首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Dolphins possess a highly sophisticated auditory system and a keen capability for echolocation. Signals are emitted in the form of high intensity, short duration, broadband exponentially decaying pulses. The frequency spectra of echolocation signals used by many dolphins are dependent on the output intensity of the signals and not on any fine tuning by the animals. When the output intensity is low, the center frequency of the click tends to be low. As the output intensity increases, the center frequency also tends to increase. The pulses propagate from the dolphin's melon in a relatively narrow beam, and echoes are received via the lower jaw, with a slightly wider beam. Echo- locating dolphins can detect targets at ranges of approximately 100 plus meters, depending on the size of the targets. Target discrimination experiments have shown that dolphins can discriminate the shape, size, material composition and internal structure of targets from the echoes. The broadband short duration properties of the signal allow the echoes to have high temporal resolution, so that within the structure of the echoes a considerable amount of information on the properties of the target can be conveyed. A brief comparison between the bat and dolphin sonar system will also be made. Bats typically emit much longer signals and a wider variety of different types of signals than dolphins. Signals used by some bats are suited to detecting Doppler shift, whereas the dolphin signal is designed to be tolerant of Doppler effects.  相似文献   

2.
Babushina ES 《Biofizika》1999,44(6):1101-1108
The interaction of complex sounds with the body tissues of Black Sea dolphin (Tursiops truncatus) was studied by the method of instrumental conditioned reflexes with food reinforcement. The thresholds of detecting underwater acoustic signals of different frequencies for dolphin and northern fur seal (Callorhinus ursinus) were measured as a function of pulse duration under conditions of full and partial (head above water) submergence of animals into water. It was found that sound conduction through dolphin tissues was more effective than that in a northern fur seal in a wide frequency range. Presumably, the process of sound propagation in dolphin is accompanied by changes in the amplitude-frequency structure of broad-band sounds. The temporal summation in dolphin hearing was observed at all frequencies under conditions of full and partial submergence, whereas in northern fur seal it was nearly absent at a frequency of 5 kHz under the conditions of head lifting above water.  相似文献   

3.
Dolphin communicative signals show great plasticity. Dolphins modify signal structure to cope with their environment, in response to stress, and in some species to mimic group members. Hence, whistle structure variations may offer insights to interspecific associations among dolphin species, which although temporal and opportunistic are common. In this study, I test the hypothesis that interspecific interactions influence dolphin whistle structure, particularly during social events. The study took place in the Southern Caribbean coast of Costa Rica, where interspecific associations of the distantly related Guyana and Bottlenose dolphins occur on daily basis. The results indicate that interspecific groups emit whistles that show intermediate whistle structure compared to whistles emitted in intraspecific groups. This pattern is seen during social interactions between species, but not when interspecific groups are traveling. Social events in interspecific groups were of antagonistic nature, where Bottlenose dolphins isolated and harassed one or two Guyana dolphins. Contour data suggest that the most vocal species during these encounters was the Guyana dolphin. Therefore, the observed modifications in whistles structure likely reflect a stress response by the Guyana dolphins. Another alternative explanation includes signal convergence between interacting species. However, to understand the nature of these potential modifications, future studies should combine acoustic tags and directional recording systems to follow the vocalizing animals. Despite the shortcomings of this study, it provides some of the first insights into dolphin interspecific communication, providing evidence of overall signal change during interspecific interactions.  相似文献   

4.
Several authors suggest that dolphins use information obtained by eavesdropping on echoes from sonar signals of conspecifics, but there is little evidence that this strategy is used by dolphins in the wild. Travelling rough-toothed dolphins (Steno bredanensis) either exhibit asynchronous movements or an extremely synchronized swimming behaviour in tight formations, which we expect to facilitate eavesdropping. Therefore, we determined, whether either one or more dolphins were echolocating in subgroups that were travelling with asynchronous and synchronized movements. Since, the number of recording sequences in which more than one animal produced sonar signals was significantly lower during synchronized travel, we conclude that the other members of a subgroup might get information on targets ahead by eavesdropping. Synchronized swimming in tight formations might be an energetic adaptation for travelling in a pelagic dolphin species that facilitates eavesdropping.  相似文献   

