首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
脂筏是质膜双层中富含鞘脂、胆固醇及特殊蛋白质的质膜微区.对其功能的研究,首先要对其进行分离和鉴定.常利用密度梯度超速离心将其分离,然后以脂筏中富含的神经节苷脂GM1作为标志分子,利用荧光或生物素标记的霍乱毒素-B亚基进行亲和标记来鉴定脂筏.但这一鉴定方法操作复杂、费时、易对环境造成污染,所用关键试剂霍乱毒素不易获得,再加上一些组织GM1含量甚微或不含GM1,使其应用受到局限.为建立一个特异性高又对各种组织广泛适应的脂筏鉴定方法.对两种细胞系脂筏的脂类组分进行了分析.结果发现,可用鞘磷脂作为脂筏的特异性标志分子,采用高效薄层层析技术对脂筏进行鉴定.  相似文献   

2.
Few studies of lipid rafts have investigated gangliosides in brain tissue. This study focus on analyses of lipids and the major brain gangliosides (GM1, GD1a, GD1b, GT1b) in human cortex (frontal, temporal) and corresponding detergent resistant membranes (DRMs), i.e. rafts. A high proportion of the gangliosides (18–26%) as well as of cholesterol (21%) and sphingomyelin (38%) was found in rafts, while lower yields was observed for ganglioside GM2 (9%), phospholipids (8%) and in particular proteins (2%). Significant alterations in lipid composition was noticed in rafts from Alzheimer brain tissue. These results show that sphingolipids and cholesterol are major constituents of rafts also in the human brain and that the main brain gangliosides are distributed in rafts to a similar degree. Moreover, lipid rafts might be considered in the pathology of Alzheimer's disease.  相似文献   

3.
Few studies of lipid rafts have investigated gangliosides in brain tissue. This study focus on analyses of lipids and the major brain gangliosides (GM1, GD1a, GD1b, GT1b) in human cortex (frontal, temporal) and corresponding detergent resistant membranes (DRMs), i.e. rafts. A high proportion of the gangliosides (18–26%) as well as of cholesterol (21%) and sphingomyelin (38%) was found in rafts, while lower yields was observed for ganglioside GM2 (9%), phospholipids (8%) and in particular proteins (2%). Significant alterations in lipid composition was noticed in rafts from Alzheimer brain tissue. These results show that sphingolipids and cholesterol are major constituents of rafts also in the human brain and that the main brain gangliosides are distributed in rafts to a similar degree. Moreover, lipid rafts might be considered in the pathology of Alzheimer's disease.  相似文献   

4.
Regulation of neurite outgrowth is an important aspect not only for proper development of the nervous system but also for tissue regeneration after nerve injury and the treatment of neuropathological conditions. Here, we report that neurite outgrowth in cortical neuron and neuro 2A (N2A) cell was dependent on intact lipid rafts, as well as the enhanced localization of c-Src in the lipid rafts. Src inhibition or lipid rafts disruption could specifically block c-Src phosphorylation profile, pY416 Src increase and pY529 Src decrease, they also resulted in pY529 Src and c-terminal Src kinase (Csk) partition out of lipid rafts. Thus, we concluded that c-Src signal cascades within the lipid rafts is crucial for efficient neurite outgrowth.  相似文献   

5.
A technique for the culture of 12- and 13-day rat embryos is presented. The culture method described utilizes the opening of the extraembryonic membranes together with a simple bottle rotator during incubation to facilitate tissue oxygenation. This method was compared with a more elaborate device that enabled constant gassing during incubation. Best results were obtained with 12-day embryos cultured for 24 hr in closed bottles. Thereafter, there was a marked falloff in embryonic development in culture. Optimal medium conditions were 25% rat serum in tissue culture medium with a gas phase of 60% O2, 5% CO2, 35% N2. The culture method described allows for larger numbers of embryos to be cultured more simply than previous methods and should be valuable to workers wishing to study embryos in the more advanced stages of organogenesis.  相似文献   

