首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adenosine 3',5'-cyclic phosphate (cAMP) is efficiently hydrolyzed at pH 7, 50 degrees C by use of [Co-(trien) (H2O)2]3+ and [Co(tme)2-(H2O)2]3+ complexes as catalysts: trien (diethylenetriamine) and tme (1,1,2,2-tetramethylethylenediamine). The acceleration is remarkable (10(8) to 10(9) fold), decreasing half-life of cAMP from 660,000 years to 7-15 hours.  相似文献   

2.
The NAD(+)-dependent malic enzyme (DME) and the NADP(+)-dependent malic enzyme (TME) of Sinorhizobium meliloti are representatives of a distinct class of malic enzymes that contain a 440-amino-acid N-terminal region homologous to other malic enzymes and a 330-amino-acid C-terminal region with similarity to phosphotransacetylase enzymes (PTA). We have shown previously that dme mutants of S. meliloti fail to fix N(2) (Fix(-)) in alfalfa root nodules, whereas tme mutants are unimpaired in their N(2)-fixing ability (Fix(+)). Here we report that the amount of DME protein in bacteroids is 10 times greater than that of TME. We therefore investigated whether increased TME activity in nodules would allow TME to function in place of DME. The tme gene was placed under the control of the dme promoter, and despite elevated levels of TME within bacteroids, no symbiotic nitrogen fixation occurred in dme mutant strains. Conversely, expression of dme from the tme promoter resulted in a large reduction in DME activity and symbiotic N(2) fixation. Hence, TME cannot replace the symbiotic requirement for DME. In further experiments we investigated the DME PTA-like domain and showed that it is not required for N(2) fixation. Thus, expression of a DME C-terminal deletion derivative or the Escherichia coli NAD(+)-dependent malic enzyme (sfcA), both of which lack the PTA-like region, restored wild-type N(2) fixation to a dme mutant. Our results have defined the symbiotic requirements for malic enzyme and raise the possibility that a constant high ratio of NADPH + H(+) to NADP in nitrogen-fixing bacteroids prevents TME from functioning in N(2)-fixing bacteroids.  相似文献   

3.
NADP+ -dependent malic enzyme of Rhizobium meliloti.   总被引:1,自引:0,他引:1       下载免费PDF全文
The bacterium Rhizobium meliloti, which forms N2-fixing root nodules on alfalfa, has two distinct malic enzymes; one is NADP+ dependent, while a second has maximal activity when NAD+ is the coenzyme. The diphosphopyridine nucleotide (NAD+)-dependent malic enzyme (DME) is required for symbiotic N2 fixation, likely as part of a pathway for the conversion of C4-dicarboxylic acids to acetyl coenzyme A in N2-fixing bacteroids. Here, we report the cloning and localization of the tme gene (encoding the triphosphopyridine nucleotide [NADP+]-dependent malic enzyme) to a 3.7-kb region. We constructed strains carrying insertions within the tme gene region and showed that the NADP+ -dependent malic enzyme activity peak was absent when extracts from these strains were eluted from a DEAE-cellulose chromatography column. We found that NADP+ -dependent malic enzyme activity was not required for N2 fixation, as tme mutants induced N2-fixing root nodules on alfalfa. Moreover, the apparent NADP+ -dependent malic enzyme activity detected in wild-type (N2-fixing) bacteroids was only 20% of the level detected in free-living cells. Much of that residual bacteroid activity appeared to be due to utilization of NADP+ by DME. The functions of DME and the NADP+ -dependent malic enzyme are discussed in light of the above results and the growth phenotypes of various tme and dme mutants.  相似文献   

