首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
我们先前的研究表明,植物多糖抑制体外培养的小鼠肉瘤S180细胞增殖并使细胞膜磷脂含量减少,同时抑制膜磷脂酰肌醇转换。为进一步探讨植物多糖与膜磷脂的关系,本文采用毛细管柱气相色谱法分析了茯苓多糖(PPS)、刺五加多糖(ASPS)与S180细胞一同温育24h后,细胞膜磷脂和中性脂的脂肪酸组成变化,发现中性脂的脂肪酸组成和不饱和性不受影响,磷脂的脂肪酸组成发生明显改变,花生四烯酸(C(20:4))和豆蔻酸(C(14:0))降低(P<0.05或P<0.01),与用作阳性药物对照的氨甲喋呤作用相似。本文对膜磷脂脂肪酸组成变化的意义结合先前的实验结果进行了讨论,认为在PPS、ASPS的抗肿瘤机理中,细胞膜磷脂生化特性的改变是重要环节。  相似文献   

2.
干旱条件下冬小麦幼苗根细胞膜脂组成的变化   总被引:3,自引:0,他引:3  
干旱条件下小麦幼苗根膜脂总脂肪酸含量、磷脂含量及总脂肪酸双键指数均下降,而游离甾醇含量却明显增加,结果导致游离甾醇/磷脂比率上升。用薄层层析法测得小麦根细胞磷脂主要由磷脂酰胆碱(PC)、磷脂酰乙醇胺(PE)、磷脂酰肌醇(PI)及磷脂酸(PA)组成。干旱降低了各种磷脂的含量,但不改变其相对配比。文中讨论了膜脂代谢变化与植物抗旱性的关系  相似文献   

3.
水分逆境对吊兰叶片脂质组成的影响   总被引:1,自引:0,他引:1  
包宏 《植物学通报》1999,16(5):598-601
测定了吊兰( Chlorophytum comosum) 在干旱、正常浇水和渍水三种供水条件下叶片的磷脂组成、膜脂和总磷脂的脂肪酸组成,以及磷脂中4 种主要组分PG、PE、PC 和PI的脂肪酸组成,观察到干旱使磷脂中PE 的相对含量增加,PE 脂肪酸中16 :0 明显减少,而膜脂、总磷脂和PC、PI中饱和脂肪酸增加,但PG脂肪酸组成变化很小  相似文献   

4.
儿茶素是一种可以短时间内杀死植物细胞的植物毒素,由于具有强的植物毒性,儿茶素是开发除草剂的理想化合物,它可以诱导植物根系统的死亡。为了研究植物根细胞膜脂对化学胁迫的响应规律,我们运用高通量的脂类组学方法检测了拟南芥根中膜脂分子的组成,比较了儿茶素处理下拟南芥野生型(WS)及磷脂酶Dδ缺失突变体(PLDδ KO)根中膜脂分子的组成情况、膜脂含量、双键指数及碳链长度值。结果发现,儿茶素处理拟南芥根90min后,二半乳糖基二酰甘油(DGDG)、单半乳糖基二酰甘油(MGDG)、磷脂酰甘油(PG)、磷脂酰胆碱(PC)及磷脂酰肌醇(PI)的总含量在WS与PLDδ KO植株根中都显著下降,磷脂酰乙醇胺(PE)和磷脂酰丝氨酸(PS)在WS中下降,在PLDδ KO中上升。儿茶素处理导致PLDδ KO植株的PC/PE比值显著下降,WS植株PS碳链长度显著增加。上述结果说明儿茶素处理后,磷脂酶Dδ缺失突变体膜不稳定性增加,PLDδ KO植株对儿茶素胁迫更加敏感。  相似文献   

5.
用生物膜的拆离与重建方法将从牛脑皮层膜中纯化的激活型GTP结合蛋白(Gs)和腺苷酸环化酶(AC)在含有不同极性头部或不同脂肪酸侧链的磷脂组成的脂质体上重建形成脂酶体,测定脂酶体中AC的基础活力及Gs激活AC的活力。实验结果表明,磷脂影响AC的基础活力和Gs激活AC活力的顺序依次为:PE>PS>PC;含不同脂肪酸侧链的混合磷脂对Gs的激活活力的影响大于含单一脂肪酸侧链的纯磷脂,如PEDPPE,PSDPPS,PCDPPC。含不同脂肪酸侧链的磷脂影响Gs的活力的顺序为DLPC>DMPC>DPPC。用反映磷脂分子的堆积程度的荧光探剂MC540和脂双层的流动性变化的DPH以及专一性标记蛋白质巯基(-SH)基团的荧光探剂acrylodan的测定结果表明,不同磷脂影响Gs的活力的差异主要是由于脂质物理状态的不同所致。  相似文献   

