首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both ethanol and silver ions have been shown to affect ion transport across various epithelia. This investigation was principally undertaken to further define mechanisms of silver ions and ethanol, and their possible interactions, on sodium transport across toad skin. Isolated toad skin, mounted between identical oxygenated amphibian bicarbonate Ringer solutions, maintained stable transepithelial potential differences (serosa positive) and short-circuit currents for several hours at 25 degrees C. It was observed that (1) ethanol inhibited the active transcellular component of sodium absorption and this effect was reversible; (2) inhibition of sodium transport by ethanol was directly proportional to the applied concentration; (3) pretreatment with silver ions prevented any ethanol effects; and (4) pretreatment with ethanol prevented any silver ion effects. It was concluded from these results that ethanol induced its inhibitory effects on membrane phospholipids thereby perturbing the function of a sulfhydryl ligand, while silver ion or silver chloride complex binding to this ligand would maintain its function in sodium transport despite the presence of ethanol.  相似文献   

2.
1. Silver stimulated short-circuit current and transepithelial potential difference. 2. Cysteine inhibited the silver-induced short-circuit current. 3. There was a dose-response inhibition of silver-induced short-circuit current by cysteine. 4. The silver-induced short-circuit current is carried by a net active sodium transfer from the outside to the inside bathing solution.  相似文献   

3.
Since addition of 10?4M AgNO3 to either an inside or outside bathing medium containing sulfate had no effect on short-circuit current (SCC), a measure of net Na+ transport, or transmural potential difference (PD) in the isolated surviving toadskin, the effect of adding Ag+ to chloridebased Ringer solution was studied. Exposure of the outside bathing medium to 10?4M AgNO3 resulted in, after a 20 minute time lag, a 250 ± 51% (N=6) increase in SCC within 100 minutes as opposed to an immediate response which had a 350 ± 26% (N=8) increase in SCC by addition of 10?4M AgNO3 to the inside bathing solution. The dose response curve relating change in SCC to the Ag+ concentration added to the inside bathing medium was saturable at 10?5M Ag+. The uptake of Ag+ by the tissue, as measured by atomic absorption spectrophotometry, showed no correlation to the relative change in SCC. Na+ flux experiments under short-circuited conditions showed that Ag+Cl? stimulated only the unidirectional outside to inside Na+ flux. These results indicate that Ag+Cl? enhances active sodium transport and that Ag+Cl? binding to specific membrane groups is required for this effect.  相似文献   

4.
5.
6.
The Cl- -current through toad skin epithelium depends on the potential in a way consistent with a potential-controlled Cl- permeability. Computer analysis of the Koefoed-Johnsen Ussing two-membrane model provided with constant membrane permeabilities indicates that the voltage- and time-dependent currents are not caused by a trivial Goldmand-type rectification and ion redistributions following transepithelial potential pertubations. Extended with a dynamic Cl- permeability in the apical membrane according to a Hodgkin-Huxley kinetic scheme, the model predicts voltage clamp data which closely resemble experimental observations. This extension of the classic frog skin model implies that the Cl- permeability is activated by a voltage change caused by the inward Na+ current through the apical membrane.  相似文献   

7.
8.
9.
10.
11.
Summary Urea and other small amides cross the toad urinary bladder by a vasopressinsensitive pathway which is independent of somotic water flow. Amide transport has characteristics of facilitated transport: saturation, mutual inhibition between amides, and selective depression by agents such as phloretin. The present studies were designed to distinguish among several types of transport including (1) movement thought a fixed selective membrane channel and (2) movement via a mobile carrier. The former wold be characterized by co-transport (acceleration of labele amide flow in the direction of net flow in the opposite direction). Mucosal to serosal (MS) and serosal to mucosal (SM) permeabilities of labeled amides were determined in paired bladers. Unlabeled methylurea, a particularly potent inhibitor of amide movement, was added to either the M or S bath, while osmotic water flow was eliminated by addition of ethylene glycol to the opposite bat. Co-transport of labeled methylurea and, to a lesser degree, acetamide and urea with unlabeled methylurea was observed. Co-transport of the nonamides ethylene glycol and ethanol could not be demonstrated. Methylurea did not alter water permeability or transmembrane electrical resistance. The demonstration of co-transport is consistent with the presence of ADH-sensitive amide-selective channcels rather than a mobile carrier.  相似文献   

