首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
K M Reed  J W Sites  I F Greenbaum 《Génome》1992,35(3):398-408
Meiosis in males of the F5 cytotype of Sceloporus grammicus was examined through the analysis of synaptonemal complexes (SCs), diakinetic (metaphase I) nuclei, and secondary spermatocytes (metaphase II configurations). These data allowed the establishment of criteria for substaging of zygonema and pachynema, morphological characterization of the SC complement, and comparison of the orientation and segregation of the autosomes and sex chromosomes. The analysis of nuclei from all stages of meiotic prophase I (leptonema through diakinesis) provided a useful means of partitioning the temporal sequence of early meiotic events. Three substages of zygonema (Z1-Z3) were established, based on the extent of synapsis of the microchromosomal and macrochromosomal elements. Synaptic initiation of the autosomes and sex chromosomes was synchronous. Two patterns of macrochromosomal synapsis were observed. Whereas synapsis of the biarmed elements was biterminal (i.e., progressing from both ends of the homologs), synapsis of the acrocentric elements was uniterminal involving only the distal (noncentromeric) ends of the homologs. Unique sex-chromosomal characteristics were not observed in S. grammicus and, therefore, the substaging of pachynema was based on subjective criteria. Examination of diakinesis--metaphase I and metaphase II configurations indicated low levels of diakinetic irregularities with balanced segregation of the autosomal bivalents and the sex-chromosomal trivalent.  相似文献   

2.
The influence of X-autosome Robertsonian (Rb) translocation hemizygosity on meiotic chromosome behaviour was investigated in male mice. Two male fertile translocations [Rb(X.2)2Ad and Rb(X.9)6H] and a male sterile translocation [Rb(X.12)7H] were used. In males of all three Rb translocation types, the acrocentric homologue of the autosome involved in the rearrangement regularly failed at pachytene to pair completely with its partner in the Rb metacentric. The centric end of the acrocentric autosome was found regularly to associate either with the proximal end of the Y chromosome or with the ends of nonhomologous autosomal bivalents; the proportions of cells with such configurations varied between pachytene substages and genotypes. Various other categories of synaptic anomaly, such as nonhomologous synapsis, foldback pairing and interlocks, affected the sex chromosome multivalent in a substantial proportion of cells. In one of the Rb(X.12)7H males screened, an unusual, highly aneuploid spermatocyte that contained trivalent and bivalent configurations was found. Rb translocation hemizygosity did not appear to increase to a significant extent the incidence of X-Y pairing failure at pachytene, although the incidence was elevated at metaphase I in Rb(X.12)7H animals. Overall, a comparison of the frequencies and types of chromosome pairing anomalies did not suggest that these were important factors in the aetiology of infertility in males carrying the Rb(X.12)7H translocation.  相似文献   

3.
There is extensive evidence for the existence of a meiotic checkpoint that acts to eliminate spermatocytes that fail to achieve full sex chromosome synapsis at the pachytene stage of the first meiotic prophase. XYY mice are nearly always sterile, with clear signs of meiotic impairment, and sex chromosome asynapsis has been proposed to underlie this impairment. However, a study of XYY*(X) mice (mice having three sex chromosomes but only a single dose of Y genes) revealed that these mice are fertile, and thus implicated Y gene dosage as a major factor in the sterility of XYY mice. To address this question further, sex chromosome synapsis and spermatogenic proficiency were compared between XYY*(X) and XYY mice generated in the same litters. This established that differences in spermatogenic proficiency within and between the two genotypes correlated with the frequency of radial trivalent formation (full sex chromosome synapsis); XYY*(X) males, as a group, had double the radial trivalent frequency of XYY males. This observation provides strong support for the view that sex chromosome asynapsis (or some consequence thereof), rather than Y gene dosage, is the major factor leading to the meiotic impairment of XYY mice.  相似文献   

4.
Li L  Gerecke EE  Zolan ME 《Chromosoma》1999,108(6):384-392
We have used fluorescence in situ hybridization to examine homolog pairing during the synchronous meiosis of the basidiomycete Coprinus cinereus. Using spread preparations of meiotic nuclei, we confirmed previous studies that showed that at 6 h post-karyogamy essentially all meiotic nuclei are in pachytene. We found that homolog pairing occurs rapidly after karyogamy, that a 1 Mb chromosome does not associate more quickly than a 2.5 Mb chromosome, and that interstitial, single-copy sites can associate stably prior to nucleolar fusion. Analysis of two probes for the same pair of homologs revealed that by 4 h after karyogamy each chromosome examined was at least partially paired in all meiotic cells. In addition, these studies showed that chromatin condensation increases after pairing and that chromatin shows stable compaction at pachytene. Received: 4 January 1999; in revised form: 22 June 1999 / Accepted: 20 July 1999  相似文献   