6.
Signals that promote proliferation and migration of smooth muscle cells (SMC) have been implicated in pathologic growth of hollow organs. Members of the platelet-derived growth factor (PDGF) family, potent mitogens and motility factors for SMC, have been shown to signal through cholesterol-enriched lipid rafts. We recently demonstrated that PDGF-stimulated DNA synthesis in urinary tract SMC was dependent on the integrity of lipid rafts. Despite its known ability to rapidly alter discrete proteins within rafts, the effect of PDGF on overall raft protein composition is unknown. In this study, we employed isotope coded affinity tag (ICAT) analysis to evaluate PDGF-induced protein changes in lipid rafts of primary culture human SMC. Following acute (i.e., 15 min) exposure of SMC to PDGF, 23 proteins increased in rafts >20%. In contrast, raft localization of only three proteins increased after 12 h of PDGF treatment. Among the proteins that increased at 15 min were the glycophosphatidylinositol-anchored proteins Thy-1, 5'-nucleotidase, and CD55, the cytoskeletal proteins actin, actinin, tropomyosin-3 and -4, and the endocytosis-related proteins clathrin and beta-adaptin. In addition, eight Rho family members were localized to rafts by ICAT analysis. Collectively, these observations suggest a role for lipid rafts in regulation of PDGF-stimulated changes in the cytoskeleton.  相似文献   

7.
Moringa is an Old-World dry tropical plant genus with great food, horticultural, industrial, and pharmaceutical potential. Although many of the thirteen known Moringa species are in danger of extinction, one species, M. oleifera Lam., is now widely cultivated. M. oleifera was therefore utilized to develop micropropagation techniques that may be applicable to the more endangered members of this genus. Immature seeds were the most responsive tissue source, and greatest success was achieved using membrane rafts and a liquid growth medium. The success rate was 73%, but the multiplication rate averaged only 4.7 shoots per culture. Most vigorous plantlet development through the transplant stage was achieved using a commercial plant preservative formulation of isothiazolones following shoot proliferation. Although there was no evidence of contamination, treatment with this microbiocide prevented early tissue senescence and it increased culture survivability.  相似文献   

8.
Organ explant culture of adult Syrian golden hamster pancreas   总被引:1,自引:0,他引:1  
Summary An organ explant culture system has been developed for long term maintenance of adult pancreatic tissue from the Syrian golden hamster. Gastric and duodenal lobe explants of up to 0.5 cm2 size were placed in tissue culture dishes (60 mm2) on Gelfoam sponge rafts to which was added 5 ml of CMRL medium 1066 supplemented with heat inactivated newborn bovine serum,l-glutamine hydrocortisone, insulin, and antibiotics. Dishes were placed in a controlled atmosphere chamber, which was gassed with 45% O2 50% N2, and 5% CO2 and incubated at 36.5°C. Viability of the tissues was determined by light and electron microscopy as well as by [3]thymidine incorporation. Explants were viable for up to 70 d. Zymogen granule-containing cells characteristic of acinar cells and mucuscontaining cells characteristic of ductal cells were present throughout this period. However, endocrine cells were only present for the 1st wk in culture. This work was supported in part by National Cancer Institute Grant CA-19197-06 through the National Pancreatic Cancer Project and is UMP contribution No. 950.  相似文献   

9.
Lipopolysaccharide (LPS), a glycolipid component of the outer membrane of Gram-negative bacteria, is a potent initiator of the innate immune response of the macrophage. LPS triggers downstream signaling by selectively recruiting and activating proteins in cholesterol-rich membrane microdomains called lipid rafts. We applied proteomics analysis to macrophage detergent-resistant membranes (DRMs) during an LPS exposure time course in an effort to identify and validate novel events occurring in macrophage rafts. Following metabolic incorporation in cell culture of heavy isotopes of amino acids arginine and lysine ([(13)C(6)]Arg and [(13)C(6)]Lys) or their light counterparts, a SILAC (stable isotope labeling with amino acids in cell culture)-based quantitative, liquid chromatography-tandem mass spectrometry proteomics approach was used to profile LPS-induced changes in the lipid raft proteome of RAW 264.7 macrophages. Unsupervised network analysis of the proteomics data set revealed a marked representation of the ubiquitin-proteasome system as well as changes in proteasome subunit composition following LPS challenge. Functional analysis of DRMs confirmed that LPS causes selective activation of the proteasome in macrophage rafts and proteasome inactivation outside of rafts. Given previous reports of an essential role for proteasomal degradation of IkappaB kinase-phosphorylated p105 in LPS activation of ERK mitogen-activated protein kinase, we tested for a role of rafts in compartmentalization of these events. Immunoblotting of DRMs revealed proteasome-dependent activation of MEK and ERK specifically occurring in lipid rafts as well as proteasomal activity upon raft-localized p105 that was enhanced by LPS. Cholesterol extraction from the intact macrophage with methyl-beta-cyclodextrin was sufficient to activate ERK, recapitulating the LPS-IkappaB kinase-p105-MEK-ERK cascade, whereas both it and the alternate raft-disrupting agent nystatin blocked subsequent LPS activation of the ERK cascade. Taken together, our findings indicate a critical, selective role for raft compartmentalization and regulation of proteasome activity in activation of the MEK-ERK pathway.  相似文献   

