首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of oxidative stress in chronic cadmium (Cd) toxicity and its prevention by cotreatment with beta-carotene was investigated. Adult male rats were intragastrically administered 2 mg CdCl2/kg body weight three times a week intragastrically for 3 and 6 weeks. Brain and testicular thiobarbituric acid reactive substances (TBARS) was elevated after 3 and 6 weeks of Cd administration, indicating increased lipid peroxidation (LPO) and oxidative stress. Cellular damage was indicated by inhibition of adenosine triphosphatase (ATPase) activity and increased lactate dehydrogenase (LDH) activity in brain and testicular tissues. Chronic Cd administration resulted in a decline in glutathione (GSH) content and a decrease of superoxide dismutase (SOD) and glutathione S-transferase (GST) activity in both organs. Administration of beta-carotene (250 IU/kg i.g.) concurrent with Cd ameliorated Cd-induced LPO. The brain and testicular antioxidants, SOD, GST, and GSH, decreased by Cd alone, were restored by beta-carotene cotreatment. Concurrent treatment with beta-carotene also ameliorated the decrease in ATPase activity and the increase in LDH activity in brain and testis of Cd-treated rats, indicating a prophylactic action of beta-carotene on Cd toxicity. Therefore, the results indicate that the nutritional antioxidant beta-carotene ameliorated oxidative stress and the loss of cellular antioxidants and suggest that beta-carotene may control Cd-induced brain and testicular toxicity.  相似文献   

2.
Recent studies have shown that lead (Pb) could disrupt tissue prooxidant/antioxidant balance which lead to physiological dysfunction. Natural antioxidants are particularly useful in such situation. Current study was designed to investigate efficacy of green tea extract (GTE), on oxidative status in brain tissue and blood caused by chronic oral Pb administration in rats. Four groups of adult male rats (each 15 rats) were utilized: control group; GTE-group (oral 1.5% w/v GTE for 6 weeks); Pb-group (oral 0.4% lead acetate for 6 weeks), and Pb+GTE-group (1.5% GTE and 0.4% lead acetate for 6 weeks). Levels of prooxidant/antioxidant parameters [lipid peroxides (LPO), nitric oxides (NO), total antioxidant capacity (TAC), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD)] in plasma, erythrocytes, and brain tissue homogenate were measured using colorimetric methods. Pb concentrations in whole blood and brain tissue homogenate were measured by atomic absorption. In Pb-group, levels of LPO were higher while NO and GSH were lower in plasma, erythrocytes, and brain tissue than controls. TAC in plasma, SOD in erythrocytes, and GST in brain tissue homogenate were lower in Pb-group versus control. GTE co-administrated with Pb-reduced Pb contents, increased antioxidant status than Pb-group. In erythrocytes, Pb correlated positively with LPO and negatively with NO, GSH, SOD, and Hb. In brain tissue homogenate, Pb correlated positively with LPO and negatively with GSH. This study suggests that lead induce toxicity by interfering balance between prooxidant/antioxidant. Treatment of rats with GTE combined with Pb enhances antioxidant/ detoxification system which reduced oxidative stress. These observations suggest that GTE is a potential complementary agent in treatment of chronic lead intoxication.  相似文献   

3.
This study investigated how Cd exposure affected oxidative biomarkers in Japanese flounder, Paralichthys olivaceus, at early life stages (ELS). Fish were exposed to waterborne Cd (0–48 µg L− 1) from embryonic to juvenile stages for 80 days. Growth, Cd accumulation, activities of superoxide dismutase (SOD, EC 1.15.1.1), catalase (CAT, EC 1.11.1.6), glutathione S-transferase (GST, EC 2.5.1.18), and levels of glutathione (GSH) and lipid peroxidation (LPO) were investigated at three developmental stages. Flounder growth decreased and Cd accumulation increased with increasing Cd concentration. In metamorphosing larvae, CAT and SOD activities were inhibited and GSH level was elevated, while LPO was enhanced by increasing Cd concentrations. CAT and GST activities of settling larvae were inhibited but GSH level was elevated at high Cd concentrations. In juveniles, SOD activity and LPO level were increased but GST activity was inhibited as Cd concentration increased. Antioxidants in flounder at ELS were able to develop ductile responses to defend against oxidative stress, but LPO fatally occurred due to Cd exposure. These biochemical parameters could be used as effective oxidative biomarkers for evaluating Cd contamination and toxicity in marine environments: CAT, SOD, GSH, and LPO for metamorphosing stage; CAT, GSH, and GST for settling stage; and SOD, GST, and LPO for juvenile stage.  相似文献   