5.
In organisms with chiasmatic meiosis two different relationships have been described between crossing over and synapsis: in one group of organisms synapsis depends on the initiation of meiotic recombination while in the other group it is independent of this initiation. These patterns have been observed mainly in organisms where all meiotic bivalents in the set have similar behaviors. In some heteropteran insects a pair of chromosomes named m chromosomes is known to behave differently from autosomes regarding synapsis and recombination. Here we used immunodetection of a synaptonemal complex component and acid-fixed squashes to investigate the conduct of the small m chromosome pair during the male meiosis in the coreid bug Holhymenia rubiginosa. We found that the m chromosomes form a synaptonemal complex during pachytene, but they are not attached by a chiasma in diakinesis. On the other hand, the autosomal bivalents synapse and recombine regularly. The co-existence of these variant chromosome behaviors during meiosis I add further evidence to the absence of unique patterns regarding the interdependence of synapsis and recombination.  相似文献   

6.
Martí DA  Bidau CJ 《Hereditas》2001,134(3):245-254
Dichroplus pratensis has a complex system of Robertsonian rearrangements with central-marginal distribution; marginal populations are standard telocentric. Standard bivalents show a proximal-distal chiasma pattern in both sexes. In Robertsonian individuals a redistribution of chiasmata occurs: proximal chiasmata are suppressed in fusion trivalents and bivalents which usually display a single distal chiasma per chromosome arm. In this paper we studied the synaptic patterns of homologous chromosomes at prophase I of different Robertsonian status in order to find a mechanistic explanation for the observed phenomenon of redistribution of chiasmata. Synaptonemal complexes of males with different karyotypes were analysed by transmission electron microscopy in surface-spread preparations. The study of zygotene and early pachytene nuclei revealed that in the former, pericentromeric regions are the last to synapse in Robertsonian trivalents and bivalents and normally remain asynaptic at pachytene in the case of trivalents, but complete pairing in bivalents. Telocentric (standard) bivalents usually show complete synapsis at pachytene, but different degrees of interstitial asynapsis during zygotene, suggesting that synapsis starts in opposite (centromeric and distal) ends. The sequential nature of synapsis in the three types of configuration is directly related to their patterns of chiasma localisation at diplotene-metaphase I, and strongly supports our previous idea that Rb fusions instantly produce a redistribution of chiasmata towards chromosome ends by reducing the early pairing regions (which pair first, remain paired longer and thus would have a higher probability of forming chiasmata) from four to two (independently of the heterozygous or homozygous status of the fusion). Pericentromeric regions would pair the last, thus chiasma formation is strongly reduced in these areas contrary to what occurs in telocentric bivalents.  相似文献   

7.
Synaptonemal complexes (SCs) in surface spread pachytene spermatocytes of Lemur resemble those in other mammals and are of two types: metacentric (or submetacentric) and acrocentric, with a very short second arm. In autosomal SC and mitotic karyotypes of Lemur fulvus (2n=60) a 11 proportionality in relative length is observed as in other mammals. In an intraspecific lemur hybrid (2n=55) obtained by mating L. fulvus rufus (2n=60) x L. fulvus collaris (2n=51), G-band patterns show that 10 single acrocentric mitotic chromosomes correspond to the arms of 5 single metacentrics, implying homology. It is inferred that the metacentrics have evolved by centric (Robertsonian) fusion of the acrocentrics. In the SC karyotype of the hybrid all SCs are normal except for five which have the configurations expected of metacentric-acrocentric trivalents. Similarly, in L. f. collaris (2n= 51), with one unpaired metacentric and two unpaired acrocentrics, one such SC trivalent is present in the complement. In an SC trivalent, each of the acrocentric long axes is synapsed with an arm of the metacentric axis, confirming the homology predicted from banding similarities. At late zygotene, the acrocentric short arms, which are non-homologous, are the last to pair, demonstrating that synapsis of the homologous arms occurs first. At later pachytene the acrocentric short arms are fully synapsed, producing a short SC side arm. This subsequent non-homologous synapsis is taken to be an instance of the synaptic adjustment phenomenon which has been shown to lead to non-homologous synapsis in a duplication and several inversions in the mouse. The kinetochore of the metacentric is the same size as those of the acrocentrics, and thus is unlikely to have arisen by true centromeric fusion, but rather by a translocation. The kinetochores of the acrocentrics always lie together on the same side of the metacentric kinetochore (cis configuration), implying a single pairing face on the metacentric axis. The observed trivalent configuration may well constitute a prerequisite for proper meiotic disjunction in metacentric-acrocentric heterozygotes. Such a mechanism is consistent with fertility regularly observed in such hybrid lemurs.  相似文献   

