首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The regional distribution of neuropeptide Y (NPY) immunoreactivity and receptor binding was studied in the porcine CNS. The highest amounts of immunoreactive NPY were found in the hypothalamus, septum pellucidum, gyrus cinguli, cortex frontalis, parietalis, and piriformis, corpus amygdaloideum, and bulbus olfactorius (200-1,000 pmol/g wet weight). In the cortex temporalis and occipitalis, striatum, hippocampus, tractus olfactorius, corpus mamillare, thalamus, and globus pallidus, the NPY content was 50-200 pmol/g wet weight, whereas the striatum, colliculi, substantia nigra, cerebellum, pons, medulla oblongata, and medulla spinalis contained less than 50 pmol/g wet weight. The receptor binding of NPY was highest in the hippocampus, corpus fornicis, corpus amygdaloideum, nucleus accumbens, and neurohypophysis, with a range of 1.0-5.87 pmol/mg of protein. Intermediate binding (0.5-1.0 pmol/mg of protein) was found in the septum pellucidum, columna fornicis, corpus mamillare, cortex piriformis, gyrus cinguli, striatum, substantia grisea centralis, substantia nigra, and cerebellum. In the corpus callosum, basal ganglia, corpus pineale, colliculi, corpus geniculatum mediale, nucleus ruber, pons, medulla oblongata, and medulla spinalis, receptor binding of NPY was detectable but less than 0.5 pmol/mg of protein. No binding was observed in the bulbus and tractus olfactorius and adenohypophysis. In conclusion, immunoreactive NPY and its receptors are widespread in the porcine CNS, with predominant location in the limbic system, olfactory system, hypothalamoneurohypophysial tract, corpus striatum, and cerebral cortex.  相似文献   

2.
The neuropeptide Y (NPY) receptor was solubilized from rat brain membranes with the zwitterionic detergent 3-[(3-cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS). The binding of 125I-NPY to CHAPS extracts was protein, time, and temperature dependent. Unlabeled NPY and the related peptides peptide YY (PYY) and pancreatic polypeptide inhibited 125I-NPY binding to solubilized receptors with relative potencies similar to those seen with membrane-bound receptors: NPY greater than PYY much greater than pancreatic polypeptide. Scatchard analysis of equilibrium binding data showed the CHAPS extracts to contain a single population of binding sites with a KD of 3.6 +/- 0.4 nM (mean +/- SEM) and a Bmax of 5.0 +/- 0.2 pmol/mg of protein. In addition the 125I-NPY binding to the soluble receptor was not inhibited by guanosine-5'-O-(3-thiotriphosphate), in contrast to the GTP sensitivity displayed by the membrane-bound receptor. Gel filtration chromatography using Sepharose 6B revealed a single peak of binding activity corresponding to a Mr of approximately 67,000, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis after chemical cross-linking revealed a single band at Mr 62,000. After solubilization and gel chromatography a 50- to 100-fold purification of the NPY receptor was obtained.  相似文献   

3.
Huang XF  Yu Y  Li Y  Tim S  Deng C  Wang Q 《Neurochemical research》2008,33(9):1881-1888
This study examined changes in neuropeptide Y (NPY) Y2 receptor binding in the brains of C57BL/6 mice in response to different levels of high-fat diets via three dietary intervention methods: high-fat diet, switching from high- to low-fat diet and finally, energy restricted high-fat diet. Forty-five C57Bl/6 male mice were fed a high-fat diet for 8 weeks and then classified as diet-induced obese (DIO) or diet-resistant (DR) mice according to the highest and lowest body weight gainers, respectively. The DIO and DR mice were then randomly divided into three groups each and either continued on their high-fat diet ad libitum (DIO-H and DR-H), changed to a low-fat diet (DIO-L and DR-L) or pair-fed via energy restricted high-fat diet (DIO-P and DR-P) for a further 6 weeks. During the course of this study, body weight, energy intake and plasma peptide YY (PYY) were measured. The study revealed that the replacement of a high-fat diet with a low-fat diet was associated with a significant lowering of ventromedial hypothalamic (VMH) Y2 receptor binding in both the DIO-L and DR-L mice (−37%, −36%), and also a lowered plasma PYY level in the DIO-L mice (−25%). Despite a continued consumption of the high-fat diet, energy restricted pair feeding caused a lower VMH Y2 receptor binding in the obese mice (DIO-P) following weight loss compared to the DR-P mice (−14%). In conclusion, this study showed that changing diets from high- to low-fat can significantly lower the VMH Y2 receptor binding irrespective to the obesity phenotype. Energy restriction, even while on high-fat feeding, can cause a lower VMH Y2 receptor binding compared to DR mice even after body weight loss to similar levels. This suggests either a possible intrinsic nature of the DIO mice or a body weight set-point re-establishment to drive body weight regain.  相似文献   

