首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The FK506-binding proteins (FKBPs) belong to the peptidyl prolyl cis-trans isomerase (PPIase) family, and catalyse the rotation of the peptide bond preceding a proline. They are conserved in organisms from bacteria to man. In order to understand the function of plant FKBP isoforms, we have produced transgenic wheat plants overexpressing each of the two wheat FKBPs: wFKBP73 (which is expressed in young vegetative and reproductive tissues under normal growth conditions) and wFKBP77 (which is induced by heat stress). Transgenic lines overexpressing wFKBP77 at 25°C showed major morphological abnormalities, specifically relating to height, leaf shape, spike morphology and sterility. In these plants, the levels of hsp90 mRNA were over two fold higher than in controls, indicating a common regulatory pathway shared between wFKBP77 and Hsp90. Transgenic lines overexpressing wFKBP73 showed normal vegetative morphology, but the grain weight and composition was altered, corresponding to changes in amylase activity during seed development.  相似文献   

2.
Kurek I  Pirkl F  Fischer E  Buchner J  Breiman A 《Planta》2002,215(1):119-126
Peptidyl-prolyl cis-trans isomerases (PPIases) catalyse protein folding by accelerating the slow step of cis-trans isomerisation of peptidyl-prolyl bonds. Wheat (Triticum aestivum L.) FKBP73 (wFKBP73) is a peptidyl-prolyl cis-trans isomerase belonging to the FK506-binding protein (FKBP) family. It comprises three FKBP12-like domains, tetratricopeptide repeats and a calmodulin-binding domain (CaMbd). In vitro studies indicated that wFKBP73 possesses PPIase activity, binds calmodulin and forms a heterocomplex with mammalian p23 and wheat Hsp90 in wheat-germ lysate. To further study the role of wFKBP73 we have analysed its chaperone properties. Using the thermal unfolding and aggregation of citrate synthase (CS) as a model system, we have shown that the plant wFKBP73 exhibits chaperone activity, being able to suppress CS aggregation independently of its PPIase activity. The wFKBP73 interacts transiently with non-native CS and slows down its inactivation kinetics, whereas the mammalian homologue, hFKBP52 binds tightly to CS and does not affect its rate of inactivation. Hence, the first plant FKBP shown to function as a molecular chaperone has a mode of action different from that of the mammalian FKBP52.  相似文献   

3.
Here we describe the crystal structure of the N-terminal domain of the FK506-binding protein (FKBP) from wheat (wFKBP73), which is the first structure presenting three FK domains (wFK73_1, wFK73_2 and wFK73_3). The crystal model includes wFK73_2 and wFK73_3 domains and only part of the wFK73_1 domain. The wFK73_1 domain is responsible for binding FK506 and for peptidyl prolyl cis/trans isomerase (PPIase) activity, while the wFK73_2 and wFK73_3 domains lack these activities. A structure-based sequence comparison demonstrated that the absence of a large enough hydrophobic pocket important for PPIase activity, and of the conserved residues necessary for drug binding in the wFK73_2 and wFK73_3 domains explains the lack of these activities in these domains. Sequence and structural comparison between the three wFKBP73 domains suggest that the wFK73_2 domain is the most divergent. A structural comparison of the FK domains of wFKBP73 with other FKBPs containing more than one FK domain, revealed that while the overall architecture of each of the three FK domains displays a typical FKBP fold, their relative arrangement in space is unique and may have important functional implications. We suggest that the existence of FKBPs with three FK domains offers additional interactive options for these plant proteins enlarging the overall regulatory functions of these proteins.  相似文献   

4.
Wheat root tips express a 73 kDa cognate isoform and a 77 kDa heat-shock-induced isoform of peptidyl prolyl cis-trans isomerase (FK506 binding protein; FKBP) that is part of a chaperone complex with hsp90. The 73 kDa and 77 kDa FKBPs have very similar sequences, differing primarily in the N- and C-terminal 20 amino acids. In order to define the potential functional roles of these proteins, the 73 kDa and 77 kDa FKBPs were localized in root tips using antigen-affinity purified antibodies as a probe. The cognate 73 kDa FKBP is localized in the cytoplasm and appears enriched around the periphery of the early vacuole and vesicles exiting the trans-Golgi. Parallel assays with antibodies directed against tonoplast aquaporin and pyrophosphatase confirmed the association of FKBP with an early vacuole compartment. Sucrose gradient centrifugation analysis of root tip lysates also showed that 73 kDa FKBP is co-fractionated with tonoplast aquaporin and V-ATPase in a light compartment near the top of the gradient. Heat-shock treatment of root tips induces the accumulation of 77 kDa FKBP while the abundance of 73 kDa FKBP remains constant. Quantitative EM immunogold assays of the intracellular distribution of FKBP over an 8 h heat-shock time-course showed that FKBP is initially present in the cytoplasm, but is transported into the nucleus where it accumulates in the nucleoplasm and into specific subnuclear domains. The results of this study show that the intracellular distribution of the high Mr FKBPs in wheat root tips differs at normal and elevated temperatures, indicating different functional roles for the FKBP isoforms.  相似文献   