8.
9.
Underdominance for chromosomal rearrangements is the central assumption of several models of chromosomally based speciation including the cascade model, proposed for the Sceloporus grammicus complex. Several cytotypes of the S. grammicus complex hybridize at localities in central México. A hybrid zone between two of the most chromosomally divergent races (= cytotypes) of S. grammicus (F5, 2n = 34 and FM2, 2n = 44–46) was examined to assess the meiotic effects of heterozygosity at multiple chromosomes. Meiosis was examined in males heterozygous for “simple” Robertsonian fissions at chromosomes 1, 3, 4, and 6 and/or a pericentric inversion at chromosome 4. Analysis of synaptonemal complexes and chromosomal configurations at diakinesis showed trivalent formation in fission heterozygotes and heterosynapsis (lack of reverse-loop formation) in an inversion heterozygote. Analysis of metaphase II configurations revealed primarily balanced segregation and low levels of nondisjunction regardless of chromosomal background. The lack of underdominance associated with “simple” fission heterozygosity in this narrow hybrid zone contradicts the key premise of most chromosomally based models of speciation.  相似文献   

10.
The multiply inverted X chromosome balancer FM7 strongly suppresses, or eliminates, the occurrence of crossing over when heterozygous with a normal sequence homolog. We have utilized the LacI-GFP: lacO system to visualize the effects of FM7 on meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. Surprisingly, the analysis of meiotic pairing and synapsis for three lacO reporter couplets in FM7/X heterozygotes revealed they are paired and synapsed during zygotene/pachytene in 70%–80% of oocytes. Moreover, the regions defined by these lacO couplets undergo double-strand break formation at normal frequency. Thus, even complex aberration heterozygotes usually allow high frequencies of meiotic pairing, synapsis, and double-strand break formation in Drosophila oocytes. However, the frequencies of failed pairing and synapsis were still 1.5- to 2-fold higher than were observed for corresponding regions in oocytes with two normal sequence X chromosomes, and this effect was greatest near a breakpoint. We propose that heterozygosity for breakpoints creates a local alteration in synaptonemal complex structure that is propagated across long regions of the bivalent in a fashion analogous to chiasma interference, which also acts to suppress crossing over.  相似文献   

11.
The behavior of the X and Y chromosomes in somatic and testicular cells of the sand rat (P. obesus) has been investigated with light and electron-microscope procedures. The Y chromosome has been identified as the fourth longest of the complement, both by C-banding and by its meiotic behavior. The X chromosome is the longest of the complement and carries two major C-heterochromatic blocks, one in the distal part of the long arm and the other forming most of the short arm. During presynaptic stages in spermatocytes, separate C-heterochromatic blocks, representing the sex chromosomes, are observed in the nuclei. An XY body is regularly formed at pachytene. During first meiotic metaphase the X and Y chromosomes show variable associations, none of them chiasmatic. Second meiotic metaphases contain, as in other mammals, a single sex chromosome, suggesting normal segregation between the X and the Y. — Electron microscopic observations of the autosomal synaptonemal complexes (SCs) and the single axes of the X and Y chromosomes during pachytene permit accurate, statistically significant identification of each of the largest chromosomes of the complement and determination of the mean arm ratios of the X and Y axes. The X and Y axes always lie close to each other but do not form a SC. The ends of the X and Y axes are attached to the nuclear envelope and associate with each other in variable ways, both autologously (X with X or Y with Y) and heterologously (X with Y), with a tendency to form a maximum number (four) of associated ends. Analysis of 36 XY pairs showed no significant preference for any single specific attachment between arm ends. The eighth longest autosomal bivalent is frequently partially asynaptic during early pachytene, and only at that time is often near or touching one end of the X axis. — It is concluded that while axis formation and migration of the axes along the plane of the nuclear envelope proceed normally in the X and Y chromosomes, true synapsis (with SC formation) does not occur because the pairing region of the X chromosome has probably been relocated far from the chromosome termini by the insertion of distal C-heterochromatic blocks.  相似文献   