4.
Administration of 3,3'-iminodipropionitrile (IDPN) (1 g/kg, i.p. for 3 days) in mice leads to the development of a characteristic syndrome consisting of lateral and vertical head and neck movements, hyperactivity, random circling, increased locomotor activity, and increased startle response. Nifedipine, verapamil, and diltiazem (10 mg/kg) inhibited significantly the symptoms of IDPN-induced dyskinesia. However, there was no change in the affinity (KD) or the density of PN 200-110 binding sites (Bmax) in whole brains of IDPN-treated mice. Similarly, the K(+)-depolarization-dependent Ca2+ uptake in synaptosomes from whole brain, cortex, or striatum was not altered following IDPN treatment. However, IDPN caused a significant increase in the Bmax value (from 157 +/- 7 fmol/mg to 237 +/- 31 fmol/mg in control and treated groups, respectively) of PN 200-110 binding to the striatum without change of KD value (38 +/- 4.7 pM versus 33 +/- 1.6 pM). IDPN also caused a slight but significant decrease in the KD value (from 68 +/- 10.1 pM to 45 +/- 4.5 pM in control and treated groups, respectively), without significant change of Bmax value (563 +/- 51 fmol/mg versus 485 +/- 41 fmol/mg) of PN 200-110 binding to the cortex. IDPN did not alter omega-conotoxin binding in whole brain, striatum, or cortex. The behavioral effects of chronic IDPN treatment as inhibited by L-type calcium channel antagonists and this may be associated with the observed increase in striatal L-type calcium channels.  相似文献   

5.
The biosynthesis of neuropeptide Y (NPY) and norepinephrine (NE) has been examined in dissociated neuronal cultures from newborn rat superior cervical ganglion (SCG). NPY synthetic rate was measured by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis after incubation in medium containing a labeled amino acid. The authenticity of the NPY was confirmed by reverse-phase HPLC analyses of tryptic peptides. The NPY synthetic rate in cultures grown in complete serum free medium increased 30-fold after plating, in parallel to catecholamine synthesis; both NPY and the catecholamines reached the rate for adult SCG neurons. This development in culture is seen without spinal cord input, target organs, or significant numbers of glial cells. NPY synthesis was maintained in the face of a major decrease in the rate of NE production after cholinergic induction.  相似文献   

6.
We identified receptors for neuropeptide Y (NPY) on an established human neuroblastoma cell line, SK-N-MC, which are functionally coupled to adenylate cyclase through the inhibitory guanine nucleotide-binding protein of adenylate cyclase, Gi. Intact SK-N-MC cells bound radiolabeled NPY with a KD of 2 nM and contained approximately 83,000 receptors/cell. Unlabeled porcine and human NPY and structurally related porcine peptide YY (PYY) competed with labeled NPY for binding to the receptors. NPY inhibited cyclic AMP accumulation in SK-N-MC cells stimulated by isoproterenol, dopamine, vasoactive intestinal peptide, cholera toxin, and forskolin. NPY inhibited isoproterenol-stimulated cyclic AMP production in a dose-dependent manner, with half-maximal inhibition at 0.5 nM NPY. Porcine and human NPY and porcine PYY gave similar dose-response curves. NPY also inhibited basal and isoproterenol-stimulated adenylate cyclase activity in disrupted cells. Pertussis toxin treatment of the cells completely blocked the ability of NPY to inhibit cyclic AMP production and adenylate cyclase activity. The toxin catalyzed the ADP-ribosylation of a 41-kDa protein in SK-N-MC cells that corresponds to Gi. The receptors on SK-N-MC cells appeared to be specific for NPY, as other neurotransmitter drugs, such as alpha-adrenergic, dopaminergic, muscarinic, and serotonergic antagonists, did not compete for either NPY binding or NPY inhibition of adenylate cyclase. Thus, SK-N-MC cells may be a useful model for investigating NPY receptors and NPY-mediated signal transduction.  相似文献   

