首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanisms and pathways of synthesis of phosphatidylcholine in the giant fibre system of the squid (Loligo vulgaris) have been examined by incubating the stellate ganglion-nerve preparation or its separated compartments in an artificial bathing solution with labelled choline. Other experiments were done by dissecting the whole stellate ganglion into axoplasm, axon sheath, giant fibre lobe, small fibres and ganglion residue, after incubation. The initial rate of choline incorporation into choline phosphoglycerides was severalfold higher in the lobe than in the axon. Higher lipid radioactivity was recovered in the axon sheath as compared to the axoplasm, and in the small fibres as compared to the ganglion residue which contains its cell bodies. The production of phosphorylcholine and CDP-choline in the intact ganglion-nerve preparation during incubation with choline points to the occurrence of the net synthesis pathway for phosphatidylcholine in this material. Base-exchange activity was also observed in the axon and giant fibre lobe preparations in vitro, but no indication can yet be given whether it also takes place in intact preparations. Electrical stimulation and‘depolarizing’conditions enhance choline phosphorylation in the squid axon and lobe, but decrease phosphatidylcholine labelling.  相似文献   

2.
Isolated squid stellate nerves and giant fiber lobes were incubated for 8 hr in Millipore filtered sea water containing [3H]uridine. The electrophoretic patterns of radioactive RNA purified from the axoplasm of the giant axon and from the giant fiber lobe (cell bodies of the giant axon) demonstrated the presence of RNA species with mobilities corresponding to tRNA and rRNA. The presence of labeled rRNAs was confirmed by the behavior of the large rRNA component (31S) which, in the squid, readily dissociates into its two constituent moyeties (17S and 20S). Comparable results were obtained with the axonal sheath and the stellate nerve. In all the electrophoretic patterns, additional species of radioactive RNA migrated between the 4S and the 20S markers, i.e. with mobilities corresponding to presumptive mRNAs. Chromatographic analysis of the purified RNAs on oligo(dT)cellulose indicated the presence of labeled poly(A)+ RNA in all tissue samples. Radioactive poly(A)+ RNA represented approximately 1% of the total labeled RNA in the axoplasm, axonal sheath and stellate nerve, but more than 2% in the giant fiber lobe. The labeled poly(A)+ RNAs of the giant fibre lobe showed a prevalence of larger species in comparison to the axonal sheath and stellate nerve. In conclusion, the axoplasmic RNAs synthesized by the isolated squid giant axon appear to include all the major classes of axoplasmic RNAs, that is rRNA, tRNA and mRNA.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

3.
The origin of axoplasmic RNA in the squid giant fiber was investigated after exposure of the giant axon or of the giant fiber lobe to [3H]uridine. The occurrence of a local process of synthesis was indicated by the accumulation of labeled axoplasmic RNA in isolated axons incubated with the radioactive precursor. Similar results were obtained in vivo after injection of [3H]uridine near the stellate nerve at a sizable distance from the ganglion. Exposure of the giant fiber lobe to [3H]uridine under in vivo and in vitro conditions was followed by the appearance of labeled RNA in the axoplasm and in the axonal sheath. While the latter process is attributed to incorporation of precursor by sheath cells, a sizable fraction of the radioactive RNA accumulating in the axoplasmic is likely to originate from neuronal perikarya by a process of axonal transport.  相似文献   

