首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The retro-analogue of glutathione disulfide was bound to the GSSG binding site of crystalline glutathione reductase. The binding mode revealed why the analogue is a very poor substrate in enzyme catalysis. The observed binding mode difference between natural substrate and retro-analogue is explained.  相似文献   

2.
The active site cysteine of pig liver thioltransferase was identified as Cys22. The kinetics of the reaction between Cys22 of the reduced enzyme and iodoacetic acid as a function of pH revealed that the active site sulfhydryl group had a pKa of 2.5. Incubation of reduced enzyme with [1-14C]cysteine prevented the inactivation of the enzyme by iodoacetic acid at pH 6.5, and no stable protein-cysteine disulfide was found when the enzyme was separated from excess [1-14C]cysteine, suggesting an intramolecular disulfide formation. The results suggested a reaction mechanism for thioltransferase. The thiolated Cys22 first initiates a nucleophilic attack on a disulfide substrate, resulting in the formation of an unstable mixed disulfide between Cys22 and the substrate. Subsequently, the sulfhydryl group at Cys25 is deprotonated as a result of micro-environmental changes within the active site domain, releasing the mixed disulfide and forming an intramolecular disulfide bond. Reduced glutathione, the second substrate, reduces the intramolecular disulfide forming a transient mixed disulfide which is then further reduced by glutathione to regenerate the reduced enzyme and form oxidized glutathione. The rate-limiting step for a typical reaction between a disulfide and reduced glutathione is proposed to be the reduction of the intramolecular disulfide form of the enzyme by reduced glutathione.  相似文献   

3.
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that posses both NADP-linked 15-hydroxypyrostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstble and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutahione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutahione site.  相似文献   

4.
H Chung  J Fried  J Jarabak 《Prostaglandins》1987,33(3):391-402
Oxidation of glutathione disulfide by a mixture of performic and hydrochloric acids leads to the formation of several compounds that are stronger inhibitors than glutathione disulfide of the placental enzyme that possess both NADP-linked 15-hydroxyprostaglandin dehydrogenase and 9-ketoprostaglandin reductase activities. The only one of these inhibitors that has been identified is glutathione thiosulfonate. The others are unstable and may include glutathione sulfinyl sulfone and glutathione disulfone. Since the enzyme appears to have a glutathione binding site in close proximity to its active site and glutathione thiosulfonate reacts with free sulfhydryl groups, the effects of this thiosulfonate on the enzyme were examined in more detail. Glutathione thiosulfonate and methyl methanethiosulfonate cause a time-dependent irreversible inhibition of both the hydroxyprostaglandin dehydrogenase and the ketoprostaglandin reductase activities, presumably by reacting with a free sulfhydryl at the prostaglandin binding site. Experiments with PGA1-glutathione show that this sulfhydryl is not necessary for the catalytic activity of the enzyme as long as the substrate can bind at the glutathione site.  相似文献   

5.
Bacterial glutathione transferases appear to represent an evolutionary link between the thiol:disulfide oxidoreductase and glutathione transferase superfamilies. In particular, the observation of a mixed disulfide in the active site of Proteus mirabilis glutathione transferase B1-1 is a feature that links the two families. This peculiar mixed disulfide between Cys10 and one GSH molecule has been studied by means of ESR spectroscopy, stopped-flow kinetic analysis, radiochemistry, and site-directed mutagenesis. This disulfide can be reduced by dithiothreitol but even a thousand molar excess of GSH is poorly effective due to an unfavorable equilibrium constant of the redox reaction (K(eq) = 2 x 10(-4)). Although Cys10 is partially buried in the crystal structure, in solution it reacts with several thiol reagents at a higher or comparable rate than that shown by the free cysteine. Kinetics of the reaction of Cys10 with 4,4'-dithiodipyridine at variable pH values is consistent with a pK(a) of 8.0 +/- 0.1 for this residue, a value about 1 unit lower than that of the free cysteine. The 4,4'-dithiodipyridine-modified enzyme reacts with GSH in a two-step mechanism involving a fast precomplex formation, followed by a slower chemical step. The natural Cys10-GSH mixed disulfide exchanges rapidly with free [3H]GSH in a futile redox cycle in which the bound GSH is continuously replaced by the external GSH. Our data suggest that the active site of the bacterial enzyme has intermediate properties between those of the recently evolved glutathione transferases and those of the thiol:disulfide oxidoreductase superfamily.  相似文献   