6.
磷脂转运蛋白的结构及其生物学意义朱全胜,查锡良(上海医科大学生化教研室,上海200032)关键词磷脂转运蛋白,磷脂,细胞膜细胞膜由磷脂双层组成,双分子层中的磷脂分子时刻处在变化之中,不仅表现为磷脂分子从合成部位持续流向细胞膜及膜脂反向流到细胞内,而且...  相似文献   

7.
细胞膜的流动性和渗透性的改变是植物衰老过程中一个内在的、具有破坏性的变化。膜脂组成中,溶血磷脂的出现是膜伤害的一个重要标志;膜脂双键数目的变化是影响膜流动性的主要因素。应用脂类组学的方法,检测了拟南芥野生型及其磷脂酶Dδ (PLDδ)缺失型突变体在离体诱导的、脱落酸(abscisic acid, ABA)和乙烯(ethylene)促进的衰老过程中,溶血磷脂(lysophospholipids, lysoPLs)的分子变化,并通过计算膜脂双键指数(double bond index, DBI)表征了膜流动性的变化。结果表明,在离体诱导的衰老过程和乙烯促进的衰老过程中,溶血磷脂的总含量和各溶血磷脂分子的变化不显著,而在ABA促进的衰老过程中溶血磷脂总含量和部分溶血磷脂分子均显著升高;在上述三种衰老处理下,总膜脂的DBI均下降,但是离体诱导和激素促进的的衰老过程中各类膜脂的DBI的变化却不同。同时我们还发现,抑制PLDδ基因表达降低了ABA促进的衰老过程中溶血磷脂的产生、减缓了ABA和乙烯促进的衰老过程中总的膜脂的DBI的降低。  相似文献   

8.
低温胁迫对类囊体膜脂代谢的影响   总被引:6,自引:1,他引:5  
类囊体膜主要由膜脂、膜蛋白及一些光合色素等成分组成,它是植物进行光合作用的场所.低温能通过影响类囊体膜的结构而影响植物的光合作用.简述了类囊体膜的组成和功能,以及低温胁迫下类囊体膜脂及其脂肪酸组成的变化.简要介绍了膜脂与光抑制的关系,以及利用分子生物学手段研究三烯脂肪酸与植物抗冷性关系的相关进展.  相似文献   

9.
类囊体膜主要由膜脂、膜蛋白及一些光合色素等成分组成,它是植物进行光合作用的场所。低温能通过影响类囊体膜的结构而影响植物的光合作用。简述了类囊体膜的组成和功能,以及低温胁迫下类囊体膜脂及其脂肪酸组成的变化。简要介绍了膜脂与光抑制的关系,以及利用分子生物学手段研究三烯脂肪酸与植物抗冷性关系的相关进展。  相似文献   

10.
包宏 《植物学报》1999,16(5):598-601
测定了吊兰(Chlorophytum comosum)在干旱、正常浇水和渍水三种供水条件下叶片的磷脂组成、膜脂和总磷脂的脂肪酸组成,以及磷脂中4种主要组分PG、PE、PC和PI的脂肪酸组成,观察到干旱使磷脂中PE的相对含量增加,PE脂肪酸中16:0明显减少,而膜脂,总磷脂和PC、PI中饱和脂肪酸增加,但PG脂肪酸组成变化很小。  相似文献   

11.
水稻干胚膜脂脂肪酸组分差异性分析   总被引:7,自引:0,他引:7  
水稻干胚膜脂主要由磷脂酰胆碱、磷脂酰乙醇胺、磷脂酰肌醇、磷脂酰甘油、单半乳糖双甘油脂和双半乳糖双甘油脂组成,其脂肪酸组成主要是棕榈酸、油酸、亚油酸和亚麻酸。干胚线粒体和花粉粒膜脂及其脂肪酸组分与干胚膜脂相似,但配比有所不同。干胚膜脂的脂肪酸不饱和度与水稻品种遗传特性(如低温适应性)有关,而且也受胚形成期温度的影响。脂肪酸不饱和度与温度呈负相关。膜类脂不饱和度的差异主要是由脂肪酸组或的不同配比引起;温度引起的脂肪酸不饱和度的差异是由油酸和亚油酸含量上的变化引起的。干胚膜脂脂肪酸不饱和度与开花结实期低温适应性的关系可能作为水稻开花结实期抗冷性鉴定的一个指标,值得进一步加以研究。  相似文献   

