首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The venom of an Australian elapid snake, the common death adder (Acanthophis antarcticus), was chromatographed on a CM-cellulose CM52 column. One of the neurotoxic components, Acanthophis antarcticus b (toxin Aa b) was isolated in about 9.4% (A280) yield. The complete amino acid sequence of toxin Aa b was elucidated. Toxin Aa b is composed of 73 amino acid residues, with ten half-cystine residues, and has a formula weight of 8135. Toxin Aa b has no histidine or methionine residue in its sequence. The amino acid sequence of toxin Aa b is homologous with those of other neurotoxins with known sequences, although it is novel in having a valine residue at its N-terminus and an arginine residue at position-23, where a lysine residue is found in almost all the so-far-known neurotoxins. Irrespective of the latter replacement, the toxin Aa b is fully active, with an LD50 value (in mice) of 0.13 microgram/g body weight on intramuscular injection.  相似文献   

2.
A short-chain neurotoxin Pseudechis australis a (toxin Pa a) was isolated from the venom of an Australian elapid snake Pseudechis australis (king brown snake) by sequential chromatography on CM-cellulose, Sephadex G-50 and CM-cellulose columns. Toxin Pa a has an LD50 (intravenous) value of 76 micrograms/kg body wt. in mice and consists of 62 amino acid residues. The amino acid sequence of Pa a shows considerable homology with those of short-chain neurotoxins of elapid snakes, especially of true sea snakes.  相似文献   

3.
The further characterization of toxin I from venom of the scorpion Centruroides sculpturatus Ewing (region, Southwestern United States) is reported. Toxin I is a single polypeptide chain of 64 amino acid residues crosslinked by four disulfide bridges. The complete amino acid sequence of toxin I was deduced from the sequence of its tryptic peptides and overlaps provided by its chymotryptic peptides. Toxin I has an amino terminal lysyl residue and a carboxyl terminal threonyl residue.The amino acid sequences of toxin I and neurotoxic variants 1, 2, and 3, likewise isolated from C. sculpturatus venom, differ at 26 positions.The sequences of toxin I from C. sculpturatus and toxins I and II from the North African scorpion, Androctonus australis Hector, are also compared.  相似文献   

4.
The 270-MHz proton NMR spectra of the unique long neurotoxins bearing Phe-25, Astrotia stokesii b (As b) and Astrotia stokesii c (As c) from Astrotia stokesii, and Acanthophis antarcticus b (Aa b) from Acanthophis antarcticus, have been analyzed. The aromatic proton resonances of Phe-25 in As b and Aa b were assigned on the basis of the nuclear Overhauser effects observed on irradiation of slowly exchanging amide protons. Phe-25 was found to be involved in hydrophobic interactions with Ile/Val-42, Ala-46 and Ile-58 in As b and As c, and with Ala-46 and Val-58 in Aa b. These hydrophobic interactions, instead of the hydrogen bond between Tyr-25 and Glu-42 found in other neurotoxins, appear to be important for maintenance of the biologically active tertiary structure. The pH dependency of the chemical shift and intensity of the Trp-72 N-1 proton resonance of As b indicates that the indole ring is not fully exposed to the solvent and that the extra tail segment of this long neurotoxin interacts with the main part of the molecule.  相似文献   

5.
Pa ID, a long-chain neurotoxin homologue, was isolated from the venom of an Australian elapid snake, Pseudechis australis, and its amino acid sequence was determined by conventional methods. Pa ID was an acidic protein (pI = 6.2) and consisted of 68 amino acid residues. It did not show binding activity to the acetylcholine receptor of an electric ray (Narke japonica) nor lethal effect on mice, though the amino acid sequence is homologous with those of long-chain neurotoxins isolated from other elapid snakes (homology, 39-51%). In the sequence of Pa ID, a structurally invariant residue (Tyr-22) and two functionally invariant residues (Val/Ala-49 and Lys/Arg-50) in snake venom neurotoxins are replaced by a cysteine, an arginine, and a methionine residue, respectively, and furthermore, four common residues in long-chain neurotoxins, Gly-17, Ala-43, Ser-59, and Phe/His-66 are replaced by a glutamic acid, a threonine, a threonine, and a valine residue, respectively. The conformational change of the protein molecule caused by these replacements and the removal of a positive charge at position 50 are probably the reasons why Pa ID has lost the lethality.  相似文献   

6.
1. A lethal neurotoxin (acanthophin d) was isolated from the venom of the Australian death adder snake Acanthophis antarcticus. 2. Acanthophin d consisted of a single polypeptide chain of 74 amino acid residues cross-linked by five disulphide bridges. 3. The results of neurophysiological experiments on murine phrenic nerve hemi-diaphragm preparations were consistent with irreversible post-synaptic blockage of neuromuscular transmission by acanthophin d.  相似文献   

