首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tomato bacterial wilt (BW) incited by Ralstonia solanacearum is a constraint on tomato production in tropical, subtropical and humid regions of the world. In this paper, we present the results of a research aimed at the identification of PCR-based markers amplified fragment length polymorphism (AFLP) linked to the genes that confer resistance to tomato BW. To this purpose, bulked segregant analysis was applied to an F2 population segregating for the BW resistant gene and derived from the pair-cross between a BW resistant cultivar T51A and the susceptible cultivar T9230. Genetic analysis indicated that tomato BW was conferred by two incomplete dominant genes. A CTAB method for total DNA extraction, developed by Murray and Thompson with some modifications was used to isolation the infected tomato leaves. Thirteen differential fragments were detected using 256 primer combinations, and two AFLP markers were linked to the BW resistance. Subsequently, the AFLP markers were converted to co-dominant SCAR markers, named TSCARAAT/CGA and TSCARAAG/CAT. Linkage analysis showed that the two markers are on the contralateral side of TRSR-1. Genetic distance between TSCARAAT/CGA and TRS-1 was estimated to 4.6 cM, while 8.4 cM between TSCARAAG/CAT and TRS-1.  相似文献   

2.
Meloidogynejavanica is the most widely spread nematode pest on soybean in SouthAfrica. Only a few registered commercial South African cultivars are poor hostsof this nematode species and there is an urgent need for an efficient breedingprogramme for resistant cultivars of all maturity groups. However, breeding ishampered by laborious screening procedures for selection of poor host cultivarsand/or lines. The objective of this study was to develop an economically viablemolecular marker system for application in selection procedures. BothRestriction Fragment Length Polymorphism (RFLP) and Amplified Fragment LengthPolymorphism (AFLP) screening techniques identified markers linked togall-indexvariation in a segregating population of 60 F2 progeny from a crossbetween a resistant cultivar (Gazelle) and a highly susceptible variety(Prima).A codominant RFLP marker( B212) was linked significantly to M.javanica resistance and explained 62% of the variation ingall-index.Seven AFLP markers were linked significantly to the resistance trait, of whichfour were linked in repulsion phase and three in coupling phase. All seven AFLPmarkers mapped to LG-F (Linkage Group F) on the public soybean molecular map.The major quantitative trait locus (QTL) for resistance mapped between markersE-ACC/M-CTC2(SOJA6) (linked in coupling phase), B212 and E-AAC/M-CAT1(SOJA7)(linked in repulsion phase). These two AFLP markers bracketing the majorresistance QTL were successfully converted to SCARs (Sequence CharacterizedAmplified Regions). Marker E-ACC/M-CTC2 was converted to a codominant SCARmarker SOJA6, which accounted for 41% of variation in gall-index in the mappingpopulation. Marker E-AAC/M-CAT1 was converted to a dominant SCAR marker (SOJA7)and explained 42% of gall-index variation in the mapping population. These twomarkers mapped approximately 3.8 cM and 2.4 cMrespectively from the resistance QTL. This study represents the first report ofthe development of PCR-based sequence specific markers linked to M.javanica resistance in soybean.  相似文献   

3.
Among the 400 soybean (Glycine max) landraces, we selected 3 tolerant (KAS150-9, KAS160-15, and KAS170-9) and 3 susceptible lines (KAS160-14, KAS160-20, and KAS201-6-1) by the survival percentage and injury scores. Susceptible lines showed decrease in chlorophyll content and increase in glucose and malondialdehyde (MDA) contents under waterlogging stress, while tolerant lines did not change significantly. For AFLP analysis, 8 EcoRI (+3) and 8 MseI (+3) primers used in 32 primer combinations generated a total of 2 566 bands with a mean of 80 bands per primer combination, of which 1 117 (43.5 %) were clearly polymorphic between the tolerant and susceptible lines. A genetic similarity coefficient, based on cluster analysis using an unweighted pair grouping method of average (UPGMA), was 0.79 for the tolerant group, while the susceptible landraces were genetically less related, with a genetic similarity coefficient of 0.17. The 10 reproducible polymorphic PCR products present in the 3 tolerant or susceptible lines were sequenced and converted into sequence tagged site (STS) markers. These STS primer sets were designated GmWT01-GmWT06 and GmWS01-GmWS04. Two STS primer sets, GmWT06 and GmWS02, generated a single monomorphic PCR product identical in size to the original AFLP fragments. For the broad application of these STS markers in marker-assisted selection (MAS) for soybean genotypes tolerant to waterlogging stress, two developed STS markers are being evaluated with putative waterlogging tolerant mutant lines induced by γ-radiation in soybean mutation breeding programs.  相似文献   

4.
The recessive mutation of the def gene of pea (Pisum sativum L.) leads to the loss of the hilum, the abscission zone between the seed and the pod. Thereby, it reduces the free dispersal of the seeds through pod shattering. As a prerequisite for a gene isolation via a map-based cloning approach, bulked segregant analysis followed by single plant analyses of over 200 homozygous individuals of a population of 476 F2 plants derived from a cross between 'DGV' (def wild-type) and 'PF' (def mutant), were used to detect markers closely linked to the def locus. The AFLP technique in combination with silver staining was used to maximize numbers of reproducible marker loci. Fifteen AFLP loci showed a genetic distance less than 5 and two of them less than 1 centiMorgans (cM) to the gene of interest. AFLPs were converted into sequence tagged sites (STSs) and into a newly refined AFLP-based single locus marker named the 'sequence specified AFLP' (ssAFLP).  相似文献   

