首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plant availability of Fe from synthetic chelates has not been examined extensively for plants having the second strategy in iron uptake. Since these plants also excrete chelating agents, competition between natural and synthetic ligands is expected. This research was conducted to study the efficiency of different iron-chelates (Fe-EDTA, Fe-DTPA, Fe-EDDHA and a commercial product, Rexene) inLolium multiflorum iron nutrition. Plants were grown in a greenhouse with hydroponic culture using a buffered nutrient solution at pH 8. Initial iron concentration in the nutrient solution was near 0.5 mgl–1 and solutions were replaced weekly. In an other Fe-EDTA treatment the same amount of chelate was supplied by four additions during each week.Changes of iron concentration in the nutrient solution, harvestable yield, Fe, Mn, Cu and Zn content in plant tissue and chlorophylllevels in leaves are discussed as parameters to evaluate chelate efficacy. Fe-EDDHA, without inorganic iron in the medium was not as effective as the commercial product Rexene, containing Fe-EDDHA and some extra weakly complex iron, which gave the highest yields. Fe-EDTA applied once a week with fresh nutrient solution was less effective than a four part addition as seen from Chl1/[Fe] ratios.  相似文献   

2.
Supplying a sufficient amount of available iron (Fe) for plant growth in hydroponic nutrient solutions is a great challenge. The chelators commonly used to supply Fe in nutrient solutions have several disadvantages and may negatively affect plant growth. In this research study we have synthesized certain Fe-amino acid chelates, including Fe-arginine [Fe(Arg)2], Fe-glycine [Fe(Gly)2], and Fe-histidine [Fe(His)2], and evaluated their efficacy as an Fe source for two tomato cultivars (Lycopersicon esculentum Mill. cvs. ‘Rani’ and ‘Sarika’) grown in nutrient solution. Application of Fe-amino acid chelates significantly increased root and shoot dry matter yield of both tomato cultivars compared with Fe-EDTA. Tomato plants supplied with Fe-amino acid chelates also accumulated significantly higher levels of Fe, Zn, and N in their roots and shoots compared with those supplied with Fe-EDTA. In ‘Sarika’, the effect of Fe-amino acid chelates on shoot Fe content was in the order Fe(His)2?>?Fe(Gly)2?>?Fe(Arg)2. In ‘Rani’, the addition of all synthesized Fe-amino acid chelates significantly increased activity of ascorbate peroxidase (APX) in comparison with Fe-EDTA, whereas in ‘Sarika’, only Fe(His)2 increased shoot APX activity. The results obtained indicated that using Fe-amino acid chelates in the nutrient solution could supply a sufficient amount of Fe for plant uptake and also improve root and shoot growth of tomato plants, although this increase was cultivar-dependent. According to the results, Fe-amino acid chelates can be used as an alternative for Fe-EDTA to supply Fe in nutrient solutions.  相似文献   

3.
A study was carried out to assess the protective effects of exogenously applied nitric oxide (NO) in the form of its donor sodium nitroprusside (SNP) to strawberry seedlings (Fragaria × ananassa cv. Camarosa) grown under iron deficiency (ID), salinity stress or combination of both. The experimental design contained control, 0.1 mM FeSO4 (ID, Fe deficiency); 50 mM NaCl (S, Salinity) and ID + S. Plants were sprayed with 0.1 mM SNP or 0.1 mM sodium ferrocyanide, an analogue of SNP containing no NO. The deleterious effects of ID + S treatments on plant fresh and dry matters, total chlorophyll and chlorophyll fluorescence were more striking than those caused by the ID or S treatment alone. Furthermore, combination of salinity and iron stress exacerbated electrolyte leakage (EL) and the levels of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in plant leaves compared to those in plants grown with either of the single stresses. NO treatment effectively reduced EL, MDA and H2O2 in plants grown under stress conditions applied singly or in combination. Salt stress alone and with ID reduced the superoxide dismutase (EC1.15.1.1) and catalase (EC 1.11.1.6) activities but increased that of POD (EC 1.17.1.7). Exogenously applied NO led to significant changes in antioxidant enzyme activities in either ID or S than those by ID+S. Overall, exogenously applied NO was more effective in mitigating the stress‐induced adverse effects on the strawberry plants exposed to a single stress than those due to the combination of both stresses.  相似文献   