12.
13.
14.
Summary Toad urinary bladders were exposed on either their mucosal or serosal surfaces, or on both surfaces, to medium in which sodium was replaced completely by lithium. With mucosal lithium Ringer's, serosal sodium Ringer's, short-circuit current (SCC) declined by about 50 percent over the first 60 min and was then maintained over a further 180 min. Cellular lithium content was comparable to the sodium transport pool. With lithium Ringer's serosa, SCC was abolished over 60 to 120 min whether the mucosal cation was sodium or lithium. Measurements of cellular ionic composition revealed that the epithelial cells gained lithium from both the mucosal and serosal media. With lithium Ringer's mucosa and serosa, cells lost potassium and gained lithium and a little chloride and water, but these changes in cellular ions could not account for the current flow across the tissue under these conditions, which must, therefore, have been carried by a transepithelial movement of lithium itself. The inhibition by serosal lithium of SCC was overcome by exposure of the mucosal surface of the bladders to amphotericin B. Thus it reflected, predominantly, an inhibition of lithium entry to the cells across the apical membrane. It is suggested that this inhibition is a consequence of cellular lithium accumulation.  相似文献   

15.
16.
In this work we present data which show stimulation of Cl- transport in the isolated toad skin by four agonists: L-isoproterenol, L-adrenalin, angiotensin II and ADH. This response was demonstrated by raising mucosal amiloride concentration to block the sodium transport in the skin. With transepithelial sodium influx almost completely inhibited, it was likely that the response reflected transport events in the glands. Inhibition of the bioelectric parameters by removing chloride from the serosal bathing medium in the amiloride-inhibited preparation eliminated the response to all four agents, indicating that these responses are chloride dependent. The similarity of the bioelectric responses of the amiloride-treated preparation to db cAMP and to the four agents tested in this work add further evidence that this second messenger may account largely for the Cl- transport mechanism in the toad skin glands by increasing the apical membrane permeability to Cl-.  相似文献   

17.
Summary In amphibian epithelia, amiloride reduces net sodium transport by hindering the entry of sodium to the active transport mechanism, that is, by increasing the series resistance (R ser ). Theoretically, therefore, analysis of amiloride-induced changes in potential differences and short-circuit current should yield numerical estimates of all the parameters in the equivalent electrical circuit of the sodium transport mechanism.The concept has been explored by analysis of such changes in toad skins (Xenopus laevis) bathed in hypotonic sulphate Ringer's, after exposure to varying doses of amiloride, or to amphotericin, dinitrophenol or Pitressin.The estimated values ofR ser , of the electromotive force of the sodium pump (E Na), and of the shunt resistance (R sh ) were independent of the dose of amiloride employed. Skins bathed in hypotonic sulphate Ringer's exhibited a progressive rise inE Na. Amphotericin produced a fall inR ser , while dinitrophenol caused a fall inE Na; washout of the drugs reversed these effects. Pitressin produced a fall in bothR ser andR sh , with a rise inE Na. These results are in accord with earlier suggestions regarding the site(s) of action of these agents.  相似文献   