7.
Neuropeptide Y (NPY) elicits a plethora of physiological effects by interacting with several distinct G protein-coupled receptors. Activation of one of these receptors, the NPY Y5 receptor, is thought to result in increased food intake, anticonvulsant effects, attenuation of opiate withdrawal, inhibition of neuronal activity, and alteration of renal function. Several alternatively spliced human and rat NPY Y5 receptor cDNAs have been isolated that use different combinations of exons in the 5'-untranslated region. The various human NPY Y5 receptor cDNAs appear to be differentially expressed in different brain regions. The level of human NPY Y5 receptor expressed transiently in COS1 cells was significantly influenced by the sequence of the 5'-untranslated region. These results indicate that alternative splicing in the 5'-untranslated region of the human and rat NPY Y5 receptor genes occurs in a tissue-specific manner and is one mechanism by which cells control the level of NPY Y5 receptor expression.  相似文献   

8.
Abstract

Neuropeptide Y (NPY), receptors belong to the G-protein coupled receptor superfamily. NPY mediates several physiological responses, such as blood pressure, food intake, sedation. These actions of NPY are mediated by six receptor subtypes denoted as Y1-Y5 and y6. Modeling of receptor subtypes and binding site identification is an important step in developing new therapeutic agents. We have attempted to model the three NPY receptor types, Y1, Y4, and Y5 using homology modeling and threading methods. The models are consistent with previously reported experimental evidence. To understand the interaction and selectivity of NPY analogues with different neuropeptide receptors, docking studies of two neuropeptide analogues (BVD10 and BVD15) with receptors Y1 and Y4 were carried out. Results of the docking studies indicated that the interaction of ligands BVD10 and BVD15 with Y1 and Y4 receptors are different. These results were evaluated for selectivity of peptide analogues BVD10 and BVD15 towards the receptors.  相似文献   

9.
Abstract: Using guanine nucleotides, pertussis toxin, and specific antisera against the COOH-terminals of the α-subunits of Gi1/2, Gi3, and Go, the binding and biological response of the Y2 receptor (Y2R) for peptide YY (PYY) was probed in SMS-KAN neuroblastoma cells. The specific binding of radiolabeled PYY exhibited a single apparent dissociation constant, K D = 76 p M for intact cells and K D = 906 p M for permeabilized cells. However, other data suggested existence of multiple receptor affinity states. A shift in K D and a decrease in apparent number of binding sites ( B max) was observed in permeabilized cells when incubated with guanine nucleotides. By contrast, in membrane preparations guanine nucleotides induced only a decrease in B max. In intact cells, agonist exposure inhibited the intracellular accumulation of forskolin-stimulated cyclic AMP by 80% (IC50 = 420 n M ) compared with 94% inhibition (IC50 = 380 n M ) in permeabilized cells. In permeabilized cells, preincubation with antisera against αi1/2 and αi3 blocked the functional response of PYY, with anti-αi3 being the most potent; whereas anti-αo failed to affect the cyclic AMP levels. These results suggest that permeabilized SMS-KAN cells serve as a good model system for analysis of Y2R binding kinetics and functional response and that the Y2R interacts directly with several different Gis (but not Go).  相似文献   

10.
11.
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and exerts a variety of physiological processes in humans via four different receptor subtypes Y1, Y2, Y4 and Y5. Y2 receptor is the most abundant Y subtype receptor in the central nervous system and implicated with food intake, bone formation, affective disorders, alcohol and drugs of abuse, epilepsy, pain, and cancer. The lack of small molecule non-peptidic Y2 receptor modulators suitable as in vivo pharmacological tools hampered the progress to uncover the precise pharmacological role of Y2. Only in recent years, several potent, selective and non-peptidic Y2 antagonists have been discovered providing the tools to validate Y2 receptor as a therapeutic target. This Letter reviews Y2 receptor modulators mainly non-peptidic antagonists and their structure–activity relationships.  相似文献   

12.
Y2受体亚型是早期发现的NPY的两种主要受体亚型之一,参与NPY所介导的多种生理和病理功能.为了制备Y2受体抗体和开展Y2受体的定位研究,用RT-PCR方法从大鼠海马的总RNA扩增NPY的Y2受体全长基因,接着PCR扩增Y2受体的C端片段,克隆入表达载体中,建立了重组NPY Y2受体C端肽的表达菌株,并对表达产物进行纯化.  相似文献   