4.
In previous studies of phosphorylation in squid stellate ganglion neurons, we demonstrated that a specific multimeric phosphorylation complex characterized each cellular compartment. Although the endogenous protein profile of cell body extracts (giant fiber lobe, GFL), as determined by Coomassie staining, was similar to that of axoplasm from the giant axon, in this study we show that the protein phosphorylation profiles are qualitatively different. Whereas many axoplasm proteins were phosphorylated, including most cytoskeletal proteins, virtually all phosphorylation in perikarya was confined to low molecular weight compounds (<6 kDa). Because phosphorylation of exogenous substrates, histone and casein, was equally active in extracts from both compartments, failure to detect endogenous protein phosphorylation in cell bodies was attributed to the presence of more active phosphatases. To further explore the role of phosphatases in these neurons, we studied phosphorylation in the presence of serine/threonine and protein tyrosine phosphatase (PTP) inhibitors. We found that phosphorylation of axonal cytoskeletal proteins was modulated by okadaic acid-sensitive ser/thr phosphatases, whereas cell body phosphorylation was more sensitive to an inhibitor of protein tyrosine phosphatases, such as vanadate. Inhibition of PTPs by vanadate stimulated endogenous phosphorylation of GFL proteins, including cytoskeletal proteins. Protein tyrosine kinase activity was equally stimulated by vanadate in cell body and axonal whole homogenates and Triton X-100 free soluble extracts, but only the Triton X soluble fraction (membrane bound proteins) of the GFL exhibited significant activation in the presence of vanadate, suggesting higher PTP activities in this fraction than in the axon. The data are consistent with the hypothesis that neuronal protein phosphorylation in axons and cell bodies is modulated by different phosphatases associated with compartment-specific multimeric complexes.  相似文献   

5.
Na+ channels are present at high density in squid giant axon but are absent from its somata in the giant fiber lobe (GFL) of the stellate ganglion. GFL cells dispersed in vitro maintain growing axons and develop a Na+ channel distribution similar to that in vivo. Tunicamycin, a glycosylation inhibitor, selectively disrupts the spatially appropriate, high level expression of Na+ channels in axonal membrane but has no effect on expression in cell bodies, which show low level, inappropriate expression in vitro. This effect does not appear to involve alteration in Na+ channel turnover or axon viability. K+ channel distribution is unaffected. Thus, glycosylation appears to be involved in controlling Na+ channel localization in squid neurons.  相似文献   

6.
7.
In the last few years, the long-standing opinion that axonal and presynaptic proteins are exclusively derived from the neuron cell body has been substantially modified by the demonstration that active systems of protein synthesis are present in axons and nerve terminals. These observations have raised the issue of the cellular origin of the involved RNAs, which has been generally attributed to the neuron soma. However, data gathered in a number of model systems indicated that axonal RNAs are synthesized in the surrounding glial cells. More recent experiments on the perfused squid giant axon have definitively proved that axoplasmic RNAs are transcribed in periaxonal glia. Their delivery to the axon occurs by a modulatory mechanism based on the release of neurotransmitters from the stimulated axon and on their binding to glial receptors. In additional experiments on squid optic lobe synaptosomes, presynaptic RNA has been also shown to be synthesized locally, presumably in nearby glia. Together with a wealth of literature data, these observations indicate that axons and nerve terminals are endowed with a local system of gene expression that supports the maintenance and plasticity of these neuronal domains.  相似文献   

8.
Following injection of [35S]cysteine into the region of the supraoptic nucleus male rats were subjected to haemorrhage and the radioactivity of the supraoptic nucleus and neurohypophysial proteins was measured at various time intervals after injection. Following haemorrhage the incorporation of [35S]cysteine into supraoptic nucleus proteins increased. Evidence was obtained for a lag period of 1 to 2 h for the supraoptic nucleus proteins to become available for axonal transport. As judged from the time of arrival of labelled material in the neurohypophysis, haemorrhage did not change the rapid rate of axonal transport (190 mm/day). At 15 min following bleeding, the radioactivity in fraction A (a neurophysin) of the neurohypophysis was reduced, which indicated a release of this rapidly transported protein. During the following 15 min an increase in the protein-bound radioactivity of the neural lobe occurred which exceeded that in controls. This is taken as evidence for increased axonal transport in response to haemorrhage.  相似文献   

9.
Summary The fine structure of the synapse between the second-order giant fibre and the third order-giant fibre of the squid Doryteuphis bleekeri was studied by means of electron microscope. In the synaptic region, the two giant fibres are arranged side by side. Many small processes from the third-order giant fibre penetrate the common sheath which separats the adjacent giant axons making synaptic contact with the second order giant axon.The contact surface consists of opposing two plasma membranes of adjacent axons separated by a narrow space of 20–30 m in width. The synaptic membranes are more electron dense and thicker than the other part of the axon membrane. The synaptic vesicles are concentrated exclusively in the presynaptic axon.The fine structural differences between giant synapse in the stellate ganglion of the squid and the giant-to-motor giant synapse of the crayfish were discussed.This work was supported by Grant Number B-3348 from the National Institutes of Health, United States Public Health Service, Department of Health, Education and Welfare.  相似文献   