4.
The effects of monovalent (Li+, Cs+) divalent (Cu2+, Ca2+, Sr2+, Ba2+, Zn2+, Cd2+, Hg2+, Pb2+, Mn2+, Fe2+, Co2+, Ni2+) and trivalent (Cr3+, Fe3+, Al3+) metals ions on hexokinase activity in rat brain cytosol were compared at 500 microM. The rank order of their potency as inhibitors of brain hexokinase was: Cr3+ (IC50 = 1.3 microM) greater than Hg2+ = Al3+ greater than Cu2+ greater than Pb2+ (IC50 = 80 microM) greater than Fe3+ (IC50 = 250 microM) greater than Cd2+ (IC50 = 540 microM) greater than Zn2+ (IC50 = 560 microM). However, at 500 microM Co2+ slightly stimulated brain hexokinase whereas the other metal ions were without effect. That inhibition of brain glucose metabolism may be an important mechanism in the neurotoxicity of metals is suggested.  相似文献   

5.
The extent of brain injury during reperfusion appears to depend on the experimental pattern of ischemia/reperfusion. The goals of this study were: first, to identify the rate of free radicals generation and the antioxidant activity during ischemia and reperfusion by means of biochemical measurement of lipid peroxidation (LPO) and both enzymatic (superoxid dismutase - SOD, catalase - CAT, glutathion peroxidase - GPx) and non-enzymatic antioxidants activity (glutathione - GSH); and second, to try to find out how the pattern of reperfusion may influence the balance between free radical production and clearance. Wistar male rats were subject of four-vessel occlusion model (Pulsinelly & Brierley) cerebral blood flow being controlled by means of two atraumatic arterial microclamps placed on carotid arteries. The level of free radicals and the antioxidant activity were measured in ischemic rat brain tissue homogenate using spectrophotometrical techniques. All groups subjected to ischemia shown an increase of LPO and a reduction of the activity of enzymatic antioxidative systems (CAT, GPx, SOD) and non-enzymatic systems (GSH). For both groups subjected to ischemia and reperfusion, results shown an important increase of LPO but less significant than the levels found in the group with ischemia only. Statistically relevant differences (p<0.01) between continuous reperfusion and fragmented reperfusion were observed concerning the LPO, CAT, SOD and GSH levels, oxidative aggresion during fragmented reperfusion being more important.  相似文献   

6.
Stress is shown to induce at first the generalized inhibition of lipid peroxidation (LPO), and then the activation of LPO. In brain and blood serum of rats subjected to continuous footshock as well as to restraint stress LPO products decreased and superoxide scavenging activity increased during the initial period of stress, after 1 hour of footshock LPO indices nearly reached normal values, and after 2 hours of footshock the accumulation of LPO products and decrease of superoxide scavenging activity were seen. LPO inhibition was accompanied by accumulation of easy oxidizable brain phospholipids and by depletion of brain cholesterol, during LPO activation brain cholesterol content and cholesterol-phospholipid ratio increased. The content of LPO products--fluorescent Schiff bases in blood plasma of women suffering from algomenorrhea at first decreased (O-12 h) and then dramatically increased (12-24 h) after a onset of pain at the beginning of menstruation. The data suggest that the stage of LPO inhibition precedes its activation during stress.  相似文献   