6.
Monobromobimane (mBBr), functions as a substrate of porcine glutathione S-transferase pi (GST pi): The enzyme catalyzes the reaction of mBBr with glutathione. S-(Hydroxyethyl)bimane, a nonreactive analog of monobromobimane, acts as a competitive inhibitor with respect to mBBr as substrate but does not affect the reaction of GST pi with another substrate, 1-chloro-2,4-dinitrobenzene (CDNB). In the absence of glutathione, monobromobimane inactivates GST pi at pH 7.0 and 25 degrees C as assayed using mBBr as substrate, with a lesser effect on the enzyme's use of CDNB as substrate. These results indicate that the sites occupied by CDNB and mBBr are not identical. Inactivation is proportional to the incorporation of 2 moles of bimane/mole of subunit. Modification of GST pi with mBBr does not interfere with its binding of 8-anilino-1-naphthalene sulfonate, indicating that this hydrophobic site is not the target of monobromobimane. S-Methylglutathione and S-(hydroxyethyl)bimane each yield partial protection against inactivation and decrease reagent incorporation, while glutathionyl-bimane protects completely against inactivation. Peptide analysis after trypsin digestion indicates that mBBr modifies Cys45 and Cys99 equally. Modification of Cys45 is reduced in the presence of S-methylglutathione, indicating that this residue is at or near the glutathione binding region. In contrast, modification of Cys99 is reduced in the presence of S-(hydroxyethyl)bimane, suggesting that this residue is at or near the mBBr xenobiotic substrate binding site. Modification of Cys99 can best be understood by reaction with monobromobimane while it is bound to its xenobiotic substrate site in an alternate orientation. These results support the concept that glutathione S-transferase accomplishes its ability to react with a diversity of substrates in part by harboring distinct xenobiotic substrate sites.  相似文献   

7.
S-Conjugates of glutathione influence the glutathione/glutathione disulfide (GSH/GSSG) status of hepatocytes in at least two ways, namely by inhibition of GSSG transport into the bile [Akerboom et al. (1982) FEBS Lett. 140, 73-76] and by inhibition of the enzyme GSSG reductase (EC 1.6.4.2). The interaction of GSSG reductase with a well-studied conjugate, namely S-(2,4-dinitrophenyl)-glutathione and its electrophilic precursor 1-chloro-2,4-dinitrobenzene are described. For short exposures both compounds are reversible inhibitors of the enzyme, the Ki values being 30 microM and 22 microM respectively. After prolonged incubation, 1-chloro-2,4-dinitrobenzene blocks GSSG reductase irreversibly, which emphasizes the need for rapid conjugate formation in situ. As shown by X-ray crystallography the major binding site of S-(2,4-dinitrophenyl)-glutathione in GSSG reductase overlaps the binding site of the substrate, glutathione disulfide. However, the glutathione moiety of the conjugate does not bind in the same manner as either of the glutathiones in the disulfide.  相似文献   

8.
Arscott LD  Veine DM  Williams CH 《Biochemistry》2000,39(16):4711-4721
Glutathione reductase catalyzes the reduction of glutathione disulfide by NADPH. The FAD of the reductase is reduced by NADPH, and reducing equivalents are passed to a redox-active disulfide to complete the first half-reaction. The nascent dithiol of two-electron reduced enzyme (EH(2)) interchanges with glutathione disulfide forming two molecules of glutathione in the second half-reaction. It has long been assumed that a mixed disulfide (MDS) between one of the nascent thiols and glutathione is an intermediate in this reaction. In addition to the nascent dithiol composed of Cys(45) and Cys(50), the enzyme contains an acid catalyst, His(456), having a pK(a) of 9.2 that protonates the first glutathione (residue numbers refer to the yeast enzyme sequence). Reduction of yeast glutathione reductase by glutathione and reoxidation of EH(2) by glutathione disulfide indicate that the mixed disulfide accumulates, in particular, at low pH. The reaction of glutathione disulfide with EH(2) is stoichiometric in the absence of an excess of glutathione. The equilibrium position among E(ox), MDS, and EH(2) is determined by the glutathione concentration and is not markedly influenced by pH between 6.2 and 8.5. The mixed disulfide is the principal product in the reaction of glutathione with oxidized enzyme (E(ox)) at pH 6. 2. Its spectrum can be distinguished from that of EH(2) by a slightly lower thiolate (Cys(50))-FAD charge-transfer absorbance at 540 nm. The high GSH/GSSG ratio in the cytoplasm dictates that the mixed disulfide will be the major enzyme species.  相似文献   