4.
The 2',3'-cyclic nucleotide 3'-phosphodiesterase which hydrolyzes nucleoside 2',3'-cyclic phosphates (N greater than p) to nucleoside 2'-phosphates has been purified 16,000-fold to near homogeneity from wheat germ. The purified enzyme is a single polypeptide with a molecular weight of 23,000-24,000. It has a pH optimum of 7.0. The apparent Km values for A greater than p, G greater than p, C greater than p, and U greater than p are 13.1, 9.2, 25.2, and 25.3 mM, respectively. Vmax values for A greater than p, G greater than p, C greater than p, and U greater than p are 2090, 280, 2140, and 600 mumol/min/mg of purified protein, respectively. Wheat germ 2',3'-cyclic nucleotide 3'-phosphodiesterase does not hydrolyze 2',3'-cyclic esters in cyclic phosphate-terminated oligoribonucleotides or in nucleoside 5'-phosphate, 2',3'-cyclic phosphate (pN greater than p). This is in contrast to the 3'-phosphodiesterase activity associated with a wheat germ RNA ligase which hydrolyzes cyclic phosphate-terminated oligonucleotides and pN greater than p substrates much more efficiently than nucleoside 2',3'-cyclic phosphates. The enzyme characterized in this work appears to be the only known 2',3'-cyclic nucleotide 3'-phosphodiesterase specific for 2',3'-cyclic mononucleotides.  相似文献   

5.
K Ashizawa  P McPhie  K H Lin  S Y Cheng 《Biochemistry》1991,30(29):7105-7111
We have recently shown that the cytosolic thyroid hormone binding protein (p58-M2) in human epidermoid carcinoma A431 cells is a monomer of pyruvate kinase, subtype M2 (PKM2). To characterize further the molecular properties of p58-M2, we overexpressed p58-M2 in Escherichia coli and purified it to homogeneity. At 22 degrees C, the monomeric p58-M2, exhibited kinase activity with an apparent Vmax of 22 +/- 9 units/mg. The Km for adenosine diphosphate (ADP) and phosphoenolpyruvate (PEP) are 3.85 +/- 2.4 and 1.55 +/- 0.73 mM, respectively. Upon activation by fructose 1,6-bisphosphate (Fru-1,6-P2), Vmax and Km for ADP and PEP were changed to 490 +/- 27 units/mg and 0.63 +/- 0.09 and 0.13 +/- 0.01 mM, respectively. These results indicated that p58-M2 has intrinsic kinase activity. Analysis of the molecular size indicated that the activation of p58-M2, by Fru-1,6-P2 resulted in the association of the monomeric p58-M2 to the tetrameric PKM2. p58-M2 bound to 3,3',5-triiodo-L-thyronine (T3) (Ka = 1.7 x 10(7) M-1) and exhibited analogue specificity, whereas PKM2 did not bind thyroid hormone. The order of binding affinity was L-T3 greater than L-thyroxine greater than 3,3',5-triiodothyropropionic acid greater than 3'-isopropyl-3,5-triiodo-L-thyronine greater than 3'5',3-triiodo-L-thyronine. Binding of T3 and its analogues resulted in the inhibition of the kinase activity of p58-M2. The order of kinase inhibitory activity and preventing its association to tetrameric PKM2 was parallel to that of binding activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
2',3'-cyclic nucleotides are intermediates and substrates of Ribonuclease (RNase)-catalysed reactions. The characterization of the equilibrium conformation as well as the flexibility inherent in these molecules helps in understanding the enzymatic action of RNases. The present study explores parameters like phase angle, glycosydic torsion angle and hydrogen bond to find possible interrelationship between them through Molecular Dynamics (MD) simulations on 3'-GMP,3'-UMP, A greater than p, G greater than p, U greater than p, C greater than p, GpA greater than p and UpA greater than p. Interesting results of the effect of cyclisation and other constraints such as hydrogen bond between certain groups on the equilibrium ribose conformation have emerged from this study.  相似文献   

7.
We have used flow linear dichroism (LD) and light scattering at 90 degrees to study the condensation of both DNA and calf thymus chromatin induced by spermine, triamines NH3+(CH2)iNH+(CH2)jNH3+, designated as much less than i, j much greater than: much less than 3, 4 much greater than (spermidine), much less than 3, 3 much greater than, much less than 2, 3 much greater than, much less than 2, 2 much greater than; the diamines putrescine and cadaverine and MgCl2. It is found that the different polyamines affected DNA and chromatin in a similar way. The degree of compaction of the chromatin fibers induced by spermine, triamines except much less than 2, 2 much greater than and Mg2+ has been found to be identical. The triamine much less than 2, 2 much greater than and the diamines studied do not condense either chromatin of DNA. Such a big difference in the action of the triamines indicates that not only the charge, but also the structure of the polycations are important for their interactions with DNA and chromatin. The stoichiometry of polyamine binding to chromatin at which condensation occurred is found to be 2 polyamine molecules per DNA helical turn. Polyamines are supposed to bind to the exposed sites of core DNA every 10 b.p. The extent of DNA phosphate neutralization by the histones is estimated to be about 55%. It has been shown that a mixture of mono- and multivalent cations affected DNA and chromatin condensation competitively and not synergistically, as claimed in a recent report by Sen and Crothers.  相似文献   

