首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Three antisera were used to study the distribution and anatomy of bovine pancreatic polypeptide (BPP)-like/FMRFamide-like immunoreactive neurones within the unfused abdominal ganglia of the migratory locust, Locusta migratoria. All the antisera used stained two or more clusters of perikarya, localized anteriorly and posteriorly near the midline within each unfused abdominal ganglion. Double labelling experiments with intracellular dye injection, or differential backfilling, combined with subsequent immunostaining were carried out to identify these neurones. Two of the antisera (antisera 1 and 2, both raised against FMRFamide) stained three groups of midline neurones, located anterior dorsal, anterior ventral and posterior dorsal within the ganglion. Neurones of the former of these two clusters projected via the anterior median nerve to a neurohaemal organ. The posterior cluster of midline cells comprised immunopositive perikarya all but one of which also projected via the anterior median nerve to innervate the neurohaemal organ. Double labelling with Lucifer yellow and antisera 1 and 2 showed that the remaining neurone was the previously identified doral unpaired median (DUM)heart1 neurone. The third antiserum (AK141), also raised against FMRFamide, stained neurones within an anterior dorsal cluster, and in a posterior cluster. Double labelling with differential Co2+/Ni2+-backfilling and the antiserum 3 (AK141) demonstrated that the large neurones of both clusters belonged to the population of bilaterally projecting neurones (BPNs), including the DUMheart1 neurone. Since the antisera cross-react with BPP and fail to label neurones when preadsorped with BPP or FMRFamide, we conclude that the labelled neurones contain polypeptides of the FMRFamide/BPP-family.  相似文献   

2.
In situ hybridisation studies using a digoxigenin-labelled DNA probe encoding the Leu-callatostatin prohormone of the blowflies Calliphora vomitoria and Lucilia cuprina have revealed a variety of neurones in the brain and thoracico-abdominal ganglion, peripheral neurosecretory neurones, and endocrine cells of the midgut. With two exceptions, the hybridising cells are the same as those previously identified in immunocytochemical studies of sections and whole-mounts using Leu-callatostatin COOH-terminal-specific antisera. Within the brain and suboesophageal ganglion, there is a variety of neurones ranging from a single pair of large cells situated in the dorsal protocerebrum, to the several pairs of neurones in the tritocerebrum, some of which, in immunocytochemical preparations, can be seen to project via axons in the cervical connective to the thoracico-abdominal ganglion. In the medulla of the optic lobes, numerous small interneurones hybridise with the probe, as do clusters of similar-sized neurones close to the roots of the ocellar nerves. These results indicate that the Leu-callatostatin neuropeptides of the brain play a variety of roles in neurotransmission and neuromodulation. There are only three pairs of Leu-callatostatin-immunoreactive neurones in the thoracico-abdominal ganglion, at least two pairs of which project axons along the median abdominal nerve to provide extensive innervation of the hindgut. The Leu-callatostatin peripheral neurosecretory cells are located in close association with both nerve and muscle fibres in the thorax. In addition to neuronal Leu-callatostatin, the presence of the peptide and its mRNA has been demonstrated in endocrine cells in the posterior part of the midgut. These observations provide an example of a named brain/gut peptide in an insect.  相似文献   

3.
Using a well characterized anti-serum, the distribution of octopamine-like immunoreactive neurones is described in the locust seventh abdominal (A7) and terminal ganglia (TG), which are associated with genital organs. Apart from 4 paired ventral somata occasionally observed in the TG, all labelled cells could be identified as efferent dorsal- and ventral unpaired median (DUM/VUM) neurones by virtue of the characteristic large size and position of their somata, projections of their primary neurites in DUM-cell tracts, and bifurcating axons which arise from dorsal T-junctions and enter peripheral nerves. For the examined ganglia our data indicate that the whole population of efferent DUM and VUM-cells, defined here as progeny of the segment specific unpaired median neuroblast with peripheral axons, are octopaminergic, and that equal numbers of these cells occur in both sexes: 8 in A7 and 11 in TG. Sex-specific differences are probably restricted to the axonal projections of 5 octopamine-like immunoreactive DUM-somata in A7, and 5 in TG, which in females project into their segment specific sternal nerves, but in males into the genital nerve of the TG. Numerous intersegmentally projecting octopamine-like immunoreactive fibres traverse both ganglia. The majority probably stem from previously described octopamine-like immunoreactive neurones in the thoracic and suboesophageal ganglia.  相似文献   