5.
We have cloned, expressed, purified and characterised ceFKB-6, the only large tetratricopeptide repeat motif-containing immunophilin in Caenorhabditis elegans which is similar to the human orthologues FKBP51 and FKBP52. It shows increased peptidyl prolyl isomerase activity, the measured k(cat)/K(m) of 1.3 x 10(6) M(-1) s(-1)is twofold greater than that of hFKBP12 and hFKBP51. NMR studies of the interaction between FKB-6 and the C-terminal DAF-21 pentapeptide MEEVD show interactions consistent with those found between the large human immunophilin TPR domains and human Hsp90. In vivo localisation studies show that the fkb-6 gene is expressed in all stages from embryo to adult with predominant expression being noted in the adult dorsal and ventral nerve cords.  相似文献   

6.
Expression of many proteinases has been documented during anther development. Although their roles are not completely understood, their inhibition could possibly result in impairment of anther development leading to male sterility. We proposed that such an impairment of anther development can be engineered in plants resulting in male sterile plants that can be used for hybrid seed production. Here, we report that anther-specific expression of Aprotinin gene (serine proteinase inhibitor) in tobacco has resulted in male sterility. Southern analysis and zymogram analysis confirmed the integration and expression of Aprotinin gene in the anthers of the transgenic plants. Transverse sections of anthers of transgenic male sterile plants showed damaged tapetum. The pollen germination in the transgenic plants ranged between 2% and 65% that confirmed the impairment in pollen production leading to male sterility and low seed yield. Thus, inhibition of serine proteinases that are expressed during anther development has resulted in impaired pollen production and male sterility, though the exact role of these proteinases in anther development still has to be elucidated.  相似文献   

7.
Both plant and animal cells contain high molecular weight immunophilins that bind via tetratricopeptide repeat (TPR) domains to a TPR acceptor site on the ubiquitous and essential protein chaperone hsp90. These hsp90-binding immunophilins possess the signature peptidylprolyl isomerase (PPIase) domain, but no role for their PPIase activity in protein folding has been demonstrated. From the study of glucocorticoid receptor (GR).hsp90.immunophilin complexes in mammalian cells, there is considerable evidence that both hsp90 and the FK506-binding immunophilin FKBP52 play a role in receptor movement from the cytoplasm to the nucleus. The role of FKBP52 is to target the GR.hsp90 complex to the nucleus by binding via its PPIase domain to cytoplasmic dynein, the motor protein responsible for retrograde movement along microtubules. Here, we use rabbit cytoplasmic dynein as a surrogate for the plant homologue to show that two hsp90-binding immunophilins of wheat, wFKBP73 and wFKBP77, bind to dynein. Binding to dynein is blocked by competition with a purified FKBP52 fragment comprising its PPIase domain but is not affected by the immunosuppressant drug FK506, suggesting that the PPIase domain but not PPIase activity is involved in dynein binding. The hsp90/hsp70-based chaperone system of wheat germ lysate assembles complexes between mouse GR and wheat hsp90. These receptor heterocomplexes contain wheat FKBPs, and they bind rabbit cytoplasmic dynein in a PPIase domain-specific manner. Retention by plants of the entire heterocomplex assembly machinery for linking the GR to dynein implies a fundamental role for this process in the biology of the eukaryotic cell.  相似文献   

8.
The phosphatase of regenerating liver-3 (PRL-3) is a member of protein tyrosine phosphatases and whose deregulation is implicated in tumorigenesis and metastasis of many cancers. However, the underlying mechanism by which PRL-3 is regulated is not known. In this study, we identified the peptidyl prolyl cis/trans isomerase FK506-binding protein 38 (FKBP38) as an interacting protein of PRL-3 using a yeast two-hybrid system. FKBP38 specifically binds to PRL-3 in vivo, and that the N-terminal region of FKBP38 is crucial for binding with PRL-3. FKBP38 overexpression reduces endogenous PRL-3 expression levels, whereas the depletion of FKBP38 by siRNA increases the level of PRL-3 protein. Moreover, FKBP38 promotes degradation of endogenous PRL-3 protein via protein-proteasome pathway. Furthermore, FKBP38 suppresses PRL-3-mediated p53 activity and cell proliferation. These results demonstrate that FKBP38 is a novel regulator of the oncogenic protein PRL-3 abundance and that alteration in the stability of PRL-3 can have a dramatic impact on cell proliferation. Thus, FKBP38 may play a critical role in tumorigenesis.  相似文献   