7.
A hydroponics experiment using hyperaccumulator Thlaspi caerulescens (alpine pennycress) and non-specific accumulator Raphanus sativus (common radish) was conducted to investigate the short-term effect of increasing Cd concentrations (0, 25, 50, 75, 100 microM) on metal uptake, chlorophyll content, antioxidative enzymes, and apoplastic bypass flow. As expected, T. caerulescens generally showed better resistance to metal stress, which was reflected by higher Cd accumulation within plant tissues with no signs of chlorosis, or wilt. Glutathione reductase (GR) and superoxide dismutase (SOD) activities in fresh leaves were monitored as the plant metal-detoxifying response. In general, both plant species exhibited an increase trend of GR activity before declining at 100 microM likely due to excessive levels of phytotoxic Cd. SOD activity exhibited almost a similar variation pattern to GR and decreased also at 100 microM Cd. For both plant species, fluorescent PTS uptake (8-hydroxy-1,3,6-pyrenetrisulphonic acid) increased significantly with metal level in exposure solutions indicating that Cd has a comparable effect to drought or salinity in terms of the gain of relative importance in apoplastic bypass transport under such stress conditions.  相似文献   

8.
In the present study the authors report on the enhancing effect of aluminum(III) (Al[III]) on iron(II)(Fe[II])-induced lipid peroxidation (LPO) of mice brain homogenate, which occurs in a concentration and time-dependent manner. No evidence of LPO caused by Al alone was found. Both Al(III) and Fe(II) ions induced protein oxidative modifications in mice brain homogenate, in a time and concentrationdependent manner. Aluminum enhances Fe(II)-induced protein oxidative modification at a concentration of 2:1 and 1:1 Al:Fe molar ratios. However, Al suppress Fe(II)-induced protein oxidative modification at a concentration of 0.5:1 Al:Fe molar ratio. Addition of ethylenediaminetetraacetic acid (EDTA) inhibits both LPO and protein oxidative modifications induced by Al(III) and Fe(II) ions. Addition of mannitol and of Superoxide dismutase (SOD) did not show such effects. It is concluded that in mice brain homogenate, Al accelerates Fe(II)-induced LPO. Protein oxidative modifications caused by Fe(II) and/or Al ions are enhanced at high, but suppressed at low concentrations of Al ions. The latter observation suggests a possible biological role of Al as an antioxidant.  相似文献   

9.
The increase of Mg2+, from 1.3 to 3 microM, in growth medium of F. equiseti and F. acuminatum increased intracellular magnesium levels from 0.83 and 0.81 microM to 1.75 and 1.42 microM on the 12th day, respectively. Intracellular magnesium levels also elevated depending upon the number of incubation days. The maximum manganese levels of F. equiseti and F. acuminatum obtained in 1.6 microM Mg2+ culture medium were 0.67 and 1.23 microM, while maximum iron levels were determined to be 1.3 microM Mg2+ as 0.51 and 0.29 microM, respectively. The maximum intracellular iron and manganese levels were decreased significantly with increasing Mg2+ concentration in the culture medium and were increased depending upon the incubation period. However, intracellular zinc levels of these strains didn't change with Mg2+ concentration and incubation period.The maximum superoxide dismutase (MnSOD) activities of F. equiseti and F. acuminatum, related to increased intracellular manganese levels up to 1.6 microM Mg2+ in growth medium, were determined to be 78 and 110 IU/mg, respectively. CAT activity variations showed agreement with SOD activity and reached a maximum at 320 and 225 IU/mg under the same conditions. The minimum LPO levels of the Fusarium strains with the maximum MnSOD and CAT activities were determined as 1.2 and 0.9 nmol MDA/g., wet weight. The higher LPO level of F. equiseti grown at the same condition, in spite of 1.42-fold higher CAT activity due to the 1.41-fold lower SOD activity, as well as a 2.0-fold higher iron level, indicated increases in the generation of reactive oxygen species via the Fenton reaction.  相似文献   