12.
本研究将爪蟾卵母细胞暴露于黄嘌呤氧化酶-次黄嘌呤(XO-HPX)反应系统,观察自由基对细胞膜及其乙酰胆碱(Ach)受体的损伤,结果表明,在自由基的作用下膜被动电学参数发生显著变化,其效果与XO-HPX的浓度和作用时间成正比,XO-HPX作用2h不影响膜功能,大于4h各项膜功能指标明显下降,Ach极化反应减弱,上升时间延长,去极化幅度下降,下降1/2时间缩短;超氧化物歧化酶(SOD)可消除自由基对上述膜参数的影响。枸杞多糖可以使损伤膜的被动电学参数改善,但对Ach去极化反应无恢复作用。结果提示,XO-HPX反应系统是通过产生超氧阴离子自由基造成细胞膜和Ach受体的损伤,枸杞多糖可对抗自由基对质膜的作用,但对M样受体无效。  相似文献   

13.
莱氏衣原体膜上Mg~(2+)-ATPase用DOC溶解后,经Sepharose-6B和DEAE-CelluloseDE-52离子交换柱,得到了部分纯化的Mg~(2+)ATPase,并将此ATPase与不同极性头部的磷脂和膜糖脂重组,研究了不同的极性头部的磷脂和膜糖脂对ATPase活性的影响。此酶的活性不依赖酸性磷脂,PG、DPG、大豆磷脂等明显抑制酶活性,中性磷脂DMPC、PE、PC则能增加酶活性,其中尤以非双层脂PE的作用最为明显。从莱氏衣原体膜上提取的糖脂(MGDG,DGDG)单独和ATPase重组时,酶活性增加并不明显,当MGDG和DGDG以等比例混合时,能大大地增加酶活性。这表明Mg~(2+)-ATPase的活性很大程度上与磷脂的表面电荷及磷脂的组成相关。  相似文献   

14.
支原体是许多疾病的病原及组织培养和细胞培养中常见的污染物。目前常用抗生素抑制其生长。本文以莱氏衣原体AIH089为材料,用电子顺磁共振波谱技术研究红霉素和土霉素对莱氏衣原体膜脂流动性的影响,并用薄板层和气色谱技术分析膜上磷脂和脂肪酸的组成,发现红霉素和土霉素能使莱氏衣原体膜上心磷脂和硬脂酸的含量减少,使棕榈酸和油酸的含量增加,提高膜脂的流动性。改变膜脂组成,提高膜脂的流动性可能是这两种抗生素抑制莱氏衣原体生长的机制之一。  相似文献   

15.
外源胆固醇对水稻幼苗膜脂组成及抗冷力的影响   总被引:1,自引:0,他引:1  
分析了水稻幼苗低温胁迫前后膜脂和膜脂脂肪酸含量变化。结果表明,经胆固醇处理的幼苗叶和根细胞膜脂中LPC、PS和PG含量比对照下降,PA含量增加也较少。胆固醇处理的幼苗叶和根棕榈酸(16:0)增加量和亚麻酸(18:3)与IUFA减少量均明显比对照少。试验结果证明,水稻幼苗叶片和根系的抗冷力与PA含量和脂肪酸不饱和程度变化有密切关系。外源胆固醇处理水稻幼苗能阻止低温对膜脂的破坏作用,提高幼苗抗低温胁迫  相似文献   