9.
Suzuki Y  Win OY  Koga Y  Takano K  Kanaya S 《FEBS letters》2005,579(25):5781-5784
SIB1 FKBP22 is a homodimer, with each subunit consisting of the C-terminal catalytic domain and N-terminal dimerization domain. This protein exhibits peptidyl prolyl cis-trans isomerase activity for both peptide and protein substrates. However, truncation of the N-terminal domain greatly reduces the activity only for a protein substrate. Using surface plasmon resonance, we showed that SIB1 FKBP22 loses the binding ability to a folding intermediate of protein upon truncation of the N-terminal domain but does not lose it upon truncation of the C-terminal domain. We propose that the binding site of SIB1 FKBP22 to a protein substrate of PPIase is located at the N-terminal domain.  相似文献   

10.
Plant mitochondria include gamma-type carbonic anhydrases (γCAs) of unknown function. In Arabidopsis, the γCAs form a gene family of five members which all are attached to the NADH dehydrogenase complex (complex I) of the respiratory chain. Here we report a functional analysis of gamma carbonic anhydrase 2 (CA2). The gene encoding CA2 is constitutively expressed in all plant organs investigated but it is ten fold induced in flowers, particularly in tapetal tissue. Ectopic expression of CA2 in Arabidopsis causes male sterility in transgenic plants. In normal anther development, secondary thickenings of the endothecial cell wall cause anthers to open upon dehydration. Histological analyses revealed that abnormal secondary thickening prevents anther opening in 35S::CA2 transgenic plants. CA2 abundance in transgenic plants is increased 2–3 fold compared to wild-type plants as revealed by Western blotting analyses. Moreover, abundance of other members of the CA family, termed CA3 and CAL2, is increased in transgenic plants. Oxygen uptake measurements revealed that respiration in transgenic plants is mainly based on NADH reduction by the alternative NADH dehydrogenases present in plant mitochondria. Furthermore, the formation of reactive oxygen species (ROS) is very low in transgenic plants. We propose that reduction in ROS inhibits H2O2 dependent lignin polymerization in CA2 over-expressing plants, thereby causing male sterility. Gene bank accession number: AY085025 (At1g47260).  相似文献   

11.
12.
The FK506-binding proteins (FKBPs) are peptidyl prolyl cis/trans isomerases and the information gathered in the last 10 years reveals their involvement in diverse biological systems affecting the function and structure of target proteins. Members of the FKBP family were shown to be growth-regulated and participate in signal transduction. In this review we have chosen to focus on a few examples of the mammalian and plant systems in which members of the FKBP family have been demonstrated to affect the function of proteins or development. The technologies that enable production of knockout mice, Arabidopsis mutants and overexpression in transgenic organisms have revealed the contribution of FKBP to development in higher eukaryotes. It appears that members of the FKBP family have conserved some of their basic functions in the animal and plant kingdom, whereas other functions became unique. Studies that will take advantage of the full genome sequence available for Arabidopsis and the human genome, DNA chip technologies and the use of transgenic complementation system will contribute to the elucidation of the molecular mechanism and biological function of FKBPs.  相似文献   

13.
We report a novel chromatin-modulating factor, nuclear FK506-binding protein (FKBP). It is a member of the peptidyl prolyl cis-trans isomerase (PPIase) family, whose members were originally identified as enzymes that assist in the proper folding of polypeptides. The endogenous FKBP gene is required for the in vivo silencing of gene expression at the rDNA locus and FKBP has histone chaperone activity in vitro. Both of these properties depend on the N-terminal non-PPIase domain of the protein. The C-terminal PPIase domain is not essential for the histone chaperone activity in vitro, but it regulates rDNA silencing in vivo. Chromatin immunoprecipitation showed that nuclear FKBP associates with chromatin at rDNA loci in vivo. These in vivo and in vitro findings in nuclear FKBPs reveal a hitherto unsuspected link between PPIases and the alteration of chromatin structure.  相似文献   

