proposed for environmental assessment of individual products, processes, and life-cycle stages by selective disaggregation of aggregate input-output data or by creation of hypothetical new commodity sectors. To demonstrate the method, a case study comparing the life-cycle environmental performance of steel and plastic automobile fuel tank systems is presented. 相似文献
15.
Seppo Junnila 《Journal of Industrial Ecology》2006,10(4):113-131
This article presents a scenario analysis for a life-cycle model of service sector companies. The model is based on six case companies and it is applied to test the influence of 32 management scenarios. The scenarios simulate feasible options for environmental management measures in companies, and the life-cycle assessment method is used to model their relevance in terms of the total environmental impact of the company. The study found that the bulk of tested scenarios had only a minor influence on the total environmental impact of the company. Some individual management scenarios, though, turned out to have a major influence on the organization's environmental performance. The scenarios with greatest influence were those related to the procurement of electricity, building energy consumption, commuting vehicle mix, space usage efficiency, and refurbishment periods of the building. All of these management scenarios had an influence of more than 10% on the environmental impact of the model organization. 相似文献
16.
Yoshinori Kobayashi Hideki Kobayashi Akinori Hongu Kiyoshi Sanehira 《Journal of Industrial Ecology》2005,9(4):131-144
Eco-efficiency at the product level is defined as product value per unit of environmental impact. In this paper we present a method for quantifying the eco-efficiency using quality function deployment (QFD) and life-cycle impact assessment (LCIA). These well-known tools are widely used in the manufacturing industry.
QFD, which is one of the methods used in product development based on consumer preferences, is introduced to calculate the product value. An index of the product value is calculated as the weighted average of improvement rates of quality characteristics. The importance of customer requirements, derived from the QFD matrix, is applied.
Environmental impacts throughout a product life cycle are calculated based on an LCIA method widely used in Japan. By applying the LCIA method of endpoint type, the endpoint damage caused by various life-cycle inventories is calculated. Willingness to pay is applied to integrate it into a single index.
Eco-design support tools, namely, the life-cycle planning (LCP) tool and the life-cycle assessment (LCA) tool, have already been developed. Using these tools, data required for calculation of the eco-efficiency of products can be collected. The product value is calculated based on QFD data stored in the LCP tool and the environmental impact is calculated using the LCA tool.
Case studies of eco-efficiency are adopted and the adequacy of this method is clarified. Several advantages of this method are characterized. 相似文献
QFD, which is one of the methods used in product development based on consumer preferences, is introduced to calculate the product value. An index of the product value is calculated as the weighted average of improvement rates of quality characteristics. The importance of customer requirements, derived from the QFD matrix, is applied.
Environmental impacts throughout a product life cycle are calculated based on an LCIA method widely used in Japan. By applying the LCIA method of endpoint type, the endpoint damage caused by various life-cycle inventories is calculated. Willingness to pay is applied to integrate it into a single index.
Eco-design support tools, namely, the life-cycle planning (LCP) tool and the life-cycle assessment (LCA) tool, have already been developed. Using these tools, data required for calculation of the eco-efficiency of products can be collected. The product value is calculated based on QFD data stored in the LCP tool and the environmental impact is calculated using the LCA tool.
Case studies of eco-efficiency are adopted and the adequacy of this method is clarified. Several advantages of this method are characterized. 相似文献
17.
Coherent information about the environmental impacts of a product is essential for pursuing market-oriented approaches to environmental protection. Such green rating information can influence consumers' choices and, by affecting product and corporate images in the marketplace, might also influence technology development and product planning. Automobiles and their supporting industries are the subjects of many environmental policies. Informational approaches to automotive environmental performance, however, have been relatively piecemeal. In the course of developing consumer information and market creation programs for vehicles of higher energy efficiency (an important determinant of environmental performance), the authors felt that it was necessary to address this fragmentation rather than treat efficiency in isolation from other factors. A green rating system was developed based on principles of life-cycle assessment and is usable within the confines of available data that permit discrimination among makes and models. The resulting methodology is applied in a consumer-oriented publication that rates vehicles in the U.S. market. The ratings cover all vehicles and do not constitute an eco-label, although the methodology provides groundwork for developing a label. The background, data issues, analysis, and future research needs for this rating system are described along with a summary of its application. 相似文献
18.
Environmental Load from Dutch Private Consumption: How Much Damage Takes Place Abroad? 总被引:2,自引:0,他引:2
《Journal of Industrial Ecology》2005,9(1-2):147-168
This article describes a method for determining the environmental load of Dutch private consumption. The method generates detailed information about consumption-related environmental impacts. The environmental load of households (direct) and production (indirect) was determined for 360 expenditure categories reported in the Dutch Expenditure Survey. The indirect environmental load was calculated with linked input-output tables covering worldwide production and trade. The environmental load per Euro turnover of industries was linked to consumer expenditures. With this method we can quantify several types of environmental load per expenditure category and per economic production region.
It was found that food production, room heating, and car use are the most important elements in the environmental load of Dutch private consumption. The impacts taking place abroad were—with the exception of emission of greenhouse gases and road traffic noise—found to be larger than domestic impacts. Most land use was found to take place in developing (non-OECD) countries, whereas most emissions occur in industrialized (OECD) countries. 相似文献
It was found that food production, room heating, and car use are the most important elements in the environmental load of Dutch private consumption. The impacts taking place abroad were—with the exception of emission of greenhouse gases and road traffic noise—found to be larger than domestic impacts. Most land use was found to take place in developing (non-OECD) countries, whereas most emissions occur in industrialized (OECD) countries. 相似文献
19.
Magnus Bengtsson 《Journal of Industrial Ecology》2000,4(4):47-60
This article investigates how environmental trade-offs are handled in life-cycle assessment (LCA) studies in some Nordic companies. Through interviews, the use and understanding of weighting methods in decision making was studied. The analysis shows that the decision makers require methods with which to aggregate and help interpret the complex information from life-cycle inventories. They agreed that it was not their own values that should be reflected in such methods, but they were found to have different opinions concerning the value basis that should be used. The analysis also investigates the difficulties arising from using such methods. The decision makers seemed to give a broader meaning to the term weighting, and were more concerned with the comparison between environmental and other aspects than the weighting of different environmental impacts. A conclusion is that decision makers need to be more involved in modeling and interpretation. The role of the analyst should be to interpret the information needs of the decision maker, and help him or her make methodological choices that are consistent with these needs and relevant from his or her point of view. To achieve this, it is important that decision makers do not view LCA as a highly standardized calculation tool, but as a flexible process of collecting, organizing, and interpreting environmental information. Such an approach to LCA increases the chances that the results will be regarded as relevant and useful. 相似文献
20.
Reinout Heijungs Arjan de Koning Sangwon Suh Gjalt Huppes 《Journal of Industrial Ecology》2006,10(3):147-158
Integrated product policy, according to the European Union, requires reliable data on the impact of consumer products along their life cycles. We argue that this necessarily requires the development of an information tool for hybrid analysis, combining aspects of life-cycle assessment and input-output analysis. A number of requirements in the development of such a hybrid information tool are identified, mainly concerning data and computational structure. For the former, some important points of attention are discussed, whereas for the latter, operational formulas are developed. 相似文献