10.
Membrane lipid rafts have been implicated in erythrocyte invasion process by Plasmodium falciparum. In this study, we examined the effect of lidocaine, a local anesthetic, which disrupts lipid rafts reversibly without affecting membrane cholesterol content on parasite invasion. In the presence of increasing concentrations of lidocaine in the culture medium, parasite invasion was progressively decreased with complete inhibition at 2 mM. Decreased invasion was also seen in erythrocytes pre-treated with lidocaine and cultured in the absence of lidocaine. This inhibitory effect on parasite invasion was reversed following removal of lidocaine from erythrocyte membranes. Our findings show that disruption of lipid rafts in the context of normal cholesterol content markedly inhibits parasite invasion and confirm an important role for lipid rafts in invasion of erythrocytes by P. falciparum.  相似文献   

11.
Cholesterol-rich lipid rafts act as signaling microdomains and can regulate receptor function. We have shown in HEK293 cells recombinant P2X1-4 receptors (ATP-gated ion channels) are expressed in lipid rafts. Localization to flotillin-rich lipid rafts was reduced by the detergent Triton X-100. This sensitivity to Triton X-100 was concentration- and subunit-dependent, demonstrating differential association of P2X1-4 receptors with lipid rafts. The importance of raft association to ATP-evoked P2X receptor responses was determined in patch clamp studies. The cholesterol-depleting agents methyl-β-cyclodextrin or filipin disrupt lipid rafts and reduced P2X1 receptor currents by >90%. In contrast, ATP-evoked P2X2-4 receptor currents were unaffected by lipid raft disruption. To determine the molecular basis of cholesterol sensitivity, we generated chimeric receptors replacing portions of the cholesterol-sensitive P2X1 receptor with the corresponding region from the insensitive P2X2 receptor. These chimeras identified the importance of the intracellular amino-terminal region between the conserved protein kinase C site and the first transmembrane segment for the sensitivity to cholesterol depletion. Mutation of any of the variant residues between P2X1 and P2X2 receptors in this region in the P2X1 receptor (residues 20–23 and 27–29) to cysteine removed cholesterol sensitivity. Cholesterol depletion did not change the ATP sensitivity or cell surface expression of P2X1 receptors. This suggests that cholesterol is normally needed to facilitate the opening/gating of ATP-bound P2X1 receptor channels, and mutations in the pre-first transmembrane segment region remove this requirement.  相似文献   

12.
Antipsychotics are established drugs in schizophrenia treatment which, however, are not free of side effects. Lipid rafts are critical for normal brain function. Several G protein-coupled receptors, such as somatostatin (SRIF) receptors, have been shown to localize to lipid rafts. The aim of this study was to investigate whether haloperidol treatment affects the composition and functionality of lipid rafts in SH-SY5Y neuroblastoma cells. Haloperidol inhibited cholesterol biosynthesis, leading to a marked reduction in cell cholesterol content and to an accumulation of sterol intermediates, particularly cholesta-8,14-dien-3β-ol. These changes were accompanied by a loss of flotillin-1 and Fyn from the lipid rafts. We next studied the functionality of the SRIF receptor. Treatment with haloperidol reduced the inhibitory effect of SRIF on adenylyl cyclase (AC) activity. On the other side, haloperidol decreased basal AC activity but increased forskolin-stimulated AC activity. Addition of free cholesterol to the culture medium abrogated the effects of haloperidol on lipid raft composition and SRIF signaling whereas the AC response to forskolin remained elevated. The results show that haloperidol, by affecting cholesterol homeostasis, ultimately alters SRIF signaling and AC activity, which might have physiological consequences.  相似文献   