5.
V. A. Ryabov 《Biophysics》2014,59(1):135-147
Two-channel recording of acoustic signals from two quasi-stationary dolphins has previously suggested that the dolphin echolocation system is more complex than discussed earlier, and includes at least four sonars. In the present work, two-channel recording of signals, analysis and interpretation of their functions were continued in terms of physical acoustics, signal theory and echolocation. The results indicate that the echolocation system of dolphins involves four organs to produce probing signals of five different types, which implies different mechanisms of their processing by the dolphin hearing; its operation corresponds to as many as six varieties of sonar systems. The results are of importance for studying the echolocation system of Odontoceti and for improving sonars and radars.  相似文献   

6.
Adequate temporal resolution is required across taxa to properly utilize amplitude modulated acoustic signals. Among mammals, odontocete marine mammals are considered to have relatively high temporal resolution, which is a selective advantage when processing fast traveling underwater sound. However, multiple methods used to estimate auditory temporal resolution have left comparisons among odontocetes and other mammals somewhat vague. Here we present the estimated auditory temporal resolution of an adult male white-beaked dolphin, (Lagenorhynchus albirostris), using auditory evoked potentials and click stimuli. Ours is the first of such studies performed on a wild dolphin in a capture-and-release scenario. The white-beaked dolphin followed rhythmic clicks up to a rate of approximately 1,125–1,250 Hz, after which the modulation rate transfer function (MRTF) cut-off steeply. However, 10% of the maximum response was still found at 1,450 Hz indicating high temporal resolution. The MRTF was similar in shape and bandwidth to that of other odontocetes. The estimated maximal temporal resolution of white-beaked dolphins and other odontocetes was approximately twice that of pinnipeds and manatees, and more than ten-times faster than humans and gerbils. The exceptionally high temporal resolution abilities of odontocetes are likely due primarily to echolocation capabilities that require rapid processing of acoustic cues.  相似文献   

7.
The studies on the variation of acoustic communication in different species have provided insight that genetics, geographic isolation, and adaptation to ecological and social conditions play important roles in the variability of acoustic signals. The dolphin whistles are communication signals that can vary significantly among and within populations. Although it is known that they are influenced by different environmental and social variables, the factors influencing the variation between populations have received scant attention. In the present study, we investigated the factors associated with the acoustic variability in the whistles of common bottlenose dolphin (Tursiops truncatus), inhabiting two Mediterranean areas (Sardinia and Croatia). We explored which factors, among (a) geographical isolation of populations, (b) different environments in terms of noise and boat presence, and (c) social factors (including group size, behavior, and presence of calves), were associated with whistle characteristics. We first applied a principal component analysis to reduce the number of collinear whistle frequency and temporal characteristics and then generalized linear mixed models on the first two principal components. The study revealed that both geographic distance/isolation and local environment are associated with whistle variations between localities. The prominent differences in the acoustic environments between the two areas, which contributed to the acoustic variability in the first principal component (PC1), were found. The calf's presence and foraging and social behavior were also found to be associated with dolphin whistle variation. The second principal component (PC2) was associated only with locality and group size, showing that longer and more complex tonal sound may facilitate individual recognition and cohesion in social groups. Thus, both social and behavioral context influenced significantly the structure of whistles, and they should be considered when investigating acoustic variability among distant dolphin populations to avoid confounding factors.  相似文献   

8.
Experimental data are presented on evaluating the efficiency of auditory perception of the dolphin Tursiops truncatus of tonal signals of different duration and of the fixed energy on the background of Gauss obstacle. The dependence of percepting properties on time characteristics of the signal are stated. A comparative analysis of the efficiency of dolphin auditory system with that of the coordinated filter is carried out. Biological receiving systems are shown to be adaptive. The self-tuning linits of the dolphin auditory system at a given level of the possibility of correct detection are determined.  相似文献   