8.
In order to determine the relative activity of pyrimidine nucleoside-2',3'-cyclophosphates as donors and nucleosides as acceptors of phosphate in the reaction of the internucleotide bond formation catalyzed by RNAase A (EC 3.4.1.22), a comparative synthesis of dinucleoside monophosphates UpU, UpC, CpU and CpC at three different enzyme concentrations (20, 40 and 70 mkg/ml) and two temperatures (0 degrees and -15 degrees) was carried out. The conversion rate of donor (U greater than p and C greater than p) during the synthesis and in the competitive reaction of hydrolysis strongly depends on the type of acceptor activity as compared to uridine. Based on the data of synthesis and simultaneous hydrolysis of U greater than p and C greater than p it may be concluded that in the both cases the latter donor is more reactive. The approaches to the determination of the substrate activity of the donors and acceptors for the evaluation of optimal conditions of the dinucleoside monophosphate synthesis depending on the donor--acceptor combination are discussed.  相似文献   

9.
Basophil degranulation probably plays a significant role in the pathogenesis of different hypersensitivity reactions. These cells can be stimulated to secrete lysosomal histamine in vitro in response to various secretagogues. We compared the effects of drugs, modulating arachidonic acid (AA) metabolism, on histamine release (HR) from human basophils stimulated by anti-IgE antibody or C5a anaphylatoxin. Leukocytes from normal donors were preincubated with drug for 15 min at 22 degrees C, followed by the addition of C5a or anti-IgE for 30 min at 37 degrees C. Bromophenacyl bromide, an inhibitor of AA formation by phospholipase, blocked the effects of C5a and anti-IgE (greater than or equal to 3.3 X 10(-6) M, p less than 0.05 and p less than 0.01, respectively). 3-Amino-1-(3-trifluoromethylphenyl)-2-pyrazoline hydrochloride (BW755C, greater than or equal to 3.3 X 10(-5) M) and 5, 8, 11, 14-eicosatetraynoic acid (greater than or equal to 3.3 X 10(-4) M), known inhibitors of both cyclooxygenase (COX) and lipoxygenase (LPX) pathways of AA metabolism, blocked both C5a- and anti-IgE-induced HR (p less than 0.01). Nordihydroguaiaretic acid, an inhibitor of LPX, decreased HR induced by anti-IgE (greater than or equal to 3.3 X 10(-6) M, p less than 0.01) and allergens, but reduced C5a-initiated HR only at a higher concentration (greater than or equal to 7 X 10(-5) M, p less than 0.01). Indomethacin (INDO), an inhibitor of COX, significantly reduced HR caused by C5a (greater than or equal to 3.3 X 10(-8) M, p less than 0.01) and its degradation product C5adesArg, but had no effect or caused slight enhancement of HR initiated by anti-IgE. We confirmed that INDO augments allergen-induced HR. Our findings suggest that there are basic differences in the regulation of C5a- and IgE-mediated basophil degranulation.  相似文献   

10.
Streptomyces nucleotide 3'-pyrophosphokinase does not only transfer the 5'-beta, gamma-pyrophosphoryl group of ATP, ATP 3'-pyrophosphate or dATP to a variety of nucleotides at the 3'-OH site, but also adds 2',3'-cyclic terminal monophosphate to some suitable nucleotides with the use of diadenosine 5',5'-polyphosphates (n = 3-5). Examples are pA greater than p, ppA greater than p, pG greater than p, CpG greater than p, etc.  相似文献   