4.
Brand  J.D.  Tang  C.T.  Graham  R.D. 《Plant and Soil》2000,224(2):207-215
Two glasshouse experiments were conducted to examine the effects of nutrient supply and rhizobial inoculation on the performance of Lupinus pilosus genotypes differing in tolerance to calcareous soils. In experiment 1, plants were grown for 84 days in a calcareous soil (50% CaCO3; soil water content 90% of field capacity) at four nutrient treatments (no-added nutrients, added nutrients without Fe, added nutrients with soil applied FeEDDHA, added nutrients with foliar applied FeSO4). In experiment 2, plants were grown for 28 days with supply of NH4NO3 without inoculation or inoculated with Bradyrhizobium sp. (Lupinus). Chlorosis in the youngest leaves was a good indicator of the relative tolerance of the genotypes to the calcareous soil in both experiments, except the treatment with FeEDDHA at 5 mg kg–1 soil which was toxic to all genotypes. Chlorosis scores correlated with chlorophyll meter readings and chlorophyll concentrations. The foliar application of FeSO4 did not fully alleviate chlorotic symptoms despite concentrations of active or total Fe in the youngest leaves being increased. Adding nutrients and chemical nitrogen did not change the severity of chlorosis or improve the growth of the plant. The nutrient supply did not alter the ranking of tolerance of genotypes to the calcareous soil. The results suggest that nutrient deficiency or poor nodulation was not a major cause of poor plant growth on calcareous soils and that bicarbonate may exert a direct effect on chlorophyll synthesis. The mechanism for tolerance is likely to be related to an ability to exclude bicarbonate or prevent its transport to the leaves.  相似文献   

5.
Mesembryanthemum crystallinum L. plants were grown from seeds in perlite. At the age of 4 weeks (juvenile plants) or 6 weeks (adult plants), they were transferred on nutrient media with different Fe3+ content brought in as Fe2(SO4)3—EDTA complex (pH 6.0): control, iron deficit, and iron “excess”. Adult plants grown in media differing in iron content were subjected to salinity (300 mM NaCl) during the last 8 days of growth. Biochemical analyses were performed after plant fixation in liquid nitrogen; simultaneously, the samples for electron microscopy were taken. Different content of available Fe3+ in medium, especially under salinity conditions, changed sharply the content of chlorophyll and proline, the rate of lipid peroxidation, the level of H2O2, the activities of antioxidant enzymes in the leaves and roots, the number and sizes of plastoglobules, and ferritin formation in plastids. Joint action of salinity and iron deficit enhanced oxidative stress development, whereas iron excess hampered oxidative reaction development, reduced the rate of lipid peroxidation, and increased the chlorophyll content. At iron excess, plastoglobule lysis in plastids did not occur, their number and sizes increased, and ferritin deposits appeared, whereas the latter were absent at iron deficit.  相似文献   