9.
Long‐term social structure data on small delphinids is lacking for most species except the bottlenose dolphin. This study describes the long‐term social structure of one community of Atlantic spotted dolphins, Stenella frontalis, divided into three social clusters. Data from 12 yr were analyzed using SOCPROG 2.3. Coefficients of association (CoA) were calculated using the half‐weight index. The overall mean community CoA ranged from 0.09 to 0.12. Temporal analyses and mantel tests revealed significant differences between sex class associations due to high male‐male CoA (0.12–0.23) compared to female‐female and mixed sex CoA (0.08–0.10). Female associations were strongly influenced by reproductive status, calf care, and social familiarity, but not by age class. Male associations were strongly influenced by age, access to females, and alliance formation. Males showed two levels of alliance formation, long‐term first order pairs/trios (CoA 0.70–1.00) and shorter‐term second order alliances between two or more first order alliances (CoA 0.45–0.69), and a possible third level during interspecies interactions. Mating strategies, sex, and cluster formation shaped the social structure in this spotted dolphin community. Similar to many bottlenose dolphin studies, long‐term affiliations for spotted dolphins were correlated with age, sex, and reproductive status.  相似文献   

10.
In behavioral experiments on bottlenose dolphins there was evaluated efficiency of identification of the low frequency noises that represent a certain rhythmical sequence of impulses, at destabilization of their spectra by the method of frequency wobble. Results of the experiments have shown that disturbance of spectral structure at erosion of its discrete components does not lead to a decrease of efficiency of the noise identification, which indicates the greater significance of the time, rather than spectral mechanisms at processing of the complex acoustic signals by the dolphin auditory system.  相似文献   

11.
In dolphins, natural selection has developed unihemispheric sleep where alternating hemispheres of their brain stay awake. This allows dolphins to maintain consciousness in response to respiratory demands of the ocean. Unihemispheric sleep may also allow dolphins to maintain vigilant states over long periods of time. Because of the relatively poor visibility in the ocean, dolphins use echolocation to interrogate their environment. During echolocation, dolphin produce clicks and listen to returning echoes to determine the location and identity of objects. The extent to which individual dolphins are able to maintain continuous vigilance through this active sense is unknown. Here we show that dolphins may continuously echolocate and accurately report the presence of targets for at least 15 days without interruption. During a total of three sessions, each lasting five days, two dolphins maintained echolocation behaviors while successfully detecting and reporting targets. Overall performance was between 75 to 86% correct for one dolphin and 97 to 99% correct for a second dolphin. Both animals demonstrated diel patterns in echolocation behavior. A 15-day testing session with one dolphin resulted in near perfect performance with no significant decrement over time. Our results demonstrate that dolphins can continuously monitor their environment and maintain long-term vigilant behavior through echolocation.  相似文献   

12.
For highly mobile species that nevertheless show fine-scale patterns of population genetic structure, the relevant evolutionary mechanisms determining structure remain poorly understood. The bottlenose dolphin (Tursiops truncatus) is one such species, exhibiting complex patterns of genetic structure associated with local habitat dependence in various geographic regions. Here we studied bottlenose dolphin populations in the Gulf of California and Pacific Ocean off Baja California where habitat is highly structured to test associations between ecology, habitat dependence and genetic differentiation. We investigated population structure at a fine geographic scale using both stable isotope analysis (to assess feeding ecology) and molecular genetic markers (to assess population structure). Our results show that there are at least two factors affecting population structure for both genetics and feeding ecology (as indicated by stable isotope profiles). On the one hand there is a signal for the differentiation of individuals by ecotype, one foraging more offshore than the other. At the same time, there is differentiation between the Gulf of California and the west coast of Baja California, meaning that for example, nearshore ecotypes were both genetically and isotopically differentiated either side of the peninsula. We discuss these data in the context of similar studies showing fine-scale population structure for delphinid species in coastal waters, and consider possible evolutionary mechanisms.  相似文献   