12.
The captive bred animal populations showing centric fusion polymorphism can serve as a model for analysis of the impact of the rearrangement on meiosis and reproduction. The synapsis of homologous chromosomes and the frequency and distribution of meiotic recombination events were studied in pachytene spermatocytes of captive bred male impalas (Aepyceros melampus) polymorphic for der(14;20) by immunofluorescent analysis and fluorescence in situ hybridization. The chromosomes 14 and 20 involved in the centric fusion were significantly shorter due to the loss of sat I repeats indicating ancient origin of the rearrangement. The fused chromosome and the normal acrocentric chromosomes 14 and 20 formed trivalent in pachynema which showed either protruding proximal ends of the acrocentric chromosomes or single axis with synaptic adjustment in the pericentromeric region. There was no significant difference in the number of recombination events per cell between the group of translocation heterozygotes and the animals with normal karyotype. A significant reduction in the number of recombination events was observed in the trivalent chromosomes compared to the normal chromosomes 14 and 20. The level of the recombination reduction was related to the trivalent configuration. The centric fusion der(14;20) was not apparently demonstrated by any spermatogenic defects or reproductive impairment in heterozygous impalas. However, the high incidence of the chromosomal polymorphism within the captive bred population shows the importance of cytogenetic examinations in captive breeding and wildlife conservation programs, especially in the case of reintroduction of the endangered species.  相似文献   

13.
The pachytene checkpoint   总被引:33,自引:0,他引:33  
The pachytene checkpoint prevents meiotic nuclear division in cells that fail to complete meiotic recombination and chromosome synapsis. This control mechanism prevents chromosome missegregation that would lead to the production of aneuploid gametes. The pachytene checkpoint requires a subset of proteins that function in the mitotic DNA damage checkpoint. In budding yeast, the pachytene checkpoint also requires meiosis-specific chromosomal proteins and, unexpectedly, proteins concentrated in the nucleolus. Progress has been made in identifying components of the cell-cycle machinery that are impacted by the checkpoint.  相似文献   

14.
Among the Opiliones, species of the suborders Cyphophthalmi, Eupnoi, Dyspnoi and Laniatores have shown very diverse diploid chromosome numbers. However, only certain Eupnoi species exhibit XY/XX and ZZ/ZW sex chromosome systems. Considering the scarcity of karyotypical information and the absence of structurally identifiable sex chromosomes in the suborder Laniatores, we decided to analyse the chromosomes and bivalents of Discocyrtus pectinifemur (Gonyleptidae) to identify possible sex differences. Testicular cells examined under light microscopy showed a high diploid number, 2 n  = 88, meta/submetacentric chromosome morphology and a nucleolar organizer region on pair 35. Prophase I microspreading observed in transmission electron microscopy exhibited 44 synaptonemal complexes with similar electron density and thickness. The total and regular synapsis between the chromosomes of the bivalents was also noted in pachytene nuclei. Male mitotic and meiotic chromosomes revealed no distinct characteristic that could be related to the occurrence of heteromorphic sex chromosomes. Evolutionary trends of chromosome differentiation in the four suborders of Opiliones are discussed here.  相似文献   

15.
Rad51 immunocytology in rat and mouse spermatocytes and oocytes   总被引:10,自引:0,他引:10  
On the assumption that Rad51 protein plays a role in early meiotic chromosomal events, we examine the location and time of appearance of immuno-reactive Rad51 protein in meiotic prophase chromosomes. The Rad51 foci in mouse spermatocytes appear after the emergence of, and attached to, short chromosomal core segments that we visualize with Cor1-specific antibody. These foci increase in number to about 250 per nucleus at the time when core formation is extensive. The numbers are higher in mouse oocytes and lower in rat spermatocytes, possibly correlating with recombination rates in those cases. In the male mouse, foci decrease in number to approximately 100 while chromosome synapsis is in progress. When synapsis is completed, the numbers of autosomal foci decline to near 0 while the X chromosome retains about 15 foci throughout this time. This stage coincides with the appearance of testis-specific histone H1t at mid- to late pachytene. Electron microscopy reveals that at first Rad51 immunogold-labeled 100 nm nodules are associated with single cores, and that they come to lie between the chromosome cores during synapsis. It appears that these nodules may be the homologs of the Rad51-positive early nodules that are well documented in plants. The reciprocal recombination-correlated late nodules appear after the Rad51 foci are no longer detectable. The absence of Rad51 foci in the chromatin loops suggests that in wild-type mice Rad51/DNA filaments are restricted to DNA at the cores/synaptonemal complexes. The expected association of Rad51 protein with Rad52 could not be verified immunocytologically. Received: 12 December 1996; in revised form: 3 April 1997 / Accepted: 4 April 1997  相似文献   