7.
《FEBS letters》1986,199(2):139-144
The amino acid sequence of proteinase K (EC 3.4.21.14) from Tritirachium album Limber has been determined by analysis of fragments generated by cleavage with CNBr or BNPS-skatole. The enzyme consists of a single peptide chain containing 277 amino acid residues, corresponding to Mr 28 930. Comparison of the sequence with those of the serine proteinases reveals a high degree of homology (about 35%) to the subtilisin-related enzyme. But in contrast to the subtilisins, proteinase K contains 2 disulfide bonds and a free cysteine residue. This finding may indicate that proteinase K is a member of a new subfamily of the subtilisins.  相似文献   

8.
X C Zeng  F Peng  F Luo  S Y Zhu  H Liu  W X Li 《Biochimie》2001,83(9):883-889
Four full-length cDNAs encoding the precursors of four K(+)-toxin-like peptides (named BmKK(1), BmKK(2), BmKK(3) and BmmKK(4), respectively) were first isolated from a venom gland cDNA library of the Chinese scorpion Buthus martensii Karsch. The deduced precursors of BmKK(1), BmKK(2) and BmKK(3) are all made of 54 amino acid residues including a signal peptide of 23 residues, and a mature toxin of 31 residues with three disulfide bridges. The precursor of BmKK(4) is composed of 55 amino acid residues including a signal peptide of 23 residues, a mature toxin of 30 residues cross-linked by three disulfide bridges, and an extra Gly-Lys tail which should be removed in the processing step. The four peptides displayed 24-97% sequence identity with each other, and less than 27% homology with any other scorpion toxins described. However, they shared a common disulfide bridge pattern, which was consistent with that of most short-chain K(+)-toxins, suggesting they represent a new class of scorpion toxins and their target receptors may be a subfamily of K(+) channels. We classified the BmKK toxin subfamily as alpha-KTx14 according to the classification rules. The genomic sequence of BmKK(2) was also cloned and sequenced. It consisted of two exons, disrupted by an intron of 79 bp inserted in the region encoding the C-terminal part of the signal peptide. This structure was very similar to that of other K(+)-toxins described previously.  相似文献   

9.
The main neurotoxic components, toxins Hydrophis ornatus a and Hydrophis lapemoides a, were isolated from the venoms of the sea snakes Hydrophis ornatus and Hydrophis lapemoides respectively. The amino acid sequence of toxin Hydrophis ornatus a was deduced to be identical with that of toxin Astrotia stokesii a [Maeda & Tamiya (1978) Biochem. J. 175, 507-517] on the basis of identity of the tryptic peptide 'map' and the amino acid composition of each peptide. The amino acid sequence of toxin Hydrophis lapemoides a was determined mainly on the basis of identity of the amino acid compositions, mobilities on paper electrophoresis and migration positions on paper chromatography of the tryptic peptides with those of other sea-snake toxins whose sequences are known. Both toxins Hydrophis ornatus a and Hydrophis lapemoides a consisted of 60 amino acid residues and there were six amino acid replacements between them. The taxonomy of sea snakes in the Hydrophis ornatus complex has long been confused, and the above snakes were originally assigned to taxa that proved to be inconsistent with the relationships indicated by the neurotoxin amino acid sequences obtained. A subsequent re-examination of the specimens revealed an error in the original identifications and demonstrated the value of the protein amino acid sequences in systematic and phylogenetic studies. The isolation procedure and results of amino acid analysis of the tryptic peptides have been deposited as Supplementary Publication SUP 50121 (8 pages) with the British Library Lending Division, Boston Spa, Wetherby, West Yorkshire LS23 7BQ, U.K., from whom copies may be obtained as indicated in Biochem. J. (1983) 209, 5.  相似文献   

10.
A novel inhibitor of voltage-gated potassium channel was isolated and purified to homogeneity from the venom of the red scorpion Buthus tamulus. The primary sequence of this toxin, named BTK-2, as determined by peptide sequencing shows that it has 32 amino acid residues with six conserved cysteines. The molecular weight of the toxin was found to be 3452 Da. It was found to block the human potassium channel hKv1.1 (IC(50)=4.6 microM). BTK-2 shows 40-70% sequence similarity to the family of the short-chain toxins that specifically block potassium channels. Multiple sequence alignment helps to categorize the toxin in the ninth subfamily of the K+ channel blockers. The modeled structure of BTK-2 shows an alpha/beta scaffold similar to those of the other short scorpion toxins. Comparative analysis of the structure with those of the other toxins helps to identify the possible structure-function relationship that leads to the difference in the specificity of BTK-2 from that of the other scorpion toxins. The toxin can also be used to study the assembly of the hKv1.1 channel.  相似文献   