4.
The location within the prothoracic ganglion of neurone somata with axons in identified peripheral nerves is examined by the cobalt iontophoresis technique. Axons are filled with cobalt by diffusion through their cut ends and the cobalt is then precipitated as the black sulphide inside the neurone. It is assumed that neurones with axons in peripheral nerves and somata in central ganglia are either motor or neuro-secretory. Fifteen nerves are examined and maps of the location of somata with axons in each nerve are presented. The axon distribution in peripheral nerves of three common inhibitory neurones is described. Dendritic morphology of one common inhibitory neurone and two coxal depressor motoneurones is illustrated. It is proposed that some individual neurones can be reliably identified from their soma dimensions and location within the ganglion. The number of motoneurones with somata in the prothoracic ganglion and their homology with cells in the other thoracic ganglia are discussed.  相似文献   

5.
Summary A monoclonal antibody against substance P was used for immunocytochemical staining of the central ganglia of the snail Helix aspersa and several peripheral tissues including the gut, reproductive system, cardiovascular system, tentacle and other muscles.Within the central ganglia many neurones, and many fibres in the neuropile and the nerves entering the ganglia, were stained for the SP-like material. The largest numbers of reactive cell bodies were in the pleural ganglia and on the dorsal surfaces of the pedal ganglia. A group of cells was also found, surrounding the right pedal-cerebral connective, that did not fluoresce, but were enveloped by reactive processes terminating directly onto the neurone somata.Specific staining was observed in all peripheral tissues examined and always appeared to be concentrated in nerve terminals. Most particularly these occurred in the heart and aorta, the pharyngeal retractor muscle and the tentacle. Although mostly present in muscular tissues, some fluorescence was also observed in the nervous layer surrounding the retina. The tentacular ganglion also contained immunoreactive cell bodies.  相似文献   

6.
Octopamine plays a major role in insect motor control and is released from dorsal unpaired median (DUM) neurones, a group of cells located on the dorsal midline of each ganglion. We were interested whether and how these neurones are activated during walking and chose the semi-intact walking preparation of stick insects that offers to investigate single leg-stepping movements. DUM neurones were characterized in the thoracic nerve cord by backfilling lateral nerves. These backfills revealed a population of 6-8 efferent DUM cells per thoracic segment. Mesothoracic DUM cells were subsequently recorded during middle leg stepping and characterized by intracellular staining. Seven out of eight identified individual different types of DUM neurones were efferent. Seven types except the DUMna nl2 were tonically depolarized during middle leg stepping and additional phasic depolarizations in membrane potential linked to the stance phase of the middle leg were observed. These DUM neurones were all multimodal and received depolarizing synaptic drive when the abdomen, antennae or different parts of the leg were mechanically stimulated. We never observed hyperpolarising synaptic inputs to DUM neurones. Only one type of DUM neurone, DUMna, exhibited spontaneous rhythmic activity and was unaffected by different stimuli or walking movements.  相似文献   