14.
Trait improvement of turfgrass through genetic engineering is important to the turfgrass industry and the environment. However, the possible transgene escape to wild and non-transformed species raises ecological and commercial concerns. Male sterility provides an effective way for interrupting gene flow. We have designed and synthesized two chimeric gene constructs consisting of a rice tapetum-specific promoter (TAP) fused to either a ribonuclease gene barnase, or the antisense of a rice tapetum-specific gene rts. Both constructs were linked to the bar gene for selection by resistance to the herbicide glufosinate. Agrobacterium-mediated transformation of creeping bentgrass (cv Penn A-4) with both constructs resulted in herbicide-resistant transgenic plants that were also 100% pollen sterile. Mendelian segregation of herbicide resistance and male sterility was observed in T1 progeny derived from crosses with wild-type plants. Controlled self- and cross-pollination studies showed no gene transfer to non-transgenic plants from male-sterile transgenic plants. Thus, male sterility can serve as an important tool to control transgene escape in bentgrass, facilitating the application of genetic engineering in producing environmentally responsible turfgrass with enhanced traits. It also provides a tool to control gene flow in other perennial species using transgenic technology.  相似文献   

15.
The immunosuppressive drugs FK506 and cyclosporin A block T-lymphocyte proliferation by inhibiting calcineurin, a critical signaling molecule for activation. Multiple intracellular receptors (immunophilins) for these drugs that specifically bind either FK506 and rapamycin (FK506-binding proteins [FKBPs]) or cyclosporin A (cyclophilins) have been identified. We report the cloning and characterization of a new 51-kDa member of the FKBP family from murine T cells. The novel immunophilin, FKBP51, is distinct from the previously isolated and sequenced 52-kDa murine FKBP, demonstrating 53% identity overall. Importantly, Western blot (immunoblot) analysis showed that unlike all other FKBPs characterized to date, FKBP51 expression was largely restricted to T cells. Drug binding to recombinant FKBP51 was demonstrated by inhibition of peptidyl prolyl isomerase activity. As judged from peptidyl prolyl isomerase activity, FKBP51 had a slightly higher affinity for rapamycin than for FK520, an FK506 analog. FKBP51, when complexed with FK520, was capable of inhibiting calcineurin phosphatase activity in an in vitro assay system. Inhibition of calcineurin phosphatase activity has been implicated both in the mechanism of immunosuppression and in the observed toxic side effects of FK506 in nonlymphoid cells. Identification of a new FKBP that can mediate calcineurin inhibition and is restricted in its expression to T cells suggests that new immunosuppressive drugs may be identified that, by virtue of their specific interaction with FKBP51, would be targeted in their site of action.  相似文献   

16.
FKBP65 is a protein of the endoplasmic reticulum that is relatively abundant in elastin-producing cells and is associated with tropoelastin in the secretory pathway. To test an earlier suggestion by Davis and co-workers that FKBP65 could act as an intracellular chaperone for elastin, we obtained recombinant FKBP65 (rFKBP65) by expressing it in E.?coli and examined its effect on the coacervation characteristics of chicken aorta tropoelastin (TE) using an in vitro turbidimetric assay. Our results reveal that rFKBP65 markedly promotes the initiation of coacervation of TE without significantly affecting the temperature of onset of coacervation. This effect shows saturation at a 1:2 molar ratio of TE to rFKBP65. By contrast, FKBP12, a peptidyl prolyl isomerase, has a negligible effect on TE coacervation. Moreover, the effect of rFKBP65 on TE coacervation is unaffected by the addition of rapamycin, an inhibitor of peptidyl prolyl isomerase (PPIase) activity. These observations rule out the involvement of the PPIase activity of rFKBP65 in modulating the coacervation of TE. Additional experiments using a polypeptide model of TE showed that rFKBP65, while promoting coacervation, may retard the maturation of this model polypeptide into larger aggregates. Based on these results, we suggest that FKBP65 may act as an elastin chaperone in vivo by controlling both the coacervation and the maturation stages of its self-assembly into fibrils.  相似文献   