6.
Pinton  R.  Cesco  S.  Santi  S.  Agnolon  F.  Varanini  Z. 《Plant and Soil》1999,210(2):145-157
The ability of Fe-deficient cucumber plants to use iron complexed to a water-extractable humic substances fraction (WEHS), was investigated. Seven-day-old Fe-deficient plants were transferred to a nutrient solution supplemented daily for 5 days with 0.2 μM Fe as Fe-WEHS (5 μg org. C mL-1), Fe-EDTA, Fe-citrate or FeCl3. These treatments all allowed re-greening of the leaf tissue, and partial recovery of dry matter accumulation, chlorophyll and iron contents. However, the recovery was faster in plants supplied with Fe-WEHS and was already evident 48 h after Fe supply. The addition of 0.2 μM Fe to the nutrient solution caused also a partial recovery of the dry matter and iron accumulation in roots of Fe-deficient cucumber plants, particularly in those supplied with Fe-WEHS. The addition of WEHS alone (5 μg org. C mL-1, 0.04 μM Fe) to the nutrient solution slightly but significantly increased iron and chlorophyll contents in leaves of Fe-deficient plants; in these plants, dry matter accumulation in leaves and roots was comparable or even higher than that measured in plants treated with Fe-citrate or FeCl3. After addition of the different iron sources for 5 days to Fe-deficient roots, morphological modifications (proliferation of lateral roots, increase in the diameter of the sub-apical zones and amplified root-hair formation) and physiological responses (enhanced Fe(III)-chelate reductase and acidification of the nutrient solution) induced by Fe deficiency, were still evident, particularly in plants treated with the humic molecules. The presence of WEHS caused also a further acidification of the nutrient medium by Fe-deficient plants. The Fe-WEHS complex (1 μM Fe) could be reduced by intact cucumber roots, at rates of reduction higher than those measured for Fe-EDTA at equimolar iron concentration. Plasma membrane vesicles, purified by two-phase partition from root microsomes of Fe-deficient plants, were also able to reduce Fe-WEHS. Results show that Fe-deficient cucumber plants can use iron complexed to water soluble humic substances, at least in part via reduction of complexed Fe(III) by the plasma membrane Fe(III)-chelate reductase of root cells. In addition, the stimulating effect of humic substances on H+ release might be of relevance for the overall response of the plants to iron shortage. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
In this experiment we (i) tested the hypothesis that, besides decreasing leaf C fixation, lime induced iron (Fe) deficiency increases root C fixation via PEP carboxylase and (ii) assessed the Fe-induced modifications in the elemental composition of plant tissues. Sugar beet plants were grown in nutrient solutions with Fe (45 M Fe-EDTA; +Fe control) or in a similar nutrient solution without Fe (–Fe) and in presence of CaCO3 (1.0 gL–1), either labelled with 13C (20 at. %) or unlabelled. After 7 and 17 days from treatment imposition, plants were harvested and single organs analysed for total O, C, H, macro and micronutrients. 13C abundance was also assessed in control, unlabelled and labelled –Fe plants. Iron deficiency caused significant growth reductions; chlorophyll and net photosynthesis decreased markedly in Fe-deficient plants when compared to the controls, whereas leaf transpiration rates and stomatal conductance were not affected by Fe deficiency. Iron deficient plants had leaf biomass with lower C (2 to 4%) and higher O (3 to 5%) concentrations than +Fe plants. The 13C was higher (less negative) in +Fe than in –Fe unlabelled plants. Iron deficient plants grown in the nutrient solution enriched with labelled CaCO3 absorbed a relatively small amount of labelled C, which was mainly recovered in the fine roots and accounted for less than 2% of total C gain in the 10 d treatment period. Evidences suggest that iron deficient sugar beets grown in the presence of CaCO3 do not markedly shift their C fixation from leaf RuBP to root PEPC.  相似文献   

8.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentration in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentration of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

9.
Effects of two kinds of iron fertilizer, FeSO4 and EDTA·Na2Fe were studied on cadmium accumulation in rice plants with two rice genotypes, Zhongzao 22 and Zhongjiazao 02, with soil culture systems. The results showed that application of iron fertilizers could hardly make adverse effects on plant growth and rice grain yield. Soil application of EDTA·Na2Fe significantly reduced the Cd accumulation in rice roots, shoots and rice grain. Cd concentration in white rice of both rice genotypes in the treatment of soil application of EDTA·Na2Fe was much lower than 0.2 mg/kg, the maximal Cd permission concentra- tion in cereal crop foods in State standard. However, soil application of FeSO4 or foliar application of FeSO4 or EDTA·Na2Fe resulted in the significant increase of Cd accumulation in rice plants including rice grain compared with the control. The results also showed iron fertilizers increased the concentra- tion of iron, copper and manganese element in rice grain and also affected zinc concentration in plants. It may be a new promising way to regulate Cd accumulation in rice grain in rice production through soil application of EDTA·Na2Fe fertilizers to maintain higher content of available iron and ferrous iron in soils.  相似文献   