7.
In honeybees (Apis mellifera), the biogenic amine octopamine has been shown to play a role in associative and non-associative learning and in the division of labour in the hive. Immunohistochemical studies indicate that the ventral unpaired median (VUM) neurones in the suboesophageal ganglion (SOG) are putatively octopaminergic and therefore might be involved in the octopaminergic modulation of behaviour. In contrast to our knowledge about the behavioural effects of octopamine, only one neurone (VUMmx1) has been related to a behavioural effect (the reward function during olfactory learning). In this study, we have investigated suboesophageal VUM neurones with fluorescent dye-tracing techniques and intracellular recordings combined with intracellular staining. Ten different VUM neurones have been found including six VUM neurones innervating neuropile regions of the brain and the SOG exclusively (central VUM neurones) and four VUM neurones with axons in peripheral nerves (peripheral VUM neurones). The central VUM neurones innervate the antennal lobes, the protocerebral lobes (including the lateral horn) and the mushroom body calyces. Of these, a novel mandibular VUM neurone, VUMmd1, exhibits the same branching pattern in the brain as VUMmx1 and responds to sucrose and odours in a similar way. The peripheral VUM neurones innervate the antennal and the mandibular nerves. In addition, we describe one labial unpaired median neurone with a dorsal cell body, DUMlb1. The possible homology between the honeybee VUM neurones and the unpaired median neurones in other insects is discussed. This work was supported by the DFG ME 365/24-2.  相似文献   

8.
Summary In the terminal ganglion of the cricket, Acheta domesticus, the somata of certain interneurones and efferent neurones consistently react to 5-HT immunohistochemistry. There are serially homologous pairs of bilateral interneurones seen in the neuromeres of the 7th to the 10th segment and hindgut neurones with their somata located at the posterior median end of the ganglion. In adult crickets, pairs of large efferent neurones with lateral somata supply specific genital muscles in the 8th and the 9th segment of females. In males, only one pair of these efferent neurones supplies genital muscles of the 9th segment only. These identified 5-HT-immunoreactive neurones are not detected in larval crickets before development of the genital apparatus.  相似文献   

9.
Summary Serotonin-immunoreactivity is mapped in wholemounts and slices of the suboesophageal ganglion (SOG) of larval Manduca sexta by means of immunocytochemistry. An extensive meshwork of serotonin-immunoreactive nerve fibres on some peripheral nerves of the SOG has been demonstrated. This meshwork appears to belong to a serotonergic neurohemal system, probably supplied by two pairs of bilateral serotonin-immunoreactive neurons with big cell bodies on the dorsal side near the midline in the mandibular neuromere. Intracellular recording and staining revealed their physiology and morphology. These neurons produce long lasting (50 msec) action potentials, which suggest that they are neurosecretory cells. Two pairs of bilateral serotonin-immunoreactive interneurons similar to those of other insects are stained in the labial and maxillar neuromeres, but not in the mandibular neuromere. Their ventrolaterally located cell bodies project through a ventral commissure into the contralateral hemiganglion and then cross back again through a dorsal commissure. The axons project into the contralateral circumoesophageal connective.  相似文献   

10.
The salivary gland of the locust, Locusta migratoria, is innervated from the suboesophageal ganglion by two neurones, SN1 and SN2 which innervate the gland via the salivary gland nerve (nerve 7B of the suboesophageal ganglion). In addition, like most other peripheral nerves of the head, this nerve carries on its outer surface axons and neurohaemal terminal ramifications of the so called satellite nervous system, established by a group of neurosecretory cells also located in the suboesophageal ganglion. These superficial collaterals ramify over the nerve from its origin in the head to its terminals within the gland in the thoracic segments.Nerve 7B was recorded chronically in freely moving locusts. Both salivary neurones are active during and shortly before feeding, as defined by continuous rhythmic activity of the mandibular closer muscle (M9). The activity of the salivary neurones, particularly that of SN2, thus resembles that of the satellite neurones as described recently. While SN2 ceases firing at the end of a feeding bout, SN1 continues firing for a short period. Also, SN1 fires short bursts of impulses for a few minutes following the end of a feeding bout. Similar bursts also occur at random intervals during the long-lasting phases between feeding events.Abbreviations SN1 salivary neurone 1 - SN2 salivary neurone 2 - M9 mandibular closer muscle - DUM dorsal unpaired median - LMN labral median nerve  相似文献   