11.
Muscle contractions activate protein kinases, leading to signal transduction. We hypothesized that kinase activation would be influenced by mitochondrial content, as well as by contractile activity-induced increases in muscle O(2) consumption (Vo(2)). Kinase phosphorylation in high-oxidative red and low-oxidative white tibialis anterior (TA) muscle (RTA and WTA, respectively) with 2.5-fold differences in mitochondrial content were compared. Stimulation of the TA muscle elicited large increases in Vo(2) (3- to 6-fold and 4- to 60-fold above resting levels in WTA and RTA, respectively). At rest, AMP-activated protein kinase (AMPK), p38, p42, and p44 activation were nearly twofold greater in WTA than in RTA, suggesting an inverse relationship between mitochondrial content and kinase activation in resting muscle. During contractions, similar degrees of phosphorylation in RTA and WTA were evident as a function of Vo(2) for p38 and p42. During increases in Vo(2) up to sixfold above rest, greater responses were observed in RTA than in WTA for AMPK and p44, whereas Akt activation was greater in WTA. In RTA, elevations in Vo(2) elicited increases in AMPK and p44 activation, whereas Akt, p38, and p42 were less sensitive to increments in Vo(2). Reactive oxygen species (ROS) production was greater in mitochondria from white muscle, but when it was calculated in the context of the whole muscle, ROS production was twofold greater in red than in white myofibers. Thus mitochondrial content influences ROS production and is inversely related to kinase activation in resting muscle. During contractions, kinases are differentially sensitive to contraction-induced increments in Vo(2), suggesting that muscle mitochondrial content is important, but it is not the sole determinant of kinase activation during exercise of different intensities.  相似文献   

12.
Extrathyroidal production of 3,3',5-triiodothyronine from the thyroid secretory product, thyroxine, is catalyzed by tissue-specific iodothyronine 5'-deiodinases. Type I 5'-deiodinase (5'D-I) produces greater than 75% of the T3 found in the circulation and in thyroid hormone-responsive tissues and is most abundant in rat liver and kidney. In this study, we used the bromoacetyl derivatives of T4 (N-bromoacetyl-[125I]L-thyroxine, BrAcT4) and T3 (N-bromoacetyl-[125I]3,3',5-triiodothyronine, BrAcT3) as alkylating affinity labels to identify 5'D-I-related protein(s). BrAcT4 and BrAcT3 rapidly and irreversibly inactivated 5'D-I activity in liver and kidney microsomes. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of affinity labeled 5'D-I preparations showed that approximately 80% of the affinity label was incorporated into a protein with a Mr of 27,000 (p27). 5'D-I substrates and inhibitors specifically blocked affinity labeling of p27 with a rank order of potency (BrAcT4 greater than BrAcT3 greater than 3,5,3'-triiodothyronine (rT3) approximately flavone EMD 21388 greater than iodoacetate greater than N-acetyl-T4 (NAcT4) greater than N-acetyl-T3 (NAcT3] identical to that determined for inhibition of 5'-deiodination. Hyper- and hypothyroidism-induced increases and decreases in 5'D-I activity, respectively, were matched by comparable changes in the quantity of affinity labeled p27. BrAcT3 was a less effective affinity label for p27 and minor labeling of a new band with 53 kDa was observed. Molecular sieve chromatography of detergent-solubilized 5'D-I showed coincident peaks of p27 and 5'-deiodinating activity with an apparent Mr approximately 51,000. Two-dimensional gel electrophoresis showed that p27 was a single polypeptide with a pI of 6.1. Approximately 2-5 pmol of p27 were present per mg of liver microsomal protein, equal to previous estimates for 5'D-I content. Our results suggest that p27 represents the substrate binding subunit of type I 5'-deiodinase, the enzyme catalyzing the key reaction in the activation of T4 to the thyromimetically active T3.  相似文献   

13.
A crude preparation of 2-phenyladenosine was found to be mutagenic in the Ames Salmonella assay. In the purification of this preparation, it was revealed that 2-phenyladenosine itself was nonmutagenic but that 2-(m- and p-nitrophenyl)-adenosines (5m,p) contaminating the sample were the mutagenic principles. A structure-activity relationship study was carried out, and it was found that 5p, 2-(p-nitrophenyl)-adenine (7p), and 2-(p-nitrophenyl)-2'-deoxyadenosine (15p) were strongly mutagenic toward S. typhimurium TA98 and TA100 without metabolic activation, the potency being in the order 15p greater than 7p greater than 5p. The potency of 15p in TA98 was one order of magnitude greater than that of 4-nitroquinoline N-oxide. 15p also showed mutagenicity in the mouse cell line FM3A in culture.  相似文献   