13.
The accuracy of localizing the underwater sound source in the vertical-plane by the bottlenose dolphin was investigated using the method of instrumental conditioned reflexes with food reinforcement. The accuracy of determining the underwater sound in the vertical plane (the full angle) was on the average: 2 - 2,5 degrees for tonal signals with frequencies of 5, 20, and 120 kHz; pulsed clicks with the central frequency of 120 kHz and the exponential forms of amplitude alteration wavefronts were localized by the dolphin with an accuracy of 1,5 degrees. Among all marine mammals examined, dolphins are characterized by the maximal exact analysis of acoustic space.  相似文献   

14.
Social animals have to take into consideration the behaviour of conspecifics when making decisions to go by their daily lives. These decisions affect their fitness and there is therefore an evolutionary pressure to try making the right choices. In many instances individuals will make their own choices and the behaviour of the group will be a democratic integration of everyone’s decision. However, in some instances it can be advantageous to follow the choice of a few individuals in the group if they have more information regarding the situation that has arisen. Here I provide early evidence that decisions about shifts in activity states in a population of bottlenose dolphin follow such a decision-making process. This unshared consensus is mediated by a non-vocal signal, which can be communicated globally within the dolphin school. These signals are emitted by individuals that tend to have more information about the behaviour of potential competitors because of their position in the social network. I hypothesise that this decision-making process emerged from the social structure of the population and the need to maintain mixed-sex schools.  相似文献   

15.
Temporal cues are important for some forms of auditory processing, such as echolocation. Among odontocetes (toothed whales, dolphins, and porpoises), it has been suggested that porpoises may have temporal processing abilities which differ from other odontocetes because of their relatively narrow auditory filters and longer duration echolocation signals. This study examined auditory temporal resolution in two Yangtze finless porpoises (Neophocaena phocaenoides asiaeorientalis) using auditory evoked potentials (AEPs) to measure: (a) rate following responses and modulation rate transfer function for 100 kHz centered pulse sounds and (b) hearing thresholds and response amplitudes generated by individual pulses of different durations. The animals followed pulses well at modulation rates up to 1,250 Hz, after which response amplitudes declined until extinguished beyond 2,500 Hz. The subjects had significantly better hearing thresholds for longer, narrower-band pulses similar to porpoise echolocation signals compared to brief, broadband sounds resembling dolphin clicks. Results indicate that the Yangtze finless porpoise follows individual acoustic signals at rates similar to other odontocetes tested. Relatively good sensitivity for longer duration, narrow-band signals suggests that finless porpoise hearing is well suited to detect their unique echolocation signals.  相似文献   

16.

Background  

The dusky dolphin (Lagenorhynchus obscurus) is distributed along temperate, coastal regions of New Zealand, South Africa, Argentina, and Peru where it feeds on schooling anchovy, sardines, and other small fishes and squid tightly associated with temperate ocean sea surface temperatures. Previous studies have suggested that the dusky dolphin dispersed in the Southern Hemisphere eastward from Peru via a linear, temperate dispersal corridor provided by the circumpolar west-wind drift. With new mitochondrial and nuclear DNA sequence data, we propose an alternative phylogeographic history for the dusky dolphin that was structured by paleoceanographic conditions that repeatedly altered the distribution of its temperate prey species during the Plio-Pleistocene.  相似文献   

17.
Shifts in habitat use and distribution patterns in dolphins are often concerns that can result from habitat degradation. We investigated how potential changes to a habitat from human activity may alter dolphin distributions within Lingding Bay in the Pearl River Estuary, China, by studying the relationship between fish choruses, vessel presence and Indo‐Pacific humpback dolphin (Sousa chinensis) detection rates. Analyses revealed temporal and spatial variation within fish choruses, vessel presence and dolphin detection rates. After accounting for any temporal autocorrelation, correlations between fish choruses and dolphin detection rates were also found; however, no relationship between fish choruses and vessel presence or dolphin detection rates and vessel presence were observed. Furthermore, fewer dolphins were detected at sites where fish activity was less intense. Thus fish activity, rather than vessels, may be a key factor influencing the distribution of the dolphins within the estuary. These findings emphasize the risk of potential shifts in habitat use for Indo‐Pacific humpback dolphins due to detrimental changes to prey availability and dolphin feeding grounds from human activity, such as overfishing and coastal developments, within the estuary. This is a critical conservation issue for this dolphin population that is facing intense anthropogenic pressure.  相似文献   