11.
The following amino acid sequence information has been determined for the fructose 1,6-bisphosphate-dependent lactate dehydrogenase from Streptococcus cremoris US3: the C-terminal amino acid, the N-terminal sequence of the first 20 amino acids and the sequence of a 53-residue tryptic peptide containing the only cysteine residue in the protein. The enzyme was cleaved by alkali at the cysteine residue following reaction first with 5,5'-dithiobis(2-nitrobenzoic acid) and then with K14CN. This treatment yielded two cleavage products as well as some higher polymers and some uncleaved enzyme. The radioactive cleavage product was purified and its size indicated that the cysteine residue is 80 residues from the C-terminus. Comparisons of the sequences determined for the S. cremoris enzyme with those already known for dogfish lactate dehydrogenase indicate that the two enzymes are only distantly related since the sequence homology between them is limited and of borderline statistical significance.  相似文献   

12.
Toxin I from Anemonia sulcata, a major component of the sea anemone venom, consists of 46 amino acid residues which are linked by three disulfide bridges. The [14C]carboxymethylated polypeptide was sequenced to position 29 by automated Edman degradation. The remaining sequence was determined from cyanogen bromide peptides and from tryptic peptides of the citraconylated [14C]carboxymethylated toxin. Toxin I is homologous to toxin II from Anemonia sulcata and to anthopleurin A, a toxin from the sea anemone Anthopleura xanthogrammica. These toxins constitute a new class of polypeptide toxins. No significant homologies exist with toxin III from Anemonia sulcata nor with known sequences of neurotoxins or cardiotoxins of various origin.  相似文献   

13.
Snakes are equipped with their venomic armory to tackle different prey and predators in adverse natural world. The venomic composition of snakes is a mix of biologically active proteins and polypeptides. Among different components snake venom cytotoxins and short neurotoxin are non-enzymatic polypeptide candidates with in the venom. These two components structurally resembled to three-finger protein superfamily specific scaffold. Different non-toxin family members of three-finger protein superfamily are involved in different biological roles. In the present study we analyzed the snake venom cytotoxins, short neurotoxins and related non-toxin proteins of different chordates in terms of amino acid sequence level diversification profile, polarity profile of amino acid sequences, conserved pattern of amino acids and phylogenetic relationship of these toxin and nontoxin protein sequences. Sequence alignment analysis demonstrates the polarity specific molecular enrichment strategy for better system adaptivity. Occurrence of amino acid substitution is high in number in toxin sequences. In non-toxin body proteins there are less amino acid substitutions. With the help of conserved residues these proteins maintain the three-finger protein scaffold. Due to system specific adaptation toxin and non-toxin proteins exhibit a varied type of amino acid residue distribution in sequence stretch. Understanding of Natural invention scheme (recruitment of venom proteins from normal body proteins) may help us to develop futuristic engineered bio-molecules with remedial properties.  相似文献   

14.
Toxin V II 2 comprises 60 amino acid residues and is cross-linked by four disulphide bridges. The complete amino acid sequence of this toxin was elucidated. The reduced and S-carboxymethylated toxin was digested with trypsin and chymotrypsin and the peptides were purified by ion-exchange chromatography and chromatography or electrophoresis on paper. The Edman procedure, either through the use of the automatic sequenator or by manual manipulation, was employed to obtain the sequence of the intact toxin and the pure peptides. The chymotryptic digest provided the necessary overlapping peptides which allowed the alignment of tryptic peptides. The amino acid sequence of Naja haje annulifera toxin V II 2 shows a high degree of homology with cytotoxin V II 1 of the same venom.  相似文献   

15.
The amino acid sequence of the cytochrome c-555 from the obligate methanotroph Methylococcus capsulatus strain Bath (N.C.I.B. 11132) was determined. It is a single polypeptide chain of 96 residues, binding a haem group through the cysteine residues at positions 19 and 22, and the only methionine residue is a position 59. The sequence does not closely resemble that of any other cytochrome c that has yet been characterized. Detailed evidence for the amino acid sequence of the protein has been deposited as Supplementary Publication SUP 50131 (12 pages) at the British Library Lending Division, Boston Spa, West Yorkshire LS23 7BQ, U.K., from whom copies are available on prepayment.  相似文献   

16.
Cry2Aa exhibits dual activity to Lepidoptera and Diptera. Cry2Ab differs in amino acid sequence from Cry2Aa by 13% and has shown significant lepidopteran activity, but no mosquitocidal activity. Previous studies implicate 23 Cry2Aa specificity-conferring residues of domain II, which differ in Cry2Ab. Nine residues are putatively involved in conferring Cry2Aa dipteran specificity. To explore Cry2Ab dipteran toxicity, site-directed mutagenesis was employed to exchange Cry2Ab residues with Cry2Aa D (dipteran) block residues. Cry2Ab wild type demonstrated high toxicity (LC(50) of 540 ng mL(-1)) to Anopheles gambiae, but not to Aedes or Culex, within a 24-h time period. Cry2Ab should be reclassified as a dual active Cry toxin. Cry2Ab mutagenesis revealed critical residues for Cry2Ab protein function, as well as enhanced activity against the malarial mosquito, An. gambiae.  相似文献   