16.
采用高效液相色谱(HPLC)和荧光偏振技术测定了42例正常人红细胞膜和血浆游离脂肪酸(FFA)及膜微粘度,并探讨了膜脂肪酸和血浆FFA构成与膜微粘度之间的关系。结果表明:正常人红细胞膜主要由廿二碳六烯酸(C22∶6)、花生四烯酸(C20∶4)、亚油酸(C18∶2)、软脂酸(C16∶0)、油酸(C18∶1)和硬脂酸(C18∶0)等六种脂肪酸组成。血浆FFA构成与膜脂肪酸相似,但不含C22∶6而含十四烷酸(C14∶0)。红细胞膜各脂肪酸含量大多与其血浆浓度呈明显正相关。红细胞膜微粘度与膜软脂酸和硬脂酸呈明显正相关,与膜廿二碳六烯酸和花生四烯酸呈明显负相关。提示红细胞膜脂肪酸组成受血浆FFA成分影响;而红细胞膜脂肪酸成分对膜微粘度亦有重要影响  相似文献   

17.
植物寒害和抗寒机制中膜与蛋白质研究的进展   总被引:5,自引:0,他引:5  
低温对细胞膜体系的损伤是植物寒害的重要机制。膜体系的稳定性与植物的抗寒性成正相关,但不同的细胞膜体系对细胞外结冰的敏感程度是不同的。抗寒锻炼中膜磷脂的生物合成与抗寒力的发展有密切关系,但不是抗寒力发展的前提条件,可能是对发展高水平的抗寒力起作用;而膜脂脂肪酸不饱和度的增加是植物对低温生长的反应,与抗寒性无直接关系。近年来膜脂-膜蛋白相互关系的研究引起研究者们的重视,已在多种植物低温锻炼中观察到抗寒特异蛋白质合成与基因表达均有所改变,并发现抗寒力的诱导主要是在转录水平上的调控。  相似文献   

18.
植物寒害和抗寒机制中膜与蛋白质研究的进展   总被引:1,自引:0,他引:1  
低温对细胞膜体系的损伤是植物寒害的重要机制。膜体系的稳定性与植物的抗寒性成正相关,但不同的细胞膜体系对细胞外结冰的敏感程度是不同的。抗寒锻炼中膜磷脂的生物合成与抗寒力的发展有密切关系,但不是抗寒力发展的前提条件,可能是对发展高水平的抗寒力起作用;而膜脂脂肪酸不饱和度的增加是植物对低温生长的反应,与抗寒性无立直接关系。近年来膜脂 — 膜蛋白相互关系的研究引起研究者们的重视,已在多种植物低温锻炼中观察到抗寒特异蛋白质合成与基因表达均有所改变,并发现抗寒力的诱导主要是在转录水平上的调控。  相似文献   

19.
探究白茶多糖(white tea polysaccharide,WTP)、枸杞多糖(Lycium barbarum polysaccharide,LBP)、桑叶多糖(mulberry leaf polysaccharide,MLP)结构与预防高脂饮食小鼠肥胖活性的关系。方法:对多糖理化成分、分子质量、单糖组成、紫外以及红外光谱进行分析;通过高脂饲料喂养同时配合灌胃处理构造小鼠预防肥胖模型,以Orlistat为对照,研究预防肥胖活性,q PCR测定小鼠肝脏中脂质代谢相关基因表达水平,同时测定血清转氨酶水平。结果:WTP、LBP、MLP重均分子质量分别为18 180、22 410、34 430U;紫外及红外光谱显示,3种植物多糖为半乳糖吡喃环蛋白缀合物,在预防肥胖方面具有明显优势,可将高脂饮食引起的体重增长分别降低26.63%、13.05%、11.52%,且WTP、LBP优于Orlistat。3种植物多糖均能降低脂肪湿重,WTP、LBP均能降低脂肪细胞直径,但MLP对于脂肪细胞直径的降低效果并不明显。三者均上调脂质分解基因的表达,下调脂质合成基因的表达,脂质代谢紊乱状态得到有效改善。结论:本实验剂量下,WTP、LBP、MLP均具有良好的预防肥胖功效,且WTP预防肥胖效果优于LBP和MLP。WTP对于高脂饮食引起的脂肪肝具有良好的预防效果。  相似文献   

20.
叙述了用时间分辨率纳秒荧光技术研究大豆磷脂或合成磷脂模型膜(脂质体)的物理状态变化与荧光寿命以及时间分辨各向异性测量参数变化相关性的实验结果。用荧光探剂MC540标记模型膜的结果表明,荧光寿命(τ)的变化与脂质/探剂比例、磷脂组成、磷脂的极性头部、脂肪酸酰链长度等有关。用DPH(1,6-diphenyl-1,3,5-hexatriene)标记磷脂模型膜的时间分辨各向异性分析结果表明,序参数(S)、  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号