10.
The effects of nitric oxide (NO) and/or iron (Fe) supplied to Fe deficient plants have been investigated in peanut (Arachis hypogaea L.) grown in Hoagland nutrient solution with or without Fe. Two weeks after Fe deprivation, recovery was induced by addition of 250 μM sodium nitroprusside (SNP, a NO donor) and/or 50 μM Fe (Fe-EDTA) to the Fe deprived (-Fe) nutrient solution. Activities of antioxidant enzymes, leaf chlorophyll (Chl), and active Fe content decreased, whereas activities of H+-ATPase, ferric-chelate reductase (FCR), nitrate reductase, and nitric oxide synthase and NO production increased in Fe deficient plants, consequently an Fe chlorosis symptom appeared obviously. In contrast, these symptoms disappeared gradually after two weeks with NO and/or Fe supply, which caused an increases in leaf Chl and active Fe content, especially following by co-treatment with NO and Fe to values found in Fe sufficient plants. Increased activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and decreased accumulation of reactive oxygen species (H2O2, O 2 ?? ) and malondialdehyde enhanced the ability of resistance to oxidative stress. Supplied NO alone had the obvious effect on increased NO production and on activity of H+-ATPase and FCR, whereas root length and root/shoot ratio were most effectively increased by Fe supplied alone. Co-treatment with NO and Fe did the best effects on recovery peanut chlorosis symptoms by significantly increased Chl and available Fe content and adjusted distribution of Fe and other mineral elements (Ca, Mg, and Zn) in both leaves and roots.  相似文献   

11.
Morpho-physiological and biochemical responses of Arabidopsis thaliana (accession N1438) to bicarbonate-induced iron deficiency were investigated. Plants were grown in cabinet under controlled conditions, in a nutrient solution containing 5 μM Fe, added or not with 10 mM NaHCO3. After 30 days, bicarbonate-treated plants displayed significantly lower biomass, leaf number and leaf surface area as compared to control plants, and slight yellowing of their younger leaves was observed. Potassium (K+) content was not modified by bicarbonate treatment in roots, whereas it was significantly diminished in shoots. Their content in ferrous iron (Fe2+) and in leaf total chlorophylls was noticeably lower than in control plants. Root Fe(III)-chelate reductase and phosphoenolpyruvate carboxylase (PEPC) activities were significantly enhanced, but leaf ribulose 1.5-bisphosphate carboxylase (Rubisco) activity was decreased.  相似文献   

12.
Abstract. Elevated levels of CO2 in the atmosphere are expected to affect plant performance and may alter global temperature patterns. Changes in mean air temperatures that might be induced by rising levels of CO2 and other greenhouse gases could also be accompanied by increased variability in daily temperatures such that acute increases in air temperature may be more likely than at present. Consequently, we investigated whether plants grown in a CO2 enriched atmosphere would be differently affected by a heat shock than plants grown at ambient CO2 levels. Plants of a C3 annual (Abutilon theophrasti), a C3 annual crop (Sinapis alba) and a C4 annual (Amaranthus retroflexus) were grown from seed in growth chambers under either 400 or 700cm3 m?3 CO2, and were fertilized with either a high or low nutrient regime. Young seedlings of S. alba, as well as plants of all species in either the vegetative or reproductive phase of growth were exposed to a 4-h heat shock in which the temperature was raised an additional 14–23°C (depending on plant age). Total biomass and reproductive biomass were examined to determine the effect of CO2, nutrient and heat shock treatments on plant performance. Heat shock, CO2, and nutrient treatments, all had some significant effects on plant performance, but plants from both CO2 treatments responded similarly to heat shocks. We also found, as expected, that plants grown under high CO2 had dramatically decreased tissue N concentrations relative to plants grown under ambient conditions. We predicted that high-CO2-grown plants would be more susceptible to a heat shock than ambient-CO2-grown plants, because the reduced N concentrations of high-CO2 grown plants could result in the reduced synthesis of heat shock proteins and reduced thermotolerance. Although we did not examine heat shock proteins, our results showed little relationship between plant nitrogen status and the ability of a plant to tolerate an acute increase in temperature.  相似文献   