14.
DT-diaphorase catalysed the reduction of 1,4-naphthoquinones with hydroxy, methyl, methoxy and glutathionyl substituents at the expense of reducing equivalents from NADPH. The initial rates of quinone reduction did not correlate with either the half-wave reduction potential (E1/2) value (determined by h.p.l.c. with electrochemical detection against an Ag/AgCl reference electrode) or the partition coefficient of the quinones. After their reduction by DT-diaphorase the 1,4-naphthoquinone derivatives autoxidized at distinct rates, the extent of which was influenced by the nature of the substituents. Thus for the 1,4-naphthoquinone series the following order of rate of autoxidation was found: 5-hydroxy-1,4-naphthoquinone greater than 3-glutathionyl-1,4-naphthoquinone greater than 5-hydroxy-3-glutathionyl-1,4-naphthoquinone greater than 1,4-naphthoquinone greater than 2-hydroxy-1,4-naphthoquinone. For the 2-methyl-1,4-naphthoquinone (menadione) series the following order was observed: 5-hydroxy-2-methyl-1,4-naphthoquinone greater than 3-glutathionyl-5-hydroxy-2-methyl-1,4-naphthoquinone greater than 3-glutathionyl-2-methyl-1,4-naphthoquinone greater than 2-methyl-1,4-naphthoquinone greater than 3-hydroxy-2-methyl-1,4-naphthoquinone. The autoxidized naphthohydroquinone derivatives were re-reduced by DT-diaphorase, thus closing a cycle of enzymic reduction in equilibrium autoxidation. This was expressed as an excess of NADPH oxidized over the initial concentration of quinone present as well as H2O2 formation. These findings demonstrate that glutathionyl conjugates of 1,4-naphthoquinone and 2-methyl-1,4-naphthoquinone and those of their respective 5-hydroxy derivatives are able to act as substrates for DT-diaphorase and that they also autoxidize at rates higher than those for the unsubstituted parent compounds. These results are discussed in terms of the cellular role of DT-diaphorase in the reduction of hydroxy- or glutathionyl-substituted naphthoquinones as well as the further conjugation of these hydroquinones with glucuronide or sulphate within the cellular milieu, thereby facilitating their disposal from the cells.  相似文献   

15.
In pulmonary sarcoidosis, the marked expansion of CD4+ (helper/inducer) T cells in the alveolar structures of the lung is maintained by local IL-2 release by activated CD4+ HLA-DR+ T cells without concomitant expansion and activation of CD8+ (suppressor/cytotoxic) T cells, suggesting that sarcoid may be associated with a generalized abnormality of CD8+ T cells. Consistent with this concept, evaluation of the expression of the IL-2R on fresh lung T cells from individuals with active sarcoidosis demonstrated that 7 +/- 1% of sarcoid lung CD4+ T cells are spontaneously expressing the IL-2R compared with only 1 +/- 1% lung CD8+ T cells (p less than 0.01). However, stimulation of purified sarcoid blood CD8+ T cells with the anti-T3/TCR complex mAb OKT3 was followed by the normal expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). In addition, lung sarcoid CD8+ T cells responded to OKT3 similarly to normal lung CD8+ T cells and to autologous blood CD8+ T cells as regards expression of IL-2R (p greater than 0.1) and proliferation (p greater than 0.1). Finally, using CD4+ cells activated with allogenic Ag to induce, in coculture, fresh autologous CD8+ cells to suppress proliferation of fresh autologous CD4+ cells to the same Ag, sarcoid CD8+ T cells suppressed CD4+ cell proliferation in a normal fashion (p greater than 0.1). These results demonstrate that sarcoid CD8+ (suppressor/cytotoxic) T cells are competent to respond to a proliferation signal normally and can be induced to normally suppress CD4+ T cell proliferation to Ag, suggesting that the expansion of activated CD4+ T cells in pulmonary sarcoidosis is not due to a generalized abnormality of CD8+ T cells or of their suppressor T cell function.  相似文献   