11.
Summary Ventral thoracic neurosecretory cells (VTNCs) of the blowflies, Calliphora erythrocephala and C. vomitoria, innervating thoracic neuropil and the dorsal neural sheath of the thoracico-abdominal ganglion have been shown to be immunoreactive to a variety of mammalian peptide antisera. In the neural sheath the VTNC terminals form an extensive neurohaemal network that is especially dense over the abdominal ganglia. The same areas are invaded by separate, ut overlapping serotonin-immunoreactive (5-HT-IR) projections derived from neuronal cell bodies in the suboesophageal ganglion. Immunocytochemical studies with different antisera, applied to adjacent sections at the lightmicroscopic level, combined with extensive cross-absorption tests, suggest that the perikarya of the VTNCs contain co-localized peptides related to gastrin/cholecystokinin (CCK), bovine pancreatic polypeptide (PP), Met- and Leuenkephalin and Met-enk-Arg6-Phe7 (Met-enk-RF). Electron-microscopic immunogold-labeling shows that some of the terminals in the dorsal sheath react with several of the individual peptide antisera, whilst others with similar cytology are non-immunoreactive. In the same region, separate terminals with different cytological characteristics contain 5-HT-IR. Both 5-HT-IR and peptidergic terminals are localized outside the cellular perineurium beneath the acellular permeable sheath adjacent to the haemocoel. Hence, we propose that various bioactive substances may be released from thoracic neurosecretory neurons into the circulating haemolymph to act on peripheral targets. The same neurons may also interact by synaptic or modulatory action in the CNS in different neuropil regions of the thoracic ganglion.  相似文献   

12.
1. The following four giant neurones were identified on the dorsal surface of the left buccal ganglion of an African giant snail (Achatina fulica Ferussac): d-LBAN (dorsal-left buccal anterior neurone), d-LBMN (dorsal-left buccal medial neurone), d-LBCN (dorsal-left buccal central neurone) and d-LBPN (dorsal-left buccal posterior neurone). The axonal pathways of the neurones were studied by the intracellular injection of Lucifer Yellow; their pharmacological characteristics with respect to common putative neurotransmitters were also investigated.2. The axonal pathways of d-LBAN and d-LBCN were simple, innervating some left lateral buccal nerves or the left accessory connective buccal nerve. On the other hand, those of d-LBMN and d-LBPN were much more widespread, projecting not only to the left buccal nerves, but also to the right buccal nerves through the buccal commissure.3. No direct axonal pathway from any of the four buccal neurones tested to the other ganglioncomplexes through the cerebral buccal connectives was demonstrated.4. The pharmacological characteristics of the four neurones tested were not identical. Only 5-hydroxytryptamine excited all of the neurones, whereas dopamine, l-epinephrine and acetylcholine inhibited all of them. However, the other effective substances, such as dl-octopamine, GABA, l-homocysteic acid, erythro-β-hydroxy-l-glutamic acid and histamine, were either excitatory or inhibitory according to the neurone.  相似文献   

13.
Summary An antiserum raised against gamma aminobuyric acid (GABA) was used to stain the thoracic nervous system of the locust. It stained both neuronal somata and processes within the neuropile. Among the stained somata, those of the three pairs of common inhibitory motor neurones could be identified in each of the three thoracic ganglia. In the pro- and mesothoracic ganglia five discrete groups of somata are stained, four ventral and one dorsal. In the metathoracic neuromere, an additional second dorsal group can be identified. In the abdominal neuromeres of the metathoracic ganglion both dorsal and ventral somata are stained but the latter cannot be divided into discrete populations. In each ganglion, dorsal commissures (DC) IV and V are composed of stained neurites, DCVII, the supramedian commissure, the perpendicular tract, and all the longitudinal tracts contain both stained and unstained neurites. DCI, II, III and VI, the T and I tracts are unstained. An abundance of GABA-like immunoreactive processes is found throughout the neuropile except for the anterior ventral association centre where stained processes are sparser. Some of the stained cell groups contain neurones that have been studied physiologically. The function of these neurones is discussed.Beit Memorial Fellow  相似文献   