13.
Transcytotic membrane flow delivers degraded bone fragments from the ruffled border to the functional secretory domain, FSD, in bone resorbing osteoclasts. Here we show that there is also a FSD-to-ruffled border trafficking pathway that compensates for the membrane loss during the matrix uptake process and that rafts are essential for this ruffled border-targeted endosomal pathway. Replacing the cytoplasmic tail of the vesicular stomatitis virus G protein with that of CD4 resulted in partial insolubility in Triton X-100 and retargeting from the peripheral non-bone facing plasma membrane to the FSD. Recombinant G proteins were subsequently endosytosed and delivered from the FSD to the peripheral fusion zone of the ruffled border, which were both rich in lipid rafts as suggested by viral protein transport analysis and visualizing the rafts with fluorescent recombinant cholera toxin. Cholesterol depletion by methyl-beta-cyclodextrin impaired the ruffled border-targeted vesicle trafficking pathway and inhibited bone resorption dose-dependently as quantified by measuring the CTX and TRACP 5b secreted to the culture medium and by measuring the resorbed area visualized with a bi-phasic labeling method using sulpho-NHS-biotin and WGA-lectin. Thus, rafts are vital for membrane recycling from the FSD to the late endosomal/lysosomal ruffled border and bone resorption.  相似文献   

14.
Lipid rafts are involved in the life cycle of many viruses. In this study, we showed that lipid rafts also play an important role in the life cycle of severe acute respiratory syndrome (SARS)-coronavirus (CoV). Cholesterol depletion by pretreatment of Vero E6 cells with methyl-beta-cyclodextrin (MbetaCD) inhibited the production of SARS-CoV particles released from the infected cells. This inhibition was prevented by addition of cholesterol to the culture medium, indicating that the reduction of virus particle release was caused by the loss of cholesterol in the cell membrane. In contrast, cholesterol depletion at the post-entry stage (3h post-infection) caused only a limited effect on virus particle release. Northern blot analysis revealed that the levels of viral mRNAs were significantly affected by pretreatment with MbetaCD, but not by treatment at 3h post-infection. Interestingly, no apparent evidence for colocalization of angiotensin converting enzyme 2 with lipid rafts in the membrane of Vero E6 cells was obtained. These results suggest that lipid rafts could contribute to SARS-CoV infection in the early replication process in Vero E6 cells.  相似文献   

15.
Lipid rafts and mitochondria are promising targets in cancer therapy. The synthetic antitumor alkyl-lysophospholipid analog edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) has been reported to target lipid rafts. Here, we have found that edelfosine induced loss of mitochondrial membrane potential and apoptosis in human cervical carcinoma HeLa cells, both responses being abrogated by Bcl-xL overexpression. We synthesized a number of new fluorescent edelfosine analogs, which preserved the proapoptotic activity of the parent drug, and colocalized with mitochondria in HeLa cells. Edelfosine induced swelling in isolated mitochondria, indicating an increase in mitochondrial membrane permeability. This mitochondrial swelling was independent of reactive oxygen species generation. A structurally related inactive analog was unable to promote mitochondrial swelling, highlighting the importance of edelfosine molecular structure in its effect on mitochondria. Raft disruption inhibited mitochondrial localization of the drug in cells and edelfosine-induced swelling in isolated mitochondria. Edelfosine promoted a redistribution of lipid rafts from the plasma membrane to mitochondria, suggesting a raft-mediated link between plasma membrane and mitochondria. Our data suggest that direct interaction of edelfosine with mitochondria eventually leads to mitochondrial dysfunction and apoptosis. These observations unveil a new framework in cancer chemotherapy that involves a link between lipid rafts and mitochondria in the mechanism of action of an antitumor drug, thus opening new avenues for cancer treatment.  相似文献   

16.
Summary We have examined the effect of alteration in cell shape on promoting differentiated morphology and physiology in cultured nonpigmented epithelial cells from the ciliary body. We have grown pure populations of nonpigmented cells on collagen gels released from the culture dish to create collagen rafts. Shortly after the gels were detached, the cells shrank in diameter and increased in height while they contracted the gel. Concurrently, the actin cytoskeleton reorganized to the cell cortex as found in vivo. After this differentiated morphology developed, large changes in intracellular Ca2+ could be elicited by simultaneous activation of acetylcholine and epinephrine or acetylcholine and somatostatin receptors as seen in intact tissue. Explant cultures of isolated nonpigmented cell layers maintained their actin distribution and also showed synergistic Ca2+ increases. Spread cells, grown on rigid substrates, had a disorganized cytoskeleton and rarely showed synergism. These data suggest that the mechanism underlying synergistic Ca2+ responses in the ciliary body is functional in nonpigmented cells grown on collagen rafts. In addition, this pathway appears to be sensitive to the disposition of the cell’s cytoarchitecture.  相似文献   