9.
The Zeta class of glutathione transferases (GSTs) has only recently been discovered and hence has been poorly characterized. Here we investigate the substrate binding and kinetic mechanisms of the human Zeta class GSTZ1c-1c by means of pre-steady state and steady-state experiments and site-directed mutagenesis. Binding of GSH occurs at a very low rate compared with that observed for the more recently evolved GSTs (Alpha, Mu, and Pi classes). Moreover, the single step binding mechanism observed in this enzyme is reminiscent of that found for the Theta class enzyme, whereas the Alpha, Mu, and Pi classes have adopted a multistep binding mechanism. Replacement of Cys16 with Ala increases the rate of GSH release from the active site causing a 10-fold decrease of affinity toward GSH. Cys16 also plays a crucial role in co-substrate binding; the mutant enzyme is unable to bind the carcinogenic substrate dichloroacetic acid in the absence of GSH. However, both substrate binding and GSH activation are not rate-limiting in catalysis. A peculiarity of the hGSTZ1c-1c is the half-site activation of bound GSH. This suggests a primitive monomer-monomer interaction that, in the recently diverged GSTP1-1, gives rise to a sophisticated cooperative mechanism that preserves the catalytic efficiency of this GST under stress conditions.  相似文献   

10.
Glutaredoxin is essential for the glutathione (GSH)-dependent synthesis of deoxyribonucleotides by ribonucleotide reductase, and in addition, it displays a general GSH disulfide oxidoreductase activity. In Escherichia coli glutaredoxin, the active site contains a redox-active disulfide/dithiol of the sequence Cys11-Pro12-Tyr13-Cys14. In this paper, we have prepared and characterized the Cys14----Ser mutant of E. coli glutaredoxin and its mixed disulfide with glutathione. The Cys14----Ser mutant of glutaredoxin is shown to retain 38% of the GSH disulfide oxidoreductase activity of the wild-type protein with hydroxyethyl disulfide as substrate but to be completely inactive with ribonucleotide reductase, demonstrating that dithiol glutaredoxin is the hydrogen donor for ribonucleotide reductase. The covalent structure of the mixed disulfide of glutaredoxin(C14S) with GSH prepared with 15N-labeling of the protein was confirmed with nuclear magnetic resonance (NMR) spectroscopy, establishing a basis for NMR structural studies of the glutathione binding site on glutaredoxin.  相似文献   