14.
Summary Crustacean cardioactive peptide-immunoreactive neurons occur in the entire central nervous system of Locusta migratoria. The present paper focuses on mapping studies in the ventral nerve cord and on peripheral projection sites. Two types of contralaterally projecting neurons occur in all neuromers from the subesophageal to the seventh abdominal ganglia. One type forms terminals at the surface of the thoracic nerves 6 and 1, the distal perisympathetic organs, the lateral heart nerves, and on ventral and dorsal diaphragm muscles. Two large neurons in the anterior part and several neurons of a different type in the posterior part of the terminal ganglion project into the last tergal nerves. In the abdominal neuromers 1–7, two types of ipsilaterally projecting neurons occur, one of which gives rise to neurosecretory terminals in the distal perisympathetic organs, in peripheral areas of the transverse, stigmata and lateral heart nerves. Four subesophageal neurons have putative terminals in the neurilemma of the nervus corporis allati II, and in the corpora allata and cardiaca. In addition, several immunoreactive putative interneurons and other neurons were mapped in the ventral nerve cord. A new in situ whole-mount technique was essential for elucidation of the peripheral pathways and targets of the identified neurons, which suggest a role of the peptide in the control of heartbeat, abdominal ventilatory and visceral muscle activity.Abbreviations AG abdominal ganglia - AM alary muscle - AMN alary muscle nerve - CA corpus allatum - CC corpus cardiacum - dPSO distal perisympathetic organ - LHN lateral heart nerve - LT CCAP-immunoreactive lateral tract - NCA nervus corporis allati - NCC nervus corporis cardiaci - NM neuromer - PMN paramedian nerve - PSO perisympathetic organ - SOG subesophageal ganglion - VDM ventral diaphragm muscles - VNC ventral nerve cord  相似文献   

15.
Summary Numerous immunochemical and immunohistochemical studies have shown a wide distribution of several families of neuropeptides in invertebrates as well as vertebrates. There are relatively few data available for Annelida: Polychaeta. Therefore, we undertook an immunohistochemical investigation in the marine worm Nereis.Among the vertebrate type antibodies tested, those against met-enkephalin, LH-RH, vasopressin, oxytocin and ACTH had negative or only very slight effects. Slight to moderate reactions were obtained for VIP, SRIF, CRF, GRF, and leu-enkephalin. Moderate to very strong responses were found with anti-CCK/gastrin, -substance P, and --MSH sera. Immunopositive reactions were usually observed in the entire CNS (except, until now, in neurosecretory cells, type II, in nuclei 20, and in nerve fibres located in the infracerebral neurohemal area). The immunoreactivity was, however, more or less abundant according to different CNS regions. For example, it appeared that the immunostaining for CRF is more important in the VNC while the leu-enkephalin family is more abundant in the brain (particularly in fuchsinophilic neurosecretory cells, type I, in nuclei 20). Moreover, several vertebrate type peptides (such as CRF/GRF and CCK/gastrin) may coexist in a single neurone. Several antisera may elicit a positive reaction in some specific area (for example, substance P in the nuchal organ; SRIF in oocytes; CCK/gastrin in the gastrointestinal tract).Nothing is known about the role of the different substances immunologically detected in Nereis. It is suggested that CCK/gastrin-, -MSHand substance P-like materials transmit external stimuli to neurosecretory centres located in the caudal part of the brain.Principal Abbreviations used ACTH adrenocorticotropic hormone - CCK cholecystokinin - CRF corticotropin-releasing factor - GRF growth hormone-releasing factor - LH-RH luteinizing hormone-releasing factor - MSH melanocyte-stimulating hormone - sP substance P - SRIF somatotropin release-inhibitory factor - VIP vasoactive intestinal peptide - AE anterior eye - AG anterior group - CA corpora allata - CC corpora cardiaca - CNS central nervous system - CP corpora pedunculata - EP epidermis - ICR infracerebral region - MG medial group - n nerve - NO nuchal organ - NP neuropile - OC optic commissure - Oo oocyte - PE posterior eye - PF paraldehyde fuchsin - PF+ fuchsinophilic - PF- not fuchsinophilic - Pn palpal nerve - S septum - VNC ventral nerve cord The roman and arabic numerals respectively refer to different nerves and nuclei  相似文献   