17.
Previously, we found that exposure to a 50-Hz magnetic field (MF) could induce epidermal growth factor receptor (EGFR) clustering and phosphorylation on cell surface. In order to explore the possible mechanisms, the roles of acid sphingomyelinase (ASMase) and lipid raft in MF-induced EGFR clustering were investigated in the present study. Human amnion epithelial (FL) cells were exposed to a 50-Hz MF at 0.4?mT for different durations. Intracellular ASMase activity was detected using the Amplex® Red Sphingomyelinase Assay Kit. EGFR clustering, ASMase, and lipid rafts on cell membrane were analyzed using confocal microscopy after indirect immunofluorescence staining. Results showed that disturbing lipid rafts with nystatin could inhibit MF-induced EGFR clustering, indicating that it was dependent on intact lipid raft. Exposure of FL cells to MF significantly enhanced ASMase activity and induced ASMase translocation to membrane that co-localized with lipid rafts. Treatment with imipramine, an ASMase inhibitor, inhibited the MF-induced EGFR clustering. This inhibitory effect could be blocked by the addition of C2-ceramide in the culture medium. It suggested that ASMase mediated the 50-Hz MF-induced EGFR clustering via ceramide which was produced from hydrolyzation on lipid rafts.  相似文献   

18.
When compared to agarose solidified media in small petri dishes, membrane rafts used in conjunction with liquid induction media significantly improved anther culture response in the Australian, malting-quality, spring barley cultivar Clipper. In contrast, the German cultivar Gimpel did not show an increased response on rafts.Abbreviations BA 6-benzylaminopurine - IAA indoleacetic acid - DH doubled haploid  相似文献   

19.
Lipid rafts are specialized cholesterol-enriched microdomains in the cell membrane. They have been known as a platform for protein-protein interactions and to take part in multiple biological processes. Nevertheless, how lipid rafts influence protein properties at the proteomic level is still an open question for researchers using traditional biochemical approaches. Here, by annotating the lipid raft localization of proteins in human protein-protein interaction networks, we performed a systematic analysis of the function of proteins related to lipid rafts. Our results demonstrated that lipid raft proteins and their interactions were critical for the structure and stability of the whole network, and that the interactions between them were significantly enriched. Furthermore, for each protein in the network, we calculated its “lipid raft dependency (LRD),” which indicates how close it is topologically associated with lipid rafts, and we then uncovered the connection between LRD and protein functions. Proteins with high LRD tended to be essential for mammalian development, and malfunction of these proteins was inclined to cause human diseases. Coordinated with their neighbors, high-LRD proteins participated in multiple biological processes and targeted many pathways in diseases pathogenesis. High-LRD proteins were also found to have tissue specificity of expression. In summary, our network-based analysis denotes that lipid raft proteins have higher centrality in the network, and that lipid-raft-related proteins have multiple functions and are probably concerned with many biological processes in disease development.  相似文献   

20.
Growth of two Cattleya clones (Sophrolaeliocattleya Jewel Box 'Scheherezade' and Brassolaeliocattleya Rugley's Mill 'Mendenhall') over 6 or 8 months on microporous polypropylene membrane rafts was compared for several inorganic nutrient formulations: Murashige and Skoog at full, half and quarter strength; Hoagland's hydroponic medium; and three media formulated specifically for orchid culture (Knudson, Lindemann, and Vacin and Went). Greatest fresh weight and number of plants per vessel were obtained on Murashige and Skoog medium and dilutions thereof. Shoot growth was greater than root growth only on full strength MS media. Media uptake by tissue and evaporation from the vessels required additional water to maintain contact between membrane and liquid. Most rapid growth occurred in periods following addition of water. In more dilute media formulations, shifting growth from shoots to roots was a possible outcome of low concentrations of ammonium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号