11.
Reaction of rat liver glutathione S-transferase, isozyme 1-1, with 4-(fluorosulfonyl)benzoic acid (4-FSB), a xenobiotic substrate analogue, results in a time-dependent inactivation of the enzyme to a final value of 35% of its original activity when assayed at pH 6.5 with 1-chloro-2,4-dinitrobenzene (CDNB) as substrate. The rate of inactivation exhibits a nonlinear dependence on the concentration of 4-FSB from 0.25 mM to 9 mM, characterized by a KI of 0.78 mM and kmax of 0.011 min-1. S-Hexylglutathione or the xenobiotic substrate analogue, 2,4-dinitrophenol, protects against inactivation of the enzyme by 4-FSB, whereas S-methylglutathione has little effect on the reaction. These experiments indicate that reaction occurs within the active site of the enzyme, probably in the binding site of the xenobiotic substrate, close to the glutathione binding site. Incorporation of [3,5-3H]-4-FSB into the enzyme in the absence and presence of S-hexylglutathione suggests that modification of one residue is responsible for the partial loss of enzyme activity. Tyr 8 and Cys 17 are shown to be the reaction targets of 4-FSB, but only Tyr 8 is protected against 4-FSB by S-hexylglutathione. DTT regenerates cysteine from the reaction product of cysteine and 4-FSB, but does not reactivate the enzyme. These results show that modification of Tyr 8 by 4-FSB causes the partial inactivation of the enzyme. The Michaelis constants for various substrates are not changed by the modification of the enzyme. The pH dependence of the enzyme-catalyzed reaction of glutathione with CDNB for the modified enzyme, as compared with the native enzyme, reveals an increase of about 0.9 in the apparent pKa, which has been interpreted as representing the ionization of enzyme-bound glutathione; however, this pKa of about 7.4 for modified enzyme remains far below the pK of 9.1 for the -SH of free glutathione. Previously, it was considered that Tyr 8 was essential for GST catalysis. In contrast, we conclude that Tyr 8 facilitates the ionization of the thiol group of glutathione bound to glutathione S-transferase, but is not required for enzyme activity.  相似文献   

12.
GSTs (glutathione transferases) are an important class of enzymes involved in cellular detoxification. GSTs are found in all classes of organisms and are implicated in resistance towards drugs, pesticides, herbicides and antibiotics. The activity, structure and folding, particularly of eukaryotic GSTs, have therefore been widely studied. The crystal structure of EGST (GST from Escherichia coli) was reported around 10 years ago and it suggested Cys(10) and His(106) as potential catalytic residues. However, the role of these residues in catalysis has not been further investigated, nor have the folding properties of the protein been described. In the present study we investigated the contributions of residues Cys(10) and His(106) to the activity and stability of EGST. We found that EGST shows a complex equilibrium unfolding profile, involving a population of at least two partially folded intermediates, one of which is dimeric. Mutation of residues Cys(10) and His(106) leads to stabilization of the protein and affects the apparent steady-state kinetic parameters for enzyme catalysis. The results suggest that the imidazole ring of His(106) plays an important role in the catalytic mechanism of the enzyme, whereas Cys(10) is involved in binding of the substrate, glutathione. Engineering of the Cys(10) site can be used to increase both the stability and GST activity of EGST. However, in addition to GST activity, we discovered that EGST also possesses thiol:disulfide oxidoreductase activity, for which the residue Cys(10) plays an essential role. Further, tryptophan quenching experiments indicate that a mixed disulfide is formed between the free thiol group of Cys(10) and the substrate, glutathione.  相似文献   

13.
The nature of binding of FDP aldolase to bovine erythrocyte membrane was examined. The Km value of bound and soluble enzyme differed by an order. The absence of time-lag in the velocity-time curves at various concentrations of the substrate and the similar extent of inactivation of bound and soluble enzyme on heat treatment suggested that the enzyme was bound at a point other than the catalytic site. The release of the enzyme by various glycolytic intermediates suggested their involvement in binding to the catalytic site through phosphate linkage. The non-phosphorylated compounds like lactate, reduced glutathione, 2-mercaptoethanol and EDTA were ineffective in eluting the enzyme. On the basis of separate binding sites on the enzyme for membrane and ligands, the mechanism of association dissociation of aldolase has been suggested.  相似文献   

14.
W Janes  G E Schulz 《Biochemistry》1990,29(16):4022-4030
Six analogues of glutathione disulfide were synthesized. All of them involved the abolishment of charges, either by amidation of carboxylates or by removal of amino groups. Four of these analogues could be bound to crystalline oxidized glutathione reductase, and their binding modes could be established by X-ray analyses at 2.4-A resolution. All six analogues were catalytically processed; the kinetic parameters were determined. The two analogues that did not bind in the crystals had by far the poorest catalytic efficiencies. Kinetic parameters together with X-ray data show the influence of each charged group on binding and catalytic rate. Data analysis indicates that the enzyme avoids processing of incorrect substrates in two ways: First, it reduces their binding strengths and/or enforces displacement of catalytically important substrate parts. Furthermore, it forms a fragile cluster of bound substrate and catalytically competent residues, which is unbalanced by incorrect parts of the substrate such that catalysis is prevented. A scouting microcalorimetric study using glutathione disulfide yielded a binding enthalpy of -103 (+/- 10) kJ/mol at 25 degrees C and a heat capacity change of -8 (+/- 1) kJ.mol-1.K-1. The study showed that it is feasible to measure these parameters as a function of substrate modification.  相似文献   