10.
Neurons from the giant fiber lobe (GFL) of squid Loligo bleekeri were dissociated and cultured. The ionic currents were recorded using whole-cell patch clamp methods. The sodium current and the noninactivating potassium current like those elicited by the giant axon were among the currents expressed in axonal bulbs and bulblike structures upon dissociation. Meanwhile axonless cell bodies did not elicit such currents. Axonless cell bodies and some bulblike structures elicited two kinds of inactivating potassium currents, the slow- and the fast-inactivating current, which differed in their inactivation kinetics and pharmacology. Within 24 hr of plating, the current composition remained the same. While the noninactivating current was not sensitive to 4-aminopyridine, the two inactivating currents were sensitive, the slow-inactivating current being more sensitive. Selective combinations of the sodium current and the three potassium currents expressed in different structures of the acutely dissociated GFL could have resulted from cellular control of synthesis and transportation of the channel proteins to the somatic and the axonal membrane. The sodium current and the noninactivating potassium current could be recorded from some axonless cell bodies maintained in culture for over three days, indicating that the separation of the giant axon from its somata could result in the transportation of the channels normally expressed on the giant axon membrane to the somatic membrane. Received: 24 October 1995/Revised: 5 March 1996  相似文献   

11.
Ionic conductances of squid giant fiber lobe neurons   总被引:6,自引:3,他引:3       下载免费PDF全文
The cell bodies of the neurons in the giant fiber lobe (GFL) of the squid stellate ganglion give rise to axons that fuse and thereby form the third-order giant axon, whose initial portion functions as the postsynaptic element of the squid giant synapse. We have developed a preparation of dissociated, cultured cells from this lobe and have studied the voltage-dependent conductances using patch-clamp techniques. This system offers a unique opportunity for comparing the properties and regional differentiation of ionic channels in somatic and axonal membranes within the same cell. Some of these cells contain a small inward Na current which resembles that found in axon with respect to tetrodotoxin sensitivity, voltage dependence, and inactivation. More prominent is a macroscopic inward current, carried by Ca2+, which is likely to be the result of at least two kinetically distinct types of channels. These Ca channels differ in their closing kinetics, voltage range and time course of activation, and the extent to which their conductance inactivates. The dominant current in these GFL neurons is outward and is carried by K+. It can be accounted for by a single type of voltage-dependent channel. This conductance resembles the K conductance of the axon, except that it partially inactivates during relatively short depolarizations. Ensemble fluctuation analysis of K currents obtained from excised outside-out patches is consistent with a single type of K channel and yields estimates for the single channel conductance of approximately 13 pS, independently of membrane potential. A preliminary analysis of single channel data supports the conclusion that there is a single type of voltage-dependent, inactivating K channel in the GFL neurons.  相似文献   

12.
Summary The morphology, axonal arborization and ultrastructure of synaptic connections of the V21 giant neuron in the visceral ganglion of the snail Helix pomatia has been investigated following intracellular labelling with horseradish peroxidase. The V21 neuron establishes several afferent and efferent axo-axonic connections, mainly along the first half of the primary axon. Collaterals of 200–300 m length originate from the primary axon, which shows further arborization, and both afferent and efferent synaptic contacts are formed on these fine axon profiles. Afferent and efferent contacts of the cell occur within very short distances of a few micrometers. On the basis of ultrastructure and vesicle and granule content, several afferent terminals can be distinguished on V21 labelled axon profiles. The majority of these afferent terminals resembles peptidergic-(neurosecretory)-like terminals. This finding supports the possible transmitter role of neuropeptides in the central nervous system of gastropods. Our results are consistent with and provide morphological evidence for recent electrophysiological observations suggesting that, in addition to integrating input, the V21 neuron functions as an interneuron in Helix central nervous system.  相似文献   