10.
The antioxidative effect of rutin (vitamin P) on Fe2+-induced lipid peroxidation (LPO) in bovine heart microsomes and lecithin liposomes was studied. It was shown that the LPO-induced inhibition of microsomes and liposomes in the presence of rutin occurs via two mechanisms, i.e., association of Fe2+ ions to form an inactive complex and a direct interaction between rutin and free radicals. The contribution of these mechanisms depends on the composition of the reaction mixture. In bovine heart microsomes and liposomes, ascorbic acid has a dual activity towards LPO. At high concentrations of Fe2+ necessary for LPO induction (approximately 1 x 10(-3) M), ascorbic acid blocks LPO, whereas at low Fe2+ concentrations (less than 1 x 10(-4) M) it has a prooxidative effect. A combined use of ascorbic acid and rutin results in an additive antioxidative effect at high Fe2+ concentrations (approximately 1.10(-3) M). However, at low Fe2+ concentrations rutin acts as an antagonist of the prooxidative effect of ascorbic acid.  相似文献   

11.
Carnosine (beta-alanyl-L-histidine) injected to intact albino rats (20 mg/kg body weight) induces depletion of lipid peroxidation (LPO) products in brain and blood serum, an increase of superoxide scavenging activity in brain and serum, decrease of cholesterol: phospholipid ratio and increase of easy oxidizable phospholipid portion in brain lipid extracts. After painful stress (footshock during 2 hours) LPO products are accumulated in brain and serum, cholesterol: phospholipid ratio increases and the portion of easy oxidizable phospholipids decreases. Carnosine given before stress prevents LPO activation. Effects of carnosine and stress are not additive: LPO inhibition induced by carnosine is much more in rats subjected to stress.  相似文献   

12.
An in vitro evaluation on the antioxidant effect of diphenyl diselenide (PhSe)(2), an organochalcogenide, against sodium nitroprusside (SNP)-induced lipid peroxidation (LPO) was conduced. Human platelets and erythrocyte membranes (ghosts), as well as rat brain homogenates (S(1)), were pre-incubated with different concentrations of SNP (0-10 microM). All SNP concentrations tested significantly increased LPO in human platelets and S(1). Platelets were more sensitive to SNP-induced peroxidative damage when compared to S(1). SNP 10 microM decreased glutathione peroxidase (GPx) activity and did not affect glutathione reductase (GR) and catalase (CAT) activities in human platelets. However, ghosts were insensitive to SNP-induced LPO and no changes on GPx, GR and CAT activities were observed. Diphenyl diselenide significantly protected human platelets against SNP-induced LPO and recovered GPx inactivation. This effect was more evident at (PhSe)(2) concentrations above 2 microM. The presented results indicate that (PhSe)(2) exerts protective effects on SNP-induced oxidative damage in human blood components and in rat brain. These phenomena seem to be related to its thiol peroxidase-like activity and to a possible direct interaction with SNP and derivatives. Based on our results and on literature, diphenyl diselenide can be pointed as a promising antioxidant molecule.  相似文献   

13.
The magnesium-dependent, plasma membrane-associated neutral sphingomyelinase (N-SMase) catalyzes hydrolysis of membrane sphingomyelin to form ceramide, a lipid signaling molecule implied in intracellular signaling. We report here the biochemical purification to apparent homogeneity of N-SMase from bovine brain. Proteins from Nonidet P-40 extracts of brain membranes were subjected to four purification steps yielding a N-SMase preparation that exhibited a specific enzymatic activity 23,330-fold increased over the brain homogenate. When analyzed by two-dimensional gel electrophoresis, the purified enzyme presented as two major protein species of 46 and 97 kDa, respectively. Matrix-assisted laser desorption/ionization-mass spectrometry analysis of tryptic peptides revealed at least partial identity of these two proteins. Amino acid sequencing of tryptic peptides showed no apparent homologies of bovine N-SMase to any known protein. Peptide-specific antibodies recognized a single 97-kDa protein in Western blot analysis of cell lysates. The purified enzyme displayed a K(m) of 40 microM for sphingomyelin with an optimal activity at pH 7-8. Bovine brain N-SMase was strictly dependent on Mg(2+), whereas Zn(2+) and Ca(2+) proved inhibitory. The highly purified bovine N-SMase was effectively blocked by glutathione and scyphostatin. Scyphostatin proved to be a potent inhibitor of N-SMase with 95% inhibition observed at 20 microM scyphostatin. The results of this study define a N-SMase that fulfills the biochemical and functional criteria characteristic of the tumor necrosis factor-responsive membrane-bound N-SMase.  相似文献   