16.
Changes in tension of spiral strips from canine and human veins induced by various drugs are compared with results from the literature on human veins. The order of potencies of alpha-adrenoceptor stimulating amines (adrenaline greater than noradrenaline greater than dopamine greater than isoprenaline) is similar in human and canine veins. Comparison of the affinities for alpha-adrenoceptors of pharmacologic drugs (thymoxamine, indoramine, clonidine, dihydroergotamine) suggest marked differences between the alpha-adrenoceptors in veins from man and dog. Venoconstriction mediating 5-HT receptors and a very small population of beta-adrenoceptors exist in both species. Human veins are always dilated by histamine, while canine femoral veins in vitro are relaxed by lower and contracted by higher histamine concentrations. Prostaglandin F2 alpha constricts both canine femoral and human hand veins. PGA2 and PGE2 increase the tension of canine and human veins in vitro but dilate human hand veins in situ. The order of potencies of ergot alkaloids in canine femoral veins is ergotamine greater than dihydroergovaline greater than dihydroergotamine = dihydroergostine greater than methysergide, whereas in human hand veins it is ergotamine = dihydroergovaline greater than methysergide greater than dihydroergotamine greater than dihydroergostine. In dogs the venoconstrictor effect of ergotamine is mediated by at least 3 mechanisms: stimulation of [1] alpha-adrenoceptors, [2] 5-HT receptors and [3] endogenous prostaglandin synthesis. Stimulation of alpha-adrenoceptors by dihydroergotamine and of 5-HT receptors by ergotamine was confirmed on human hand veins in situ. Prejunctional receptors at sympathetic nerve terminals are involved in the regulation of venous tone. Inhibitory alpha-adrenoceptors, dopamine and PGE2 receptors as well as facilitating beta-adrenoceptor existing at human vasoconstrictor nerves may be stimulated or blocked by pharmacologic drugs thereby modifying venous tone.  相似文献   

17.
The duplex stabilities of various phosphorothioate, methylphosphonate, RNA and 2'-OCH3 RNA analogs of two self-complementary DNA 14-mers are compared. Phosphorothioate and/or methylphosphonate analogs of the two sequences d(TAATTAATTAATTA) [D1] and d(TAGCTAATTAGCTA) [D2] differ in the number, position, or chirality (at the 5' terminal linkage) of the modified phosphates. Phosphorothioate derivatives of D1 are found to be less destabilized when the linkage modified is between adenines rather than between thymines. Surprisingly, no base sequence effect on duplex stabilization is observed for any methylphosphonate derivatives of D1 or D2. Highly modified phosphorothioates or methylphosphonates are less stable than their partially modified counterparts which are less stable than the unmodified parent compounds. The 'normal' (2'-OH) RNA analog of duplex D1 is slightly destabilized, whereas the 2'-OCH3 RNA derivative is significantly stabilized relative to the unmodified DNA. For the D1 sequence, at approximately physiological salt concentration, the order of duplex stability is 2'-OCH3 RNA greater than unmodified DNA greater than 'normal' RNA greater than methylphosphonate DNA greater than phosphorothioate DNA. D2 and the various D2 methylphosphonate analogs investigated all formed hairpin conformations at low salt concentrations.  相似文献   