17.
The Pseudomonas putida cytochrome P-450 was alkylated with the SH-reagent, 2-bromoacetamido-4-nitrophenol. One out of eight cysteine residues present in the enzyme reacted rapidly while another 3 ~ 4 cysteine residues were gradually alkylated at longer reaction times. The derivative in which the most reactive cysteine residue was labeled with this reagent was hydrolyzed with trypsin and a tryptic peptide isolated. From the amino acid composition and end group analysis of the peptide, the rapidly reacting cysteine residue was shown to be Cys 355. This cysteine residue is probably exposed on the surface and is involved in the dimerization of the enzyme. The amino acid sequence about cysteine 355 shows sequence homology with residues 429–445 of the rat liver cytochrome P-450-LM-2.  相似文献   

18.
We report the complete DNA sequence of the Escherichia coli elt A gene, which codes for the A subunit of the heat-labile enterotoxin, LT. The amino acid sequence of the LT A subunit has been deduced from the DNA sequence of elt A. The LT A subunit starts with methionine, ends with leucine, and comprises 254 amino acids. The computed molecular weight of LT A is 29,673. The A subunit of cholera toxin (CT A) has been shown to be structurally and functionally related to the LT A subunit. Comparison of the primary structure of LT A with the known partial amino acid sequence of CT A indicates that the 2 polypeptides share considerable homology throughout their sequences. The NH2-terminal regions exhibit the highest degree of homology (91%), while the COOH-terminal region, containing the sole cystine residue in each toxin is less conserved (approximately 52%). Alignment of homologous residues in the COOH-terminal regions of LT A and CT A indicates that a likely site for proteolytic cleavage of LT A is after Arg residue 188. The resulting A2 polypeptide would be 46 amino acids long, would contain a single cysteine residue, and have Mr = 5261. The elt A nucleotide sequence further predicts that the LT A protein is synthesized in a precursor form, possessing an 18-amino acid signal sequence at its NH2 terminus.  相似文献   

19.
Recombinant baculovirus expressing insect-selective neurotoxins derived from venomous animals are considered as an attractive alternative to chemical insecticides for efficient insect control agents. Recently we identified and characterized a novel lepidopteran-selective toxin, Buthus tamulus insect-selective toxin (ButaIT), having 37 amino acids and eight half cysteine residues from the venom of the South Indian red scorpion, Mesobuthus tamulus. The synthetic toxin gene containing the ButaIT sequence in frame to the bombyxin signal sequence was engineered into a polyhedrin positive Autographa californica nuclear polyhedrosis virus (AcMNPV) genome under the control of the p10 promoter. Toxin expression in the haemolymph of infected larvae of Heliothis virescens and also in an insect cell culture system was confirmed by western blot analysis using antibody raised against the GST-ButaIT fusion protein. The recombinant NPV (ButaIT-NPV) showed enhanced insecticidal activity on the larvae of Heliothis virescens as evidenced by a significant reduction in median survival time (ST50) and also a greater reduction in feeding damage as compared to the wild-type AcMNPV.  相似文献   

20.
A novel short-chain scorpion toxin BmP08 was purified from the venom of the Chinese scorpion Buthus martensi Karsch by a combination of gel-filtration, ion exchange, and reversed-phase chromatography. The primary sequence of BmP08 was determined using the tandem MS/MS technique and Edman degradation, as well as results of NMR sequential assignments. It is composed of 31 amino acid residues including six cysteine residues and shares less than 25% sequence identity with the known alpha-KTx toxins. BmP08 shows no inhibitory activity on all tested voltage-dependent and Ca(2+)-activated potassium channels. The 3D-structure of BmP08 has been determined by 2D-NMR spectroscopy and molecular modeling techniques. This toxin adopts a common alpha/beta-motif, but shows a distinctive local conformation and features a 3(10)-helix and a shorter beta-sheet. The unique structure is closely related to the distinct primary sequence of the toxin, especially to the novel arrangement of S-S linkages in the molecule, in which two disulfide bridges (C(i)-C(j) and C(i+3)-C(j+3)) link covalently the 3(10)-helix with one strand of the beta-sheet structure. The electrostatic potential surface analysis of the toxin reveals salt bridges and hydrogen bonds between the basic residues and negatively charged residues nearby in BmP08, which may be unfavorable for its binding with the known voltage-dependent and Ca(2+)-activated potassium channels. Thus, finding the target for this toxin should be an interesting task in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号