13.
14.
A.S. Levine  J.E. Morley   《Peptides》1984,5(6):1025-1029
Neuropeptide Y (NPY) is a 36 amino acid peptide with potent cardiovascular effects. In the present study, intraventricular injection of NPY was shown to markedly stimulate feeding and drinking during the illuminated period of the light/dark cycle, a time when rats ingest small amounts of food. It also enhanced nocturnal food and water intake following a 24 hour period of food deprivation and during nocturnal feeding. The NPY induction of food intake was suppressed by the opiate antagonist, naloxone, and by the dopamine antagonist, haloperidol. Phentolamine, an alpha adrenergic antagonist, failed to suppress NPY-induced feeding. Based on the maximum quantity of food which was ingested following central administration of NPY, this peptide appears to represent one of the most potent stimulators of feeding yet to be described.  相似文献   

15.
Abstract: Using a range of Ca2+ channel blockers we have investigated the Ca2+ channel subtypes that mediate the depolarisation-induced elevation of the intracellular free Ca2+ concentration ([Ca2+]i) and glutamate release from cultured rat cerebellar granule cells. ω-Conotoxin-GVIA had little effect on either the transient or plateau phase of the depolarisation-induced [Ca2+]i rise or on glutamate release, ruling out a significant role for N-type Ca2+ channels. Nifedipine substantially inhibited the initial transient rise in [Ca2+]i and the plateau phase of the [Ca2+]i rise and glutamate release, suggesting the involvement of L-type Ca2+ channels. Both ω-agatoxin and ω-conotoxin-MVIIC also inhibited the transient rise in [Ca2+]i and glutamate release but not the plateau phase of the [Ca2+]i rise. The inhibitions by nifedipine were not increased by coaddition of ω-conotoxin-MVIIC, suggesting overlapping sensitivity to these channel blockers. These data show that glutamate release from granule cells in response to depolarisation with a high KCI level involves Ca2+ currents that are sensitive to nifedipine, ω-agatoxin-IVA, and also ω-conotoxin-MVIIC. The overlapping sensitivity of the channels to these toxins prevents attribution of any of the phases of the [Ca2+]i rise or glutamate release to distinct P-, Q-, or O-type Ca2+ currents.  相似文献   

16.
Neuropeptide Y: Direct and indirect action on insulin secretion in the rat   总被引:3,自引:0,他引:3  
Neuropeptide Y (NPY) was tested for an ability to directly influence the release of insulin using an in vitro isolated rat pancreatic islet system. NPY, at doses ranging from 100 pg/ml to 1 μg/ml, had no significant effect on the basal release (5.5 mM glucose) of insulin. However, NPY treatment resulted in a significant, dose-dependent (1 ng/ml to 1 μg/ml) inhibition of glucose-stimulated (11 mM) insulin release. When tested in a perfused rat pancreas preparation in situ, NPY administration led to a marked inhibition of both basal and stimulated insulin release followed by a postinhibitory rebound which exceeded the control insulin levels by 3-fold. In contrast, the intracerebroventricular (ICV) microinjection of NPY (5 μg) produced a significant but delayed (30 min) elevation of circulating insulin. It is therefore suggested that the direct action of NPY on insulin release is inhibitory while the central action of NPY indirectly results in an increase in plasma insulin. Thus, NPY may be added to the growing list of peptidergic agents which may affect the endocrine pancreas by acting as neurotransmitters and/or neuromodulators.  相似文献   

17.
We studied the effects of neuropeptide Y (NPY) and NPY-related receptor specific peptides on functions of carrageenan-elicited granulocytes in vitro and ability of NPY to modulate carrageenan-induced air pouch inflammation in rats in vivo. Anti-inflammatory effect of NPY comprises reduced granulocyte accumulation into the air pouch, to some extent attenuation of phagocytosis, attained via Y1 receptor, and considerable decrease in peroxide production, albeit mediated via Y2 and Y5 receptors activation. Conversely, NPY increases nitric oxide production and this potentiation is mediated via Y1 receptor. It is concluded that NPY Y1 and Y2/Y5 receptors’ interaction participates in NPY-induced modulation of granulocyte functions related to inflammation.  相似文献   