13.
Iron (Fe) is an essential nutrient for plant growth and development. In plant tissues, approximately 80% of Fe is found in photosynthetic cells. This study was carried out to determine the effect of different iron concentrations on the photosynthetic characteristics of sweet potato plants. The fluorescence transient of chlorophyll a (OJIP), chlorophyll index and gas exchange were measured in plants grown for seven days in Hoagland solution containing an iron concentration of 0.45, 0.90, 4.50 or 9.00 mM Fe (as Fe-EDTA). The initial and maximum fluorescence increased in the plants receiving 9.00 mM Fe. In the analysis of the fluorescence kinetic difference, L- and K-bands appeared in all of the treatments, but the amplitude was higher in plants receiving 4.50 or 9.00 mM Fe. In plants grown in 9.00 mM Fe, the parameters of the JIP-Test indicated a better efficiency in the capture, absorption and use of light energy, and although the chlorophyll index was higher, the net photosynthesis was lower. The overall data showed that sweet potato plants subjected to high iron concentrations may not exhibit the toxicity symptoms, but the light reactions of photosynthesis can be affect, which may result in a declining net assimilation rate.  相似文献   

14.
Effectiveness of different iron (Fe) foliar sprays for leaf chlorosis correction and grain Fe boosting was studied in field peas under Fe deficiency. No chlorophyll reduction was observed in Fe deficient plants treated with foliar sprays. EDDHA [ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)] followed by FeSO4 (73.7?mg/l Fe) treated at the start of flowering was most responsive in correcting chlorosis and increasing shoot dry biomass in peas. Inductively coupled plasma-atomic emission spectroscopy data showed significant increase of Fe in grains while treated with all foliar sprays at the time of grain filling in Fe-deficient plants. Among them, FeSO4 (73.7?mg/l Fe) was the most efficient in biofortifying Fe in mature grain under Fe deficiency in peas. Results also pinpoint that flowering is a suitable time for applying foliar sprays to boost Fe in mature grains. Taken together, application of Fe foliar sprays facilitated both chlorosis correction and Fe boosting in peas and can be further used by breeders and farmers.  相似文献   

15.
To study whether responses of antioxidative enzymes to enhanced atmospheric CO2 concentrations are affected by plant nutrition, the activities of superoxide dismutase, catalase and peroxidase were investigated in leaves of 3-year-old beech trees grown with low (0.1 × optimum), intermediate (0.5 × optimum) and high (2 × optimum) nutrient supply rates in open-top chambers at either ambient (~ 355 μmol mol?1) or elevated (700 μmol mol?1) CO2 concentrations. These treatments resulted in foliar C/N ratios of about 20 in the presence of high and > 30 in the presence of low nutrient supply rates. Pigment and malon-dialdehyde contents were determined to assess plant stress levels. Low nutrient supply rates caused pigment loss, whereas elevated CO2 had no effect on pigmentation. Guaiacol peroxidase activities did not respond to either CO2 or nutrient treatment. Catalase activity decreased with decreasing nutrient supply rate and also in response to elevated CO2. Superoxidase dismutase activity was affected by both nutrient supply and CO2 concentration. In leaves from trees grown with the high-nutrient treatment, superoxide dismutase activity was low irrespective of CO2 concentration. In chlorotic leaves, superoxide dismutase activity was increased, suggesting an enhanced need for detoxification of reactive oxygen species. Leaves from plants grown under elevated CO2 with medium nutrient supply rates showed decreased malondialdehyde contents and superoxide dismutase activities. This suggests that the intrinsic oxidative stress of leaves was decreased under these conditions. These results imply that intrinsic oxidative stress is modulated by the balance between N and C assimilation.  相似文献   