13.
14.
TRANSPORT AND TURNOVER OF NEUROHYPOPHYSIAL PROTEINS OF THE RAT   总被引:2,自引:0,他引:2  
Axonal transport and turnover rate of proteins in the supraoptico-neurohypo-physial tract were studied after injection of 35S cysteine into the region of the supraoptic nucleus. The proximo-distal migration of labelled proteins from the nerve cell bodies to the axon terminals in the neurohypophysis was followed by measuring the radioactivity of neurohypophysial proteins at various time intervals (4 h to 30 days) after isotope injection. A rapidly transported phase of proteins with a minimal transport rate of approximately 60 mm/day was demonstrated. An accumulation of protein-bound radioactivity was also observed in the neural lobe at 9 days after isotope injection, representing slowly transported proteins (0-5 mm/day). In addition, an intermediate phase of axonal transport (1-5 mm/day) was found. Fractionation of neurohypophysial proteins by polyacrylamide gel disc electrophoresis revealed that a predominating portion of the radioactivity was recovered in a single protein component (fraction A) at 4 h as well as at 30 days after isotope injection. This protein component was shown to be a constituent both of the rapid and the slow phase of axonal transport. With time an increasing amount of radioactivity was found in another protein component (fraction B), which reached a maximum at 14 days after injection and then remained fairly constant up to 30 days. When the turnover rates of neurohypophysial proteins were estimated, a half-life of 1-2 days and 8 days was calculated for the rapidly and slowly transported proteins, respectively.  相似文献   

15.
When isolated squid giant axons are incubated in radioactive amino acids, abundant newly synthesized proteins are found in the axoplasm. These proteins are translated in the adaxonal Schwann cells and subsequently transferred into the giant axon. The question as to whether any de novo protein synthesis occurs in the giant axon itself is difficult to resolve because the small contribution of the proteins possibly synthesized intra-axonally is not easily distinguished from the large amounts of the proteins being supplied from the Schwann cells. In this paper, we reexamine this issue by studying the synthesis of endogenous neurofilament (NF) proteins in the axon. Our laboratory previously showed that NF mRNA and protein are present in the squid giant axon, but not in the surrounding adaxonal glia. Therefore, if the isolated squid axon could be shown to contain newly synthesized NF protein de novo, it could not arise from the adaxonal glia. The results of experiments in this paper show that abundant 3H-labeled NF protein is synthesized in the squid giant fiber lobe containing the giant axon’s neuronal cell bodies, but despite the presence of NF mRNA in the giant axon no labeled NF protein is detected in the giant axon. This lends support to the glia–axon protein transfer hypothesis which posits that the squid giant axon obtains newly synthesized protein by Schwann cell transfer and not through intra-axonal protein synthesis, and further suggests that the NF mRNA in the axon is in a translationally repressed state.  相似文献   

16.
INCORPORATION OF LABELLED PHOSPHATE INTO PHOSPHOLIPIDS IN SQUID GIANT AXONS   总被引:2,自引:2,他引:0  
Inorganic phosphate labelled with 32P was applied to giant axons excised from squid (Loligo pealeii) by addition of 32Pi to the bathing solution, by injection into the axon, or by addition to axoplasm which had been separated from the sheath. The preparations were kept at 10 to 25° for various times up to 4 hr. When 32Pi was supplied by way of the bathing solution, axoplasm and sheath were usually separated at the end of incubation before extraction of the lipids. Lipids were extracted with chloroform-methanol and resolved by paper chromatography. The lipids which became labelled appeared to be the same in sheath and axoplasm. They were identified by cochromatography with known lipids and by chromatography of products formed from them by mild alkaline hydrolysis. They included phosphatidylinositol, phosphatidylethanolamine, phosphatidic acid, and probably somelysophosphatidylethanolamine. Some labelled components remained unidentified. Phosphatidylcholine was apparently present, but did not become significantly labelled either in sheath or in axoplasm, or in a squid's stellate ganglion. There was no evidence that separation from the sheath impaired the capacity of the axoplasm for lipid synthesis.  相似文献   