18.
Kidney samples from children with the inborn metabolic disease cystinosis contain 4 times more selenium (Se) than do kidney samples from normal individuals (p = 0.1). However, when cultured skin fibroblasts from cystinotic patients and normal control individuals are incubated in Se-D,L-methionine, Se-D,L-cystine, Se-cystamine X HCl, Se-urea, selenite or in medium without added selenium, only the cystinotic fibroblasts grown in Se-urea or selenite (SeO3=) contain more selenium than do the corresponding normal cells (p less than 0.05). In both types of cultured fibroblasts, the order of descending toxicity per ppm selenium is: Se-urea greater than Se-cystamine greater than Se-cystine greater than or equal to SeO3= much greater than Se-methionine. High (apparently toxic) concentrations of Se-urea and Se-cystamine lower the elevated intracellular free (nonprotein) cystine content of cystinotic fibroblasts to less than 60% of control values; at lower concentrations, these compounds raise the cystine content of these cells to over 140% of control values. Appropriate concentrations of SeO3=, Se-cystine and Se-methionine also elevate the free cystine content of the cystinotic cells. During a 75 minute incubation in 35S-cystine, the incorporation of 35S into the acid precipitable (protein) fraction of both cell types is significantly inhibited by Se-cystamine (approximately 55% control; p less than 0.05). The incorporation of 35S-cystine into glutathione is inhibited by Se-cystine (approximately 40% control) in both fibroblast types (p less than 0.05). In cystinotic cells, Se-cystamine significantly reduces incorporation of 35S-cystine into the cystine pool (40% control) as does SeO3= (67% control; p less than 0.05). Protein and glutathione synthesis in cystinotic fibroblasts are more strongly inhibited by Se-cystine and SeO3=, respectively, than in normal fibroblasts (p less than 0.05). These studies demonstrate that selenium compounds exhibit a different sequence of toxicity in fibroblasts than in the intact animal and that some previously unreported metabolic effects (i.e. inhibition of glutathione synthesis) may contribute to their toxicity.  相似文献   

19.
Type 4 P-type ATPases (flippases) are implicated in the generation of phospholipid asymmetry in membranes by the inward translocation of phospholipids. In budding yeast, the DRS2/DNF family members Lem3p-Dnf1p/Dnf2p and Cdc50p-Drs2p are putative flippases that are localized, respectively, to the plasma membrane and endosomal/trans-Golgi network (TGN) compartments. Herein, we identified a protein kinase gene, FPK1, as a mutation that exhibited synthetic lethality with the cdc50Delta mutation. The kinase domain of Fpk1p exhibits high homology to plant phototropins and the fungus Neurospora crassa NRC-2, both of which have membrane-associated functions. Simultaneous disruption of FPK1 and its homolog FPK2 phenocopied the lem3Delta/dnf1Delta dnf2Delta mutants, exhibiting the impaired NBD-labeled phospholipid uptake, defects in the early endosome-to-TGN pathway in the absence of CDC50, and hyperpolarized bud growth after exposure of phosphatidylethanolamine at the bud tip. The fpk1Delta fpk2Delta mutation did not affect the subcellular localization of Lem3p-Dnf1p or Lem3p-Dnf2p. Further, the purified glutathione S-transferase (GST)-fused kinase domain of Fpk1p phosphorylated immunoprecipitated Dnf1p and Dnf2p to a greater extent than Drs2p. We propose that Fpk1p/Fpk2p are upstream activating protein kinases for Lem3p-Dnf1p/Dnf2p.  相似文献   

20.
Catalase activity and cytochrome content were measured in kidneys of Fisher 344 rats injected with aurothioglucose (ATG) either daily for 3 days or 5 days a week for up to 8 wk. Catalase activity was decreased 39%, 59%, and 48% (all p less than 0.001) after 3 days, 2 wk, and 8 wk, respectively. Microsomal cytochrome P-450 levels decreased 71%, 86%, and 80% (all p less than 0.001) after 3 days, 2 wk, and 8 wk, respectively. In contrast, cytochrome b5 was significantly increased at 3 days and 2 wk, but not at 8 wk. Microsomal heme contents decreased 44% (p less than 0.001), 34% (p less than 0.001), and 22% (p greater than 0.05) at 3 days, 2 wk, and 8 wk, respectively. The content of mitochondrial cytochromes aa3, b, c1, and c were not affected after 8 wk of ATG treatment. In vitro inhibition of the heme-containing enzyme delta-aminolevulinic acid dehydratase by ATG was reversible in the presence of physiological concentrations of small thiols. Although the activity of this enzyme in kidneys of ATG-treated rats was not measured, its significant inhibition in vivo by ATG appears unlikely. This study demonstrates that there were differential effects of gold on the various cytochromes and that changes in catalase activity paralleled changes in cytochrome P-450 and heme contents in the kidneys of ATG-treated rats. The findings are relevant to nephrotoxicity during chrysotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号