14.
Cadmium induced lipid peroxidation (LPO) and the activity of antioxidantenzymes after the administration of a single dose of CdCl 2 (0.4 mg kg body wt, ip) was studied in rat erythrocytes.Cd intoxication increased erythrocyte LPO along with a decrease insuperoxide dismutase (SOD) up to three days of Cd treatment. Thedecrease in erythrocyte catalase (CAT) activity was marked within9 h of Cd intoxication. After three days of Cd treatment, LPOdecreased towards normal, along with an increase in erythrocyteSOC and CAT activity. Blood glutathione (GSH) decreased significantlywithin 24 h of Cd treatment, followed by an increase towards normal.Erythrocyte glutathione S-transferase (GST) activity increased up to10 days of Cd intoxication, probably in an attempt to reduce Cd toxicity.Serum glutamate pyruvate transaminase (SGPT), serum alkaline phosphatase(SALP) and serum bilirubin increased up to 10 days of Cd intoxication.Blood urea increased significantly up to three days, followed by a decreasetowards normal. The results show that Cd induced LPO was associated with adecrease in antioxidant enzymes and GSH in erythrocytes; as these antioxidantsincrease in erythrocytes with recovery from Cd intoxication, the Cd inducedLPO reversed towards normal. The increase in the SGPT, SALP and serum bilirubincorrelated with LPO. The results suggest that Cd intoxication induces oxidativestress and alters the antioxidant system, resulting in oxidative damage torat erythrocytes. © Rapid Science 1998  相似文献   

15.
Ischemia development was accompanied by inhibition of the enzymatic transport system (ETS) of Ca2+ (reduction of the Ca2+/ATP value and of the Ca2+-dependent ATPase activity), this correlating with the accumulation of primary and secondary molecular products of lipid peroxidation (LPO) in the sarcoplasmic reticulum membranes of the skeletal muscles, in vivo. Administration of antioxidants (2,6-ditretbutyl-4-methylphenol, alpha-tocopherol) prevented the LPO activation in the ischemic muscle and partially protected the ETS of Ca2+ from damage. The blood supply restoration after prolonged ischemia led to further ETS of Ca2+ inhibition against the background of unchanges LPO products level.  相似文献   

16.
Hydroxy-urea (OH-U) is used to treat sickle cell anemia by increasing hemoglobin fetal-fraction. It has been suggested that the sickle cell mutations lead to the formation of unstable HbS and release of iron, which can result in lipid peroxidation (LPO), and eventual cell damage. Since oxidative processes might be involved in pathogenesis of sickle cell disease, we investigated the antioxidant property of OH-U in a red blood cell (RBC) model. Intact RBCs or RBC membranes were exposed to t-butyl hydroperoxide (t-BHP, 0.75 mM) or iron (ferrous sulfate; 100 microM) at 37 degrees C for 60 min in the presence or absence of OH-U (1.25 mM). The extent of oxidative damage was measured by LPO (as thiobarbituric acid reactive substances, TBARS), hemoglobin oxidation (as percent of methemoglobin, metHb %), and decrease in the activities of membrane-bound Na+/K+-ATPase and Ca2+-ATPases. Our results show that OH-U inhibited t-BHP-induced LPO in fresh RBC membranes significantly (P <0.01). OH-U significantly inhibited t-BHP-mediated LPO (P <0.01) and metHb formation (P <0.01) in intact RBC. Also, OH-U inhibited iron-induced LPO and metHb formation in intact RBC (P <0.01). In addition, OH-U blocked t-BHP-mediated changes in membrane ATPase activities. Furthermore, OH-U blocked iron-mediated hydroxyl radical generation in a dose-dependent fashion. In conclusion, the observed antioxidant properties of OH-U might contribute to its therapeutic action in sickle cell disease.  相似文献   