16.
Summary By use of an antiserum raised against the Nterminal sequence pGlu-Leu-Asn-Phe..., common to red pigment-concentrating hormone (RPCH) of Pandalus borealis and three structurally similar insect neuropeptides, putative RPCH-immunopositive structures were revealed in the eyestalks of Carcinus maenas and Orconectes limosus and in the brain and thoracic ganglion (TG) of C. maenas. In the eyestalks, complete neurosecretory pathways were demonstrated, consisting of perikarya, axons and terminals in the neurohemal organ, the sinus gland (SG). In C. maenas approximately 20 small RPCH cells are present as a distinct group adjacent to the medulla terminalis ganglionic X-organ (MTGXO, XO). They are morphologically different from the larger XO perikarya, which contain the crustacean hyperglycemic hormone (CHH). The occurrence of both neuropeptides in distinct neurosecretory pathways was ascertained by immunologic double staining (PAP/gold) or by analysis of consecutive sections. In addition, a group of two to four larger RPCH cells is located in the proximal part of the MT. In O. limosus, RPCH cells are found in the XO. Cells corresponding to the proximal MT cells of C. maenas were not found. In both species, a few more weakly staining immunopositive perikarya were observed in clusters of cell somata of the optic ganglia. It is uncertain whether these are connected to the SG.In the brain of C. maenas, several smaller and three larger perikarya were consistently observed in the dorsal lateral cell somata adjacent to the olfactory lobes. In the optic nerve, two axons that project into the eyestalk were stained. Some axons were also observed in the ventral median neuropil of the brain. In the TG, RPCH cells were found in small numbers in median positions, i.e., in clusters of somata between the ganglia of the appendages.HPLC analysis of the red pigment-concentrating activity from the SG of C. maenas revealed that the retention time of the neuropeptide is similar but not identical to that of Pandalus borealis RPCH.  相似文献   

17.
Summary An antiserum against glutamate decarboxylase (GAD) of the rat brain was used to locate GAD activity in sections of the nervous system of the cockroach, Periplaneta americana. The sixth abdominal ganglion was chosen because electrophysiological evidence suggests the presence of GABAergic inhibitory synapses in the cereal-giant interneuron system. Groups of somata and numerous fibres and tracts were positively labelled by the GAD antiserum. A posterior group of labelled somata could be identified close to the entry of the cereal nerves. A line of somata clusters lay along a ventro-lateral furrow. Another discrete row of GAD-like cells was located dorso-laterally. Some small cells among the dorsal unpaired neurons were labelled. A small central group appeared under these cells. An abundance of GAD-like processes and transversal tracts were found within the neuropile. The different systems of GABAergic inhibitors in the ganglion are discussed; in particular we show that the fibres of cereal nerve X are not labelled. This demonstrates that the latter act on the giant fibres via interneurons. We suggest that the group that sends axons into the overlapping region between the cereal nerve and the giant fibre could be the inhibitory interneurons involved in this system.  相似文献   