16.
The effects of the heavy metals Cd and Pb on the activity of the enzyme ferric chelate reductase (FC-R, E.C. 1.6.99.13) have been studied in excised sugar beet root tips. The activity of this enzyme is markedly increased by iron deficiency. Metals were used as chloride salts or chelated with EDTA, and chemical speciation was carried out to predict the metal chemical species in equilibrium both in the ferric reductase assay and in the nutrient solutions. Three different heavy metal treatments were used. First, effects of Cd and Pb on the functioning of the FC-R were assessed in Fe-deficient plants, by including metals in the enzyme assay medium only. Results indicate that 50 μM CdCl2 or Cd-EDTA did not affect FC-R activities even when assay time was as long as 2 h, whereas Pb slightly decreased enzyme activity only at concentrations of 2 mM. Second, short-time Cd and Pb pre-treatments (30–60 min) were imposed on intact Fe-deficient plants before carrying out the assay of FC-R activity. These short-term treatments induced significant decreases in the FC-R activities previously induced by Fe deficiency. With Cd, effects were more pronounced at higher concentrations, and they were stronger when Cd was in the free ion form than when present in the form of Cd-EDTA chelate. Third, prolonged Cd and Pb treatments were imposed on plants grown on 45 μM Fe-EDTA to assess the long-term effects of heavy metals on the induction of the FC-R enzyme. These long-term heavy metal treatments caused a significant increase in the root FC-R activities, indicating that Cd and Pb induce a deficiency in Fe in sugar beet that in turn elicits FC-R activity. The increases, however, are not as large as those found in total absence of Fe.  相似文献   

17.
Multi‐subunit acetyl‐coenzyme A carboxylase (MS‐ACCase; EC 6.4.1.2) isolated from soybean chloroplasts is a labile enzyme that loses activity during purification. We found that incubating the chloroplast stromal fraction under anaerobic conditions or in the presence of 5 mM FeSO4 stimulated ACCase (acetyl‐CoA→malonyl‐CoA) and carboxyltransferase (malonyl‐CoA→acetyl‐CoA) activity. Fe‐stimulation of activity was associated with 59Fe binding to a stromal protein fraction. ACCase and carboxyltransferase activities measured in the stromal protein fraction containing bound 59Fe were 2‐fold and 6‐fold greater, respectively, than the control (stromal fraction not pretreated with FeSO4). Superose 6 gel filtration chromatography indicated 59Fe comigrated with stromal protein of approximately 180 kDa that exhibited carboxyltransferase activity, but lacked ACCase activity. Anion exchange (Mono‐Q) chromatography of the Superose 6 fraction yielded a protein peak that was enriched in carboxyltransferase activity and contained protein‐bound 59Fe. Denaturing gels of the Mono‐Q fraction indicated that the 180‐kDa protein was composed of a 56‐kDa subunit that was bound by an antibody raised against a synthetic β‐carboxyltransferase (β‐CTase) peptide. Incubation of the Mono‐Q carboxyltransferase fraction with increasing concentrations of iron at a fixed substrate concentration resulted in increased initial velocities that fit well to a single rectangular three parameter hyperbola (v=vo+Vmax[FeSO4]/Km+[FeSO4]) consistent with iron functioning as a bound activator of catalysis. UV/Vis spectroscopy of the partially purified fraction before and after iron incubation yielded spectra consistent with a protein‐bound metal cluster. These results suggest that the β‐CTase subunit of MS‐ACCase in soybean chloroplasts is an iron‐containing enzyme, which may in part explain its labile nature.  相似文献   