5.
 Seventy eight clones from the cross between SCRI clone 12601ab1 and cv Stirling were used to explore the possibility of genetical linkage analysis in tetraploid potato (Solanum tuberosum subsp. tuberosum). Clone 12601ab1 had quantitative resistance to Globodera pallida Pa2/3 derived from S. tuberosum subsp. andigena. The strategy adopted involved identifying single- (simplex) and double- (duplex) dose AFLP markers in the parents from segregation ratios that could be unambiguously identified in their offspring, detecting linkage between a marker and a putative quantitative trait locus (QTL) for resistance, and placing the QTL on the linkage map of markers. The numbers of scorable segregating markers were 162 simplex ones present only in 12601ab1, 87 present in Stirling, and 32 present in both; and 72 duplex markers present only in 12601ab1 and 45 present in Stirling. The total map length was 990.9 cM in 12601ab1 and 484.6 cM in Stirling. A QTL with a resistance allele present in double dose (QQqq) in 12601ab1 was inferred from the associations between resistance scores (square root of female counts) and two duplex markers linked in coupling, which, in turn, were linked in coupling to four simplex markers also associated with resistance, but to a lesser degree. The largest marker class difference was the one for the duplex marker P61M34=15. It accounted for 27.8% of the phenotypic variance in resistance scores, or approximately 30% of the genotypic variance. Subsequently, this duplex marker was found to be linked in coupling with a duplex SSR allele Stm3016=a, whose locus was shown to be on chromosome IV in a diploid reference mapping population. The other QTLs for resistance segregating in the progeny were not identified for one or more of the following reasons: the markers did not cover the whole of the genome, there were unfavourable repulsion linkages between the QTLs and markers, or the gene effects were not large enough to be detected in an experiment of the size conducted. It is concluded that prospects appear good for detecting QTLs and using marker-assisted selection in a tetraploid potato breeding programme, provided that, in future, the population size is increased to over 250 and more SSR markers are used to complement the AFLPs; the same is likely to be true for other autotetraploid crops. Received: 16 December 1997 / Accepted: 4 March 1998  相似文献   

6.
 RAPD markers were developed for octoploid×Tritordeum (amphiploid Hordeum chilense×Triticum aestivum) and its parents. Addition lines were used to identify specific RAPD markers for the Hordeum chilense chromosomes detectable in a wheat background. Twelve RAPD fragments have been cloned, sequenced and converted into STS markers. Eleven of these STSs have maintained both the chromosome specificity and the possibility of detection in a wheat background. The use of these markers in multiplexed PCRs facilitates both the efficient and reliable screening of new addition lines as well as the monitoring of introgression of H. chilense in bread and durum wheat. Received: 5 June 1998 / Accepted: 17 September 1998  相似文献   

7.
Hydroxysafflor yellow A (HSYA), an important active compound in treating focal cardiac and cerebral ischemia, is uniquely present in flower petals of Carthamus tinctorius. In this study, inheritance and molecular marker analyses for HSYA trait in safflower were carried out. HSYA contents in parents, cross hybridized F1 and F2 individuals were analyzed by high performance liquid chromatography. Results revealed that the presence/absence of HSYA was controlled by one major nuclear gene termed HSya. A total of 48 AFLP primer combinations were screened, and bulked segregant analysis was performed by preparing two pools of 10 present-HSYA and ten absent-HSYA plants selected from the 498 individuals of the F2 segregating population. Four AFLP markers, AFLP-5, AFLP-7, AFLP-15 and AFLP-16, were identified to be closely associated with HSya. Of those, AFLP-16 was the closest to HSya, estimated at about 9.4 cM in genetic distance. The dominant AFLP-16 marker was converted into a simple sequence characterized amplified region marker based on the sequence information of the cloned flanking regions of the AFLP fragment and was designated as SCM16. Our result has direct application for marker-assisted selection of quality breeding in safflower.  相似文献   

8.

Background

Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding.

Results

Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding.

Conclusions

We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1878-5) contains supplementary material, which is available to authorized users.  相似文献   

9.
We have developed a cytoplasmic male sterile (CMS) line of Brassica juncea through somatic hybridization with Moricandia arvensis and introgressed the fertility restorer gene into B. juncea. This fertility restorer locus is unique in that it is capable of restoring male fertility to two other alloplasmic CMS systems of B. juncea. As a first step toward cloning of this restorer gene we attempted molecular tagging of the Rf locus using the amplified fragment length polymorphism (AFLP) technique. A BC1F1 population segregating for male sterility/fertility was used for tagging using the bulk segregant analysis method. Out of 64 primer combinations tested in the bulks, 5 combinations gave polymorphic amplification patterns. Further testing of these primers in individual plants showed four amplicons associated with the male fertility trait. Polymorphic amplicons were cloned and used for designing SCAR primers. One of the SCAR primers generated amplicons mostly in the fertile plants. Linkage analysis using MAPMAKER showed two AFLP and one SCAR markers linked to the male fertility gene with a map distance ranging from 0.6 to 2.9 cM. All the markers are located on one side of the Rf locus.  相似文献   

10.
A Brassica juncea mapping population was generated and scored for seed coat colour. A combination of bulked segregant analysis and AFLP methodology was employed to identify markers linked to seed coat colour in B. juncea. AFLP analysis using 16 primer combinations revealed seven AFLP markers polymorphic between the parents and the bulks. Individual plants from the segregating population were analysed, and three AFLP markers were identified as being tightly linked to the seed coat colour trait and specific for brown-seeded individuals. Since AFLP markers are not adapted for large-scale application in plant breeding, our