16.
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains.  相似文献   

17.
Several chromosome races of the mesquite lizard, Sceloporus grammicus complex, hybridize at localities in central Mexico. In most cases, the hybridizing populations are delineated by centric fissions at one or more of the macrochromosomes. One notable exception is the Tulancingo hybrid zone between the F5 and FM2 cytotypes. In addition to fission and/or inversion differences at chromosomes 1, 3, 4, and 6, these races differ by a complex rearrangement of chromosome 2, which carries the nucleolus-organizer region in this species. The meiotic consequences of heterozygosity at this chromosome were examined in males to assess the potential for this chromosome to contribute to the dynamics of the hybrid zone. Chromosomal analysis revealed several putative F1 hybrids and confirmed the production of nonparental chromosomal morphologies through recombination. Pachytene analysis revealed meiotic pairing difficulties associated with chromosome 2 in males heterozygous for the parental chromosomal morphologies. Significant aneuploidy is expected because of random disjunction of the chromosome-2 elements. As a result, these males likely suffer reduced fertiliity and fitness. In contrast, males heterozygous for recombinant chromosomal morphologies displayed low levels of meiotic irregularities and presumably exhibit higher fertility than individuals heterozygous for parental morphologies. It is hypothesized that the recombinant phenotypes facilitate gene flow between the F5 and FM2 cytotypes.  相似文献   

18.
19.
This article reviews the historical development of cytology and cytogenetics in Arabidopsis, and summarizes recent developments in molecular cytogenetics, with special emphasis on meiotic studies. Despite the small genome and small chromosomes of Arabidopsis, considerable progress has been made in developing appropriate cytogenetical techniques for chromosome analysis. Fluorescence in situ hybridization (FISH) applied to extended meiotic pachytene chromosomes has resulted in a standardized karyotype (idiogram) for the species that has also been aligned with the genetical map. A better understanding of floral and meiotic development has been achieved by combining cytological studies, based on both sectioning and spreading techniques, with morphometric data and developmental landmarks. The meiotic interphase, preceding prophase I, has been investigated by marking the nuclei undergoing DNA replication with BrdU. This allowed the subclasses of meiotic interphase to be distinguished and also provided a means to time the duration of meiosis and its constituent phases. The FISH technique has been used to analyse in detail the meiotic organization of telomeres and centromeric regions. The results indicate that centromere regions do not play an active role in chromosome pairing and synapsis; however, telomeres pair homologously in advance of general chromosome synapsis. The FISH technique is currently being applied to analysing the pairing and synapsis of interstitial chromosome regions through interphase and prophase I. FISH probes also allow the five bivalents of Arabidopsis to be identified at metaphase I and this has permitted an analysis of chiasma frequencies in individual bivalents, both in wild-type Arabidopsis and in two meiotic mutants.  相似文献   

20.
Meiosis is a complex type of cell division that involves homologous chromosome pairing, synapsis, recombination, and segregation. When any of these processes is altered, cellular checkpoints arrest meiosis progression and induce cell elimination. Meiotic impairment is particularly frequent in organisms bearing chromosomal translocations. When chromosomal translocations appear in heterozygosis, the chromosomes involved may not correctly complete synapsis, recombination, and/or segregation, thus promoting the activation of checkpoints that lead to the death of the meiocytes. In mammals and other organisms, the unsynapsed chromosomal regions are subject to a process called meiotic silencing of unsynapsed chromatin (MSUC). Different degrees of asynapsis could contribute to disturb the normal loading of MSUC proteins, interfering with autosome and sex chromosome gene expression and triggering a massive pachytene cell death. We report that in mice that are heterozygous for eight multiple simple Robertsonian translocations, most pachytene spermatocytes bear trivalents with unsynapsed regions that incorporate, in a stage-dependent manner, proteins involved in MSUC (e.g., γH2AX, ATR, ubiquitinated-H2A, SUMO-1, and XMR). These spermatocytes have a correct MSUC response and are not eliminated during pachytene and most of them proceed into diplotene. However, we found a high incidence of apoptotic spermatocytes at the metaphase stage. These results suggest that in Robertsonian heterozygous mice synapsis defects on most pachytene cells do not trigger a prophase-I checkpoint. Instead, meiotic impairment seems to mainly rely on the action of a checkpoint acting at the metaphase stage. We propose that a low stringency of the pachytene checkpoint could help to increase the chances that spermatocytes with synaptic defects will complete meiotic divisions and differentiate into viable gametes. This scenario, despite a reduction of fertility, allows the spreading of Robertsonian translocations, explaining the multitude of natural Robertsonian populations described in the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号