15.
Urig S  Lieske J  Fritz-Wolf K  Irmler A  Becker K 《FEBS letters》2006,580(15):3595-3600
The substrate spectrum of human thioredoxin reductase (hTrxR) is attributed to its C-terminal extension of 16 amino acids carrying a selenocysteine residue. The concept of an evolutionary link between thioredoxin reductase and glutathione reductase (GR) is presently discussed and supported by the fact that almost all residues at catalytic and substrate recognition sites are identical. Here, we addressed the question if a deletion of the C-terminal part of TrxR leads to recognition of glutathione disulfide (GSSG), the substrate of GR. We introduced mutations at the putative substrate binding site to enhance GSSG binding and turnover. However, none of these enzyme species accepted GSSG as substrate better than the full length cysteine mutant of TrxR, excluding a role of the C-terminal extension in preventing GSSG binding. Furthermore, we show that GSSG binding at the N-terminal active site of TrxR is electrostatically disfavoured.  相似文献   

16.
R M Katusz  B Bono  R F Colman 《Biochemistry》1992,31(37):8984-8990
Incubation of S-(4-bromo-2,3-dioxobutyl)glutathione (S-BDB-G), a reactive analogue of glutathione, with the 1-1 isoenzyme of rat liver glutathione S-transferase at pH 6.5 and 25 degrees C results in a time-dependent inactivation of the enzyme. k(obs) exhibits a nonlinear dependence on S-BDB-G from 50 to 1200 microM, with a kmax of 0.111 min-1 and KI = 185 microM. The addition of 5 mM S-hexylglutathione, a competitive inhibitor with respect to glutathione, gives almost complete protection against inactivation by S-BDB-G. About 1.2 mol of [3H]S-BDB-G/mol of enzyme subunit is incorporated when the enzyme is 85% inactivated, whereas 0.33 mol of reagent/mol of subunit is incorporated in the presence of S-hexylglutathione when the enzyme has lost only 17% of its original activity. Modified enzyme, prepared by incubating glutathione S-transferase with [3H]S-BDB-G in the absence or in the presence of S-hexylglutathione, was reduced with sodium borohydride, reacted with N-ethylmaleimide, and digested with alpha-chymotrypsin. Analysis of the chymotryptic digests, fractionated by reverse-phase high-performance liquid chromatography, revealed Cys111 as the amino acid whose reaction with S-BDB-G correlates with enzyme inactivation. It is concluded that Cys111 lies within or near the hydrophobic substrate binding site of glutathione S-transferase, isoenzyme 1-1.  相似文献   

17.
The nitric oxide molecule (NO) is involved in many important physiological processes and seems to be stabilized by reduced thiol species, such as S-nitrosoglutathione (GSNO). GSNO binds strongly to glutathione transferases, a major superfamily of detoxifying enzymes. We have determined the crystal structure of GSNO bound to dimeric human glutathione transferase P1-1 (hGSTP1-1) at 1.4 A resolution. The GSNO ligand binds in the active site with the nitrosyl moiety involved in multiple interactions with the protein. Isothermal titration calorimetry and differential scanning calorimetry (DSC) have been used to characterize the interaction of GSNO with the enzyme. The binding of GSNO to wild-type hGSTP1-1 induces a negative cooperativity with a kinetic process concomitant to the binding process occurring at more physiological temperatures. GSNO inhibits wild-type enzyme competitively at lower temperatures but covalently at higher temperatures, presumably by S-nitrosylation of a sulfhydryl group. The C47S mutation removes the covalent modification potential of the enzyme by GSNO. These results are consistent with a model in which the flexible helix alpha2 of hGST P1-1 must move sufficiently to allow chemical modification of Cys47. In contrast to wild-type enzyme, the C47S mutation induces a positive cooperativity toward GSNO binding. The DSC results show that the thermal stability of the mutant is slightly higher than wild type, consistent with helix alpha2 forming new interactions with the other subunit. All these results suggest that Cys47 plays a key role in intersubunit cooperativity and that under certain pathological conditions S-nitrosylation of Cys47 by GSNO is a likely physiological scenario.  相似文献   