17.
The central nervous system (CNS) has been traditionally considered as an organ that fails to regenerate in response to injury. Indeed, the lesioned CNS faces a number of obstacles during regeneration, including an overall non-permissive environment for axonal regeneration. However, research during the last few decades has identified axon sprouting as an anatomical correlate for the regenerative capability of the CNS to establish new connections. The immunoglobulin superfamily member L1CAM has been shown to promote the capability of neurons for regenerative axon sprouting and to improve behavioral outcomes after CNS injury. Here, we discuss the cell-autonomous role of L1CAM for axon sprouting in experimental rodent injury models and highlight the molecular interactions of L1CAM with ankyrins, ezrin-radixin-moesin proteins and the Sema3A/Neuropilin ligand-receptor complex in the context of axonal branching.  相似文献   

18.
The hypothesis that glial cells synthesize proteins which are transferred to adjacent neurons was evaluated in the giant fiber of the squid (Loligo pealei). When giant fibers are separated from their neuron cell bodies and incubated in the presence of radioactive amino acids, labeled proteins appear in the glial cells and axoplasm. Labeled axonal proteins were detected by three methods: extrusion of the axoplasm from the giant fiber, autoradiography, and perfusion of the giant fiber. This protein synthesis is completely inhibited by puromycin but is not affected by chloramphenicol. The following evidence indicates that the labeled axonal proteins are not synthesized within the axon itself. (a) The axon does not contain a significant amount of ribosomes or ribosomal RNA. (b) Isolated axoplasm did not incorporate [(3)H]leucine into proteins. (c) Injection of Rnase into the giant axon did not reduce the appearance of newly synthesized proteins in the axoplasm of the giant fiber. These findings, coupled with other evidence, have led us to conclude that the adaxonal glial cells synthesize a class of proteins which are transferred to the giant axon. Analysis of the kinetics of this phenomenon indicates that some proteins are transferred to the axon within minutes of their synthesis in the glial cells. One or more of the steps in the transfer process appear to involve Ca++, since replacement of extracellular Ca++ by either Mg++ or Co++ significantly reduces the appearance of labeled proteins in the axon. A substantial fraction of newly synthesized glial proteins, possibly as much as 40 percent, are transferred to the giant axon. These proteins are heterogeneous and range in size from 12,000 to greater than 200,000 daltons. Comparisons of the amount of amino acid incorporation in glia cells and neuron cell bodies raise the possibility that the adaxonal glial cells may provide an important source of axonal proteins which is supplemental to that provided by axonal transport from the cell body. These findings are discussed with reference to a possible trophic effect of glia on neurons and metabolic cooperation between adaxonal glia and the axon.  相似文献   

19.
Summary The differentiation and course of the first order giant nerve fibres in the medial and posterior suboesophageal lobes of the brain of Sepia officinalis is examined in different developmental stages. In earlier embryonic stages one pair of first order giant cells differentiates on each side. Later, as a normal phenomenon, one cell of each pair degenerates.The two remaining giant fibres cross in the palliovisceral lobe. On either side of the intersection one branch of the contralateral and one branch of the ipsilateral axon are connected with the second order giant fibres. This structure, which differs from that found in Loligo, apparently mediates the functional bilaterality of the giant fibre system.

Supported by grant NONR 2100 through the Anton and Reinhard Dohrn foundation.  相似文献   

20.
—Axonal transport of proteins in the hypothalamo-neurohypophysial system of the rat was studied after a local injection of [35S]cysteine in the region of the supraoptic nucleus. The migration of labelled proteins was followed by measuring the specific radioactivity of the proteins in various parts of the hypothalamo-neurohypophysial tract. Between 2 and 4 h after the isotope injection there was a sharp increase in the protein-bound specific radioactivity of the posterior pituitary lobe, demonstrating that a transport of 35S-labelled proteins had occurred from the supraoptic nucleus to the neurohypophysis. The rate of the transport was 2-3 mm/h. During the first 24 h after the injection a continuous accumulation of labelled material occurred in the neural lobe. Considerable radioactivity could still be recovered 6 days after the isotope injection. Fractionation of the neurohypophysial proteins by polyacrylamide gel electrophoresis revealed that approximately 90 per cent of the radioactivity of the soluble proteins was recovered in a single protein fraction. Labelling of this fraction was not observed until 2 h after isotope injection. The radioactivity increased markedly up to 4 h. It is suggested that this protein component is involved in the neurohypophysial response to osmotic stress since the protein disappeared from the posterior lobe upon dehydration of the rat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号