17.
OsSPX1, a rice SPX domain gene, involved in the phosphate (Pi)‐sensing mechanism plays an essential role in the Pi‐signalling network through interaction with OsPHR2. In this study, we focused on the potential function of OsSPX1 during rice reproductive phase. Based on investigation of OsSPX1 antisense and sense transgenic rice lines in the paddy fields, we discovered that the down‐regulation of OsSPX1 caused reduction of seed‐setting rate and filled grain number. Through examination of anthers and pollens of the transgenic and wild‐type plants by microscopy, we found that the antisense of OsSPX1 gene led to semi‐male sterility, with lacking of mature pollen grains and phenotypes with a disordered surface of anthers and pollens. We further conducted rice whole‐genome GeneChip analysis to elucidate the possible molecular mechanism underlying why the down‐regulation of OsSPX1 caused deficiencies in anthers and pollens and lower seed‐setting rate in rice. The down‐regulation of OsSPX1 significantly affected expression of genes involved in carbohydrate metabolism and sugar transport, anther development, cell cycle, etc. These genes may be related to pollen fertility and male gametophyte development. Our study demonstrated that down‐regulation of OsSPX1 disrupted rice normal anther and pollen development by affecting carbohydrate metabolism and sugar transport, leading to semi‐male sterility, and ultimately resulted in low seed‐setting rate and grain yield.  相似文献   

18.
R K Harrison  R L Stein 《Biochemistry》1990,29(16):3813-3816
Substrate specificities, as reflected in kc/Km, were determined for the peptidyl prolyl cis-trans isomerase activities of cyclophilin and the FK-506 binding protein (FKBP). The substrates investigated were peptides of the general structure Suc-Ala-Xaa-Pro-Phe-p-nitroanilide, where Xaa = Gly, Ala, Val, Leu, Phe, His, Lys, on Glu. While kc/Km for cyclophilin-catalyzed isomerization shows little dependence on Xaa, kc/Km values for FKBP-catalyzed isomerization display a marked dependence on Xaa and vary over 3 orders of magnitude. An important outcome of this work is the discovery that Suc-Ala-Leu-Pro-Phe-pNA is a reactive substrate for FKBP (kc/Km = 640,000 M-1 s-1). This substrate can be used with FKBP concentrations that are low enough to allow, for the first time, accurate determinations of Ki values for tight-binding inhibitors of FKBP. Using this new assay, we found that FK-506 inhibits FKBP with Ki = 1.7 +/- 0.6 nM. The results of this work support the hypothesis that cyclophilin and FKBP are members of a family of peptidyl prolyl cis-trans isomerases and that the members of this family possess distinct substrate specificities that allow them to play diverse physiologic roles.  相似文献   

19.
The successful use of transgenic plants depends on the strong and stable expression of the heterologous genes. In this study, three introns (PSK7-i1 and PSK7-i3 from Petunia and UBQ10-i1 from Arabidopsis) were tested for their ability to enhance the tapetum-specific expression of a split barnase transgene. We also analyzed the effects of introducing multiple copies of flexible peptide linkers that bridged the fusion domains of the assembled protein. The barnase fragments were assembled into a functional cytotoxin via intein-mediated trans-splicing, thus leading to male sterility through pollen ablation. A total of 14 constructs carrying different combinations of introns and peptide linkers were transformed into wheat plants. The resulting populations (between 41 and 301 independent plants for each construct) were assayed for trait formation. Depending on which construct was used, there was an increase of up to fivefold in the proportion of plants exhibiting male sterility compared to the populations harboring unmodified constructs. Furthermore, the average barnase copy number in the plants displaying male sterility could be reduced. The metabolic profiles of male-sterile transgenic plants and non-transgenic plants were compared using gas chromatography–mass spectrometry. The profiles generated from leaf tissues displayed no differences, thus corroborating the anther specificity of barnase expression. The technical advances achieved in this study may be a valuable contribution for future improvement of transgenic crop systems.  相似文献   

20.
H J Cho  S Kim  M Kim  B D Kim 《Molecules and cells》2001,11(3):326-333
The ribosome inactivating protein (RIP) gene from D. sinensis was used as a cytotoxin gene to induce male sterility in tobacco plants. The TA29 promoter, obtained by PCR amplification from tobacco, was fused to the RIP cDNA, and the chimaeric molecule was then introduced into tobacco plants by Agrobacterium-mediated transformation. Out of twenty-one independent transformants, twenty transgenic tobacco plants exhibited male sterility. Southern blot analysis revealed that four of the transgenic plants contained a single copy of the RIP gene, while the rest of the transgenic tobacco plants had two to four copies of the gene. The transgenic male sterile plants set seeds normally when pollinated with pollens from untransformed control plants, indicating that the RIP gene does not affect the pistil development. Furthermore, the seed yield of the transgenic plant was similar to that of the untransformed, self-pollinated control plant. A light microscopic observation of anther cross sections clearly showed that the tapetal tissue of the anther was selectively and completely destroyed causing male sterility. This study suggests that the RIP gene can be used as a cytotoxin gene for induction of male sterility in the plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号