17.
Cadmium (Cd) is an ubiquitous environmental pollutant that has been associated with male reproductive toxicity in animal models. However, little is known about the reproductive toxicity of Cd in birds. To investigate the toxicity of Cd on male reproduction in birds and the protective effects of selenium (Se) against subchronic exposure to dietary Cd, 100-day-old cocks received either Se (as 10 mg Na2SeO3 per kg of diet), Cd (as 150 mg CdCl2 per kg of diet) or Cd + Se in their diets for 60 days. Histological and ultrastructural changes in the testis, the concentrations of Cd and Se, amount of lipid peroxidation (LPO), the activities of the antioxidants superoxide dismutase (SOD) and glutathione peroxidase (GPx), and apoptosis and serum testosterone levels were determined. Exposure to Cd significantly lowered SOD and GPx activity, Se content in the testicular tissue, and serum testosterone levels. It increased the amount of LPO, the numbers of apoptotic cells and Cd concentration and caused obvious histopathological changes in the testes. Concurrent treatment with Se reduced the Cd-induced histopathological changes in the testis, oxidative stress, endocrine disorder and apoptosis, suggesting that the toxic effects of cadmium on the testes is ameliorated by Se. Se supplementation also modified the distribution of Cd in the testis.  相似文献   

18.
Summary

The antioxidant potential of the brain in developing fetuses was assessed at gestational days (GD) 16, 18 and 20 and postnatal day (PND)1. Higher activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx) were noticed during fetal development which were reduced to about half and one-quarter, respectively, at PND 1. Glutathione reductase (GR) activity remained stationary throughout the experiment and the values were very high compared to those reported for weanling rats. In contrast, catalase (CAT) activity increased with development. Glutathione (GSH) and total sulfhydryls (TSH) were maximum in 16-day fetal brains and declined subsequently. Brain lipid peroxidation (LPO) was found to increase with age. A group of animals was exposed to 20 ppm cadmium (Cd) in drinking water from the day of conception up to PND 1. Cd was found to increase the activities of brain SOD, CAT, and GR significantly at all the time intervals. The metal exposure decreased fetal brain GPx at GD 18 and 20, whereas GPx activity declined precipitously in both groups on PND 1. Cd caused both increments and decrements in the GSH and TSH levels (depending on gestational day) and increased the LPO in brain. It may be concluded that the Cd-intoxicated fetal brain undergoes significant changes in antioxidant defense parameters which, overall, may be sufficient to permit near-normal development and prevent substantial oxidant damage.  相似文献   

19.
Lipid peroxidation (LPO) of dog spermatozoa was assessed in fresh semen and in samples of the same ejaculates after freezing and thawing. Particular attention was paid to individual differences in the susceptibility to LPO and its possible relationship with freezeability. Innate levels of LPO were low in fresh spermatozoa but increased after thawing in one of the dogs included in our study. The level of lipid peroxidation in fresh spermatozoa was not correlated with that of thawed spermatozoa. Negative correlations were detected between the activity in seminal plasma of GPx and sperm velocities post thaw (P < 0.01), however SOD activity was positively correlated with the percentage of linear motile sperm post thaw (P < 0.05).  相似文献   

20.
通过水培试验,研究Cd2+胁迫对萝卜幼苗活性氧的产生、脂质过氧化和抗氧化酶活性的影响。超氧 阴离子(O 2)的产生速率和丙二醛(MDA)的含量与对照相比有不同程度的增加,表明Cd2+胁迫能导致萝卜体 内的氧化胁迫;超氧化物歧化酶(SOD)的活性,随着Cd2+浓度提高,首先明显上升,然后逐渐下降,甚至低于 对照,叶片过氧化氢酶(CAT)的活性明显增加,根系CAT活性则减少,根系以及较高浓度Cd2+处理后期叶片 谷胱甘肽还原酶(GR)的活性均显著增加。推测:胁迫初期可能主要由SOD和CAT发挥抗氧化作用;后期由 于抗坏血酸—谷胱甘肽(AsA GsH)循环途径的激活,以及还原型谷胱甘肽(GSH)和植物络合素(Phytochela tins,PCs)的合成,可能在清除活性氧或者直接鏊合Cd2+中起作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号