18.
Abstract: Neuropeptide Y is colocalized with noradrena-line in sympathetic fibers innervating the rat pineal gland. In this article we present a study of the effects and mechanisms of action of neuropeptide Y on the pineal noradrenergic transmission, the main input leading to the rhythmic secretion of melatonin. At the presynaptic level, neuropeptide Y inhibits by 45%, with an EC50 of 50 n M , the potassium-evoked noradrenaline release from pineal nerve endings. This neuropeptide Y inhibition occurs via the activation of pertussis toxin-sensitive G protein-coupled neuropeptide Y-Y2 receptors and is independent from, but additive to, the α2-adrenergic inhibition of noradrenaline release. At the postsynaptic level, neuropeptide Y decreases by a maximum of 35%, with an EC50 of 5 n M , the β-adrenergic induction of cyclic AMP elevation via the activation of neuropeptide Y-Y1 receptors. This moderate neuropeptide Y-induced inhibition of cyclic AMP accumulation, however, has no effect on the melatonin secretion induced by a β-adrenergic stimulation. On the contrary, in the presence of 1 m M ascorbic acid, neuropeptide Y potentiates (up to threefold) the melatonin secretion. In conclusion, this study has demonstrated that neuropeptide Y modulates the noradrenergic transmission in the rat pineal gland at both presynaptic and postsynaptic levels, using different receptor subtypes and transduction pathways.  相似文献   

19.
Abstract: Neuropeptide Y (NPY) and corticotropin-releasing factor (CRF) are present at high concentrations in the hypothalamus where they mediate important endocrine and autonomic functions. Morphological and physiological studies have suggested an interaction between these peptides, and opposing actions of CRF and NPY have been reported on feeding and other behaviors. This study investigated the effect of CRF on NPY release in vivo, measured by push-pull techniques, in the anesthetized rat. Push-pull probes implanted into the paraventricular nucleus of the hypothalamus (PVN) were perfused with modified Ringer solution containing bovine serum albumin at 15 µl/min, and the perfusate was lyophilized prior to NPY radioimmunoassay. NPY overflow from the rat PVN was increased threefold by perfusion of a depolarizing concentration of potassium (50 mmol/L KCI). When CRF was administered into the PVN via the push-pull cannula at 1 or 5 µg/ml, dose-dependent increases in NPY overflow of two- and fivefold were observed ( p < 0.05). These increases were abolished by prior intracerebroventricular (i.c.v.) administration of the CRF antagonist [ d -Phe12,Nle21,38,CαMeLeu32]CRF (12–41) at 1 or 5 µg/µl, respectively. NPY overflow returned promptly to resting levels following CRF administration. In contrast, when CRF was administered by i.c.v. bolus at a similar total dose (2 µg), no significant effect on NPY overflow was observed. These data provide in vivo evidence for an interaction between CRF and NPY at the level of the PVN.  相似文献   

20.
125I-[Leu31,Pro34]peptide YY (PYY) and 125I-PYY3-36, initially described as selective neuropeptide Y Y1 and Y2 receptor ligands, respectively, were recently shown to label also Y4 and Y5 receptors. We used receptor autoradiography to assess whether these ligands can be reliably used to investigate the various neuropeptide Y receptors in rat forebrain. In most of the brain regions examined (in coronal sections at the level of dorsal hippocampus), specific 125I-[Leu31,Pro34]PYY binding was completely inhibited by 1 microM BIBP-3226, a selective Y1 receptor ligand, but unaffected by 10 nM rat pancreatic polypeptide, selectively inhibiting Y4 receptors, suggesting that Y4 receptors are present in negligible numbers compared with Y1 receptors in the areas examined. Significant numbers of BIBP-3226-insensitive 125I-[Leu31,Pro34]PYY binding sites were measured in the CA3 subfield of the hippocampus only, possibly representing Y5 receptors. 125I-PYY3-36 binding was unchanged by 1 microM BIBP-3226, whereas a population of 125I-PYY3-36 binding sites was sensitive to 100 nM [Leu31,Pro34]neuropeptide Y, likely representing Y5 receptors. The possibility of distinguishing between Y2 and Y5 receptors using 125I-PYY3-36 as radioligand was validated by their different regional distribution and their distinct changes 24 h after kainate seizures, i.e., binding to Y5 receptors was selectively decreased in the outer cortex, whereas binding to Y2 receptors was enhanced in the hippocampus. Thus, the use of selective unlabeled compounds is required for distinguishing the various receptor subtypes labeled by 125I-[Leu31,Pro34]PYY and 125I-PYY3-36 in rat brain tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号