18.
African trypanosomes contain a cyclic derivative of oxidized glutathione, N1,N8-bis(glutathionyl)spermidine, termed trypanothione. This is the substrate for the parasite enzyme trypanothione reductase, a key enzyme in disulfide/dithiol redox balance and a target enzyme for trypanocidal therapy. Trypanothione reductase from these and related trypanosomatid parasites is structurally homologous to host glutathione reductase but the two enzymes show mutually exclusive substrate specificities. To assess the basis of host vs parasite enzyme recognition for their disulfide substrates, the interaction of bound glutathione with active-site residues in human red cell glutathione reductase as defined by prior X-ray analysis was used as the starting point for mutagenesis of three residues in trypanothione reductase from Trypanosoma congolense, a cattle parasite. Mutation of three residues radically alters enzyme specificity and permits acquisition of glutathione reductase activity at levels 10(4) higher than in wild-type trypanothione reductase.  相似文献   

19.
Lyon RP  Atkins WM 《Biochemistry》2002,41(36):10920-10927
We have prepared human glutathione S-transferase isoform A1-1 (GST A1-1) which has been chemically modified at cysteine 112. These modifications include formation of mixed disulfides with glutathione ("glutathiolation") and cross-linkage of the GST dimer with bis-maleimides reacting with the equivalent Cys 112 residues of the two monomers. This residue (Cys 112) lies adjacent to the hydrophobic substrate binding site, and its side chain thiol projects into the large, solvent-filled cleft which is widely reported in the literature to be the binding site of nonsubstrate ligands. Both types of modification block this intersubunit cleft region and significantly change its chemical environment. Kinetic experiments with these altered enzymes revealed that neither type of modification affects the catalytic activity of GST A1-1 or the binding of nonsubstrate ligands. The lack of an effect on glutathione conjugation activity is somewhat surprising given the proximity of cysteine 112 to the hydrophobic substrate binding site. More surprising, however, is the observation that modification at cysteine 112 has no effect on the binding of nonsubstrate ligands. Furthermore, two of these ligands, lithocholic acid and estradiol disulfate, unexpectedly exhibited competitive inhibition of the unmodified enzyme, suggesting that they bind in the hydrophobic substrate site rather than some accessory ligand binding site. Together, these results strongly argue against the intersubunit cleft as the nonsubstrate ligand binding site and prompt a reassessment of how these ligands interact with GST A1-1.  相似文献   

20.
极端环境微生物嗜酸氧化亚铁硫杆菌的谷胱甘肽还原酶(GR)可能在它的抵抗极端酸性,有毒和氧化性的生物浸出环境中发挥至关重要的作用.通过同源模建技术和分子动力学模拟,它的一个三维结构被构建,优化和检验了.获得的结构被进一步用于搜索绑定位点,跟辅因子黄素腺嘌呤二核苷酸(FAD)和底物谷胱甘肽(GSSG)进行分子柔性对接,并以此识别关健残基.对接结果显示,位于活性残基Cys42和Cys47之间的二硫键夹在FAD的活性位点和底物GSSG的二硫键之间.它们之间的距离非常靠近,这跟底物反应机理的初始步骤的情况十分一致.相互作用能表明8个酶中残基Cys42,Cys47,GIu443B,Glu444B,His438B,Ser14,Thr447B和Lys51是固定或激活GSSG的关键残基,这跟以前的实验事实相吻合.此外,根据相互作用能我们还新发现7个重要残基(Arg449B,Pro439B,Thr440B,Thr310,Va143,Gly46 and Va148).所有这些残基在其它物种中的相应物中也都是保守的.这些结果有助于进一步的实验研究和理解其催化机理,进而揭示这种细菌的抗毒机理,服务于工业应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号