18.
Summary The optical sectioning video imaging technique was used for measurements of the volume of mitochondria-rich (m.r.) cells of the isolated epithelium of toad skin. Under short-circuit conditions, cell volume decreased by about 14% in response to bilateral exposure to Cl-free (gluconate substitution) solutions, apical exposure to ouabain resulted in a large increase in volume, which could be prevented either by the simultaneous application of amiloride in the apical solution or by the exposure of the epithelium to bilateral Cl-free solutions. Unilateral exposure to a Cl-free solution did not prevent ouabain-induced cell swelling. It is concluded that m.r. cells have an amiloride-blockable Na conductance in the apical membrane, a ouabain-sensitive Na pump in the basolateral membrane, and a passive Cl permeability in both membranes. From the initial rate of ouabain-induced cell volume increase the active Na current carried by a single m.r. cell was estimated to be 9.9±1.3 pA. Voltage clamping of the preparation in the physiological range of potentials (0 to –100 mV, serosa grounded) resulted in a cell volume increase with a time course similar to that of the stimulation of the voltage-dependent activation were prevented by exposure of the tissue to a Cl-free apical solution. The steady-state volume of the m.r. cells increased with the clamping voltage, and at –100 mV the volume was about 1.15 times that under short-circuit conditions. The rate of volume increase during current passage was significantly decreased by lowering the serosal K concentration (K i ) to 0.5mm, but was independent of whether K i was 2.4, 5, or 10mm. This indicates that the K conductance of the serosal membrane becomes rate limiting for the uptake of KCl when K i is significantly lower than its physiological value. It is concluded that the voltage-activated Cl currents flow through the m.r. cells and that swelling is caused by an uptake of Cl ions from the apical bath and K ions from the serosal bath. Bilateral exposure of the tissue to hypo- or hypertonic bathing solutions changed cell volume without detectable changes in the Cl conductance. The volume response to external osmotic perturbations followed that of an osmometer with an osmotically inactive volume of 21%. Using this value and the change in cell volume in response to bilateral Cl-free solutions, we calculated an intracellular steady-state Cl concentration of 19.8±1.7mm (n=6) of the short-circuited cell.  相似文献   

19.
The effects of Chlorpromazine (Cpz) on the potential difference (PD), short-circuit current (SCC), and total conductance (GT) on Pleurodema thaul skin and on the skin response to dopamine were analysed. Cpz applied to the serosal surface in concentrations ranging from 1.25 × 10−5 to 1.25 × 10−4 M significantly increased the PD, the SCC and the GT. The effect of Cpz was abolished by BaCl2 but not by alpha or beta adrenergic receptor antagonists. Cpz decreased the skin response to noradrenaline and to angiotensin 11. Dopamine (5 × 10−7 M to 5 × 10−6M) also induced a significant increase in the PD, SCC and GT. This response was antagonized by propranolol but not by dibenamine. Additive effects of dopamine and Cpz were also found. The amiloride test showed that Cpz decreased ENa., the driving force of sodium and increased gna, which represents active sodium conductance. These results are consistent with the hypothesis that Cpz increases transport across the isolated toad skin by increasing mucosal and serosal permeability. The results also suggest that Cpz decreases membrane cabnodulin availability.  相似文献   

20.
This study aimed to investigate the effect of dobutamine on water transport across toad bladder epithelium. Water flow through the membrane was measured gravimetrically in bladder sac preparations. Dobutamine had no effect on basal water transport, but partially inhibited transport stimulated by vasopressin. Similarly, dobutamine exerted no influence on the hydrosmotic response to 8-chlorophenylthio-cAMP, but interfered with the response to phosphodiesterase inhibitor 1-methyl-3-isobutyl-xanthine. These results demonstrate that this catecholamine may inhibit vasopressin-stimulated water transport at a site prior to cAMP formation. The use of propranolol was ineffective in blocking the effect of dobutamine on transport stimulated by vasopressin, indicating that beta-adrenoceptors play no role in this effect. On the other hand, phentolamine significantly reduced the effect of dobutamine, indicating the involvement of alpha-adrenoceptors in such event. Rauwolscine also inhibited the effect of dobutamine, pointing to the specific contribution of the alpha(2)-adrenoceptors to this effect. Taken together, the results of this study demonstrate that dobutamine inhibits vasopressin-stimulated water transport in toad bladders through a mechanism mediated by the stimulation of alpha(2)-adrenoceptors, thus suggesting that such a drug may exert a direct cellular effect on membrane permeability to water in transporting epithelia. The current study may provide a better understanding of the effects of dobutamine on renal function by contributing towards the elucidation of its action mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号