18.
1. Liver, kidney, brain, skeletal muscle, and cardiac muscle from one newborn and three adult long-snouted dolphins (Stenella plagiodon) were obtained for enzyme studies. 2. All of the dolphin tissues exhibited cytochrome oxidase, succinic dehydrogenase, and malic dehydrogenase activity. Considerable differences in the enzyme activities of the various tissues were noted, with cardiac muscle exhibiting the highest respiratory enzyme activity. The enzyme activities of dolphin tissues were lower than those of the corresponding rat tissues. 3. All of the dolphin tissues exhibited adenosine triphosphatase activity which was accelerated by magnesium and manganese but, in contrast to rat tissues, was only slightly activated by calcium. 4. Measurements of the distribution of acid-soluble phosphorus in dolphin tissues indicated that glycolysis in all of the tissues examined proceeded through the Emden-Meyerhof phosphorylation scheme. 5. The average glycogen content of dolphin skeletal muscle was 0.98 per cent as compared with 0.16 to 0.20 per cent for rat skeletal muscle. The high glycogen content of dolphin skeletal muscle indicates a ready source of substrate for glycolysis even during submergence when the blood supply may be differentially shunted to other organs. 6. Measurements of the organ weights of dolphins showed that the lungs occupy over three times and the liver one-half as much of the total body weight as do these organs in the rat. The heart and the thyroid gland of the dolphin are also larger in proportion to the total body weight than in the rat while the relative weights of the other tissues in the two species are about the same.  相似文献   

19.
Highly mobile species in the marine environment may be expected to show little differentiation at the population level, but this is often not the case. Instead cryptic population structure is common, and effective conservation will require an understanding of how these patterns evolve. Here we present an assessment from both sides of the North Atlantic of differentiation among populations of a dolphin species that inhabits mainly pelagic waters, the Atlantic white-sided dolphin. We compare eleven putative populations in the western and eastern North Atlantic at mtDNA and microsatellite DNA loci and find reduced nucleotide diversity and signals for historical bottlenecks and post-bottleneck expansions in all regions. We calculate expansion times to have occurred during the early Holocene, following the last glacial maximum (LGM). We find evidence for connectivity among populations from either side of the North Atlantic, and differentiation between putative populations in the far northeast compared with all other areas sampled. Some data suggest the possibility of separate refugia during the LGM explaining this pattern, although ongoing ecological processes may also be a factor. We discuss the implications for developing effective programs of conservation and management in the context of ongoing anthropogenic impact.  相似文献   

20.
Cetaceans are unique in being the only mammals completely adapted to an aquatic environment. This adaptation has required complex changes and sometimes a complete restructuring of physiology, behavior and morphology. Identifying genes that have been subjected to selection pressure during cetacean evolution would greatly enhance our knowledge of the ways in which genetic variation in this mammalian order has been shaped by natural selection. Here, we performed a genome-wide scan for positive selection in the dolphin lineage. We employed models of codon substitution that account for variation of selective pressure over branches on the tree and across sites in a sequence. We analyzed 7,859 nuclear-coding ortholog genes and using a series of likelihood ratio tests (LRTs), we identified 376 genes (4.8%) with molecular signatures of positive selection in the dolphin lineage. We used the cow as the sister group and compared estimates of selection in the cetacean genome to this using the same methods. This allowed us to define which genes have been exclusively under positive selection in the dolphin lineage. The enrichment analysis found that the identified positively selected genes are significantly over-represented for three exclusive functional categories only in the dolphin lineage: segment specification, mesoderm development and system development. Of particular interest for cetacean adaptation to an aquatic life are the following GeneOntology targets under positive selection: genes related to kidney, heart, lung, eye, ear and nervous system development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号