18.
Summary By use of antisera raised against synthetic pigment-dispersing hormone (PDH) of Uca pugilator and FMRFamide, the distribution of immunoreactive structures in the central nervous system (CNS) of Carcinus maenas and Orconectes limosus was studied by light microscopy. In both species, a total of 10–12 PDH-positive perikarya occur amongst the anterior medial, dorsal lateral and angular somata of the cerebral ganglion (CG). In C. maenas, one PDH-perikaryon was found in each commissural ganglion (COG) and several more in the thoracic ganglion. In O. limosus, only four immunopositive perikarya could be demonstrated in the ventral nerve cord, i.e., two somata in the anterior and two in the posterior region of the suboesophageal ganglion (SOG). PDH-immunoreactive tracts and fiber plexuses were present in all central ganglia of both species, and individual axons were observed in the connectives. FMRFamide-immunoreactivity was studied in O. limosus only. Neurons of different morphological types were found throughout the entire CNS, including numerous perikarya in the anterior medial, anterior olfactory, dorsal lateral and posterior cell groups of the CG. Four perikarya were found in the COG, six large and numerous smaller ones in the SOG, and up to eight cells in each of the thoracic and abdominal ganglia. In each ganglion, the perikarya form fiber plexuses. Axons from neurons belonging to the CG could be traced into the ventral nerve cord; nerve fibers arising from perikarya in the SOG appeared to project to the posterior ganglia. In none of the structures examined colocalization of PDH- and FMRF-amide-immunoreactivity was observed.Dedicated to Prof. K.-E. Wohlfarth-Bottermann on the occasion of his 65th birthday  相似文献   

19.
The present study employed an in situ hybridisation technique to detect the expression of a number of FMRFamide-like peptide encoding (flp) genes, previously identified from Globodera pallida, in whole-mount preparations of the J(2) stage of this worm. gpflp-1, encoding the FMRFamide-related peptide (FaRP) KSAYMRFamide, was expressed in neurones associated with the circumpharyngeal nerve ring and specifically in a number of cell bodies in the lumbar ganglia of the perianal nerve ring. The lumbar ganglia and pre-anal ganglia along with the BDU neurones and a number of cells in the retrovesicular ganglion were observed to express gpflp-2, encoding KNKFEFIRFamide. gpflp-3 (encoding KHEYLRFamide) expression was localised to the anterior ganglion and a number of paired cells posterior to the circumpharyngeal nerve ring whilst expression of gpflp-4, encoding a number of -P(G/Q)VLRFamides, was localised to the retrovesicular ganglion. No expression of gpflp-5 was observed. Identification of the reactive cells has implicated distinct roles for the FaRPs encoded on these genes in regulation of both dorsal and ventral body wall muscles, the musculature of the vulva and in the function of a number of sensory structures in both the head and tail of G. pallida. Comparison with the expression patterns of analogous genes in Caenorhabditis elegans suggests that, whilst some of the encoded peptides are conserved between nematode species, their functions therein are distinct. Furthermore, the expression of some of these genes in a number of interneurones supports the idea that FaRPs fulfil neuromodulatory as well as neurotransmitter roles.  相似文献   

20.
Summary The presence and distribution of biogenic monoamines in the tube-wormChaetopterus variopedatus were investigated by a radioenzymatic method and HPLC with electrochemical detection, and the cellular localization of serotonin by peroxidase-antiperoxidase (PAP) immunohistochemistry with an antibody against serotonin-formaldehyde-protein conjugate. Dopamine, norepinephrine, epinephrine, serotonin (5-HT) and some of their metabolites were detectable, dopamine and norepinephrine being present in substantially larger amounts than 5-HT and epinephrine. With few exceptions, the largest amounts of amines were localized in the most nerve-rich tissues such as tentacles, and those containing cerebral ganglia and the ventral nerve cord. Serotonin-immunoreactive unipolar neurons were widely distributed in the dorso-lateral cerebral ganglia, the neurosecretory pharyngeal ganglion and the segmental ganglia of the anterior (dorsolateral) and posterior (medioventral) nerve cords. Some nerve-fiber tracts stained in the cerebral ganglia, but the neuropiles of segmental ganglia were the most intensely reactive CNS structures. Numerous reactive fibers were also present in connectives, commissures and segmental nerves. All peripheral sensory structures included serotonin-immunoreactive cells and neurites, especially the parapodial cirri and the bristle receptors of the setae. Trunk and parapodial muscles contained reactive varicose fibers and neuronal somata. These results suggest that monoamines are abundant and widespread in these worms and that 5-HT appears to have a key sensory role.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号