18.
Translocation of C14-labeled photosynthate was studied in nodulated pea and subterranean-clover plants which were grown either continuously without combined nitrogen or exposed to NaNO3 in the nutrient solution for five days prior to C14O2 assimilation. Supplying combined nitrogen decreased the proportion of photosynthate translocated to nodules with a corresponding increase in the proportion going to roots. Nodules on plants grown without combined nitrogen had a higher radioactivity than nodules on plants treated with sodium nitrate.  相似文献   

19.
Zusammenfassung Junge Sonnenblumenpflanzen nahmen 8 Std. lang nicht markiertes und danach 15 Std. lang mit Fe59 markiertes Eisen in Form von Fe-Chlorid, Fe-EDTA oder Fe-Citrat auf. 1. Bei allen drei Eisenformen absorbierten die Pflanzenwurzeln mehr Eisen aus der N?hrl?sung mit 0,1 ppm Fe als aus der mit 1,0 ppm Fe. 2. Die Wurzeln der mit Fe-Chlorid ern?hrten Pflanzen enthalten den h?chsten Gehalt an Fe59. 3. Das Stengelexsudat der 0,1 ppm Fe-Reihe enthielt weniger Fe59 als das Exsudat der 1,0 ppm Fe-Reihe. 4. Eine sichere Beziehung zwischen der Ern?hrung mit den verschiedenen drei Eisenformen und der ausgeschiedenen Exsudatmenge konnte nicht festgestellt werden. Ebenfalls bestand kein Zusammenhang zwischen der ausgeschiedenen Exsudatmenge und ihrem Fe59-Gehalt. 5. Der Gehalt des Stengelexsudats an Fe59 war bei der Ern?hrung mit Fe-EDTA und Fe-Citrat h?her als bei Fe-Chlorid.
Relationships between iron uptake and iron transport in plants
Summary The uptake of unlabelled iron for 8 h and of Fe59, given as Fe chloride, Fe EDTA and Fe citrate for 15 h, was investigated in young sunflower plants. 1. In all three iron forms the roots absorbed more iron from the nutrient solution with 0.1 ppm Fe than with 1.0 ppm Fe. 2. The roots of those plants, supplied with Fe-chloride contained the highest amount of Fe59. 3. The stem exudate of plants, given a nutrient solution with 0.1 ppm Fe contained less Fe59 than the exudate of plants, grown in a nutrient solution containing 1.0 ppm Fe. 4. No close relationship between the nutrition with the three iron forms and the produced amount of exudate could be established. Furthermore no correlation between the produced amount of exudate and its Fe59 content could be found. 5. The content of Fe59 in the stem exudate was higher when Fe EDTA and Fe citrate were given as compared with Fe chloride.


Auszug aus der Dissertation des Verfassers.  相似文献   

20.
Young bean plants (Phaseolus vulgaris L. var Saxa) were fed with 3.5 or 10 millimolar N in either the form of NO3 or NH4+, after being grown on N-free nutrient solution for 8 days. The pH of the nutrient solutions was either 6 or 4. The cell sap pH and the extractable activities of phosphoenolpyruvate carboxylase and of pyruvate kinase from roots and primary leaves were measured over several days.

The extractable activity of phosphoenolpyruvate carboxylase (based on soluble protein) from primary leaves increased with NO3 nutrition, whereas with NH4+ nutrition and on N-free nutrient solution the activity remained at a low level. Phosphoenopyruvate carboxylase activity from the roots of NH4+-fed plants at pH 4 was finally somewhat higher than from the roots of plants grown on NO3 at the same pH. There was no difference in activity from the root between the N treatments when pH in the nutrient solutions was 6. The extractable activity of pyruvate kinase from roots and primary leaves seemed not to be influenced by the N nutrition of the plants.

The results are discussed in relation to the physiological function of both enzymes with special regard to the postulated functions of phosphoenolpyruvate carboxylase in C3 plants as an anaplerotic enzyme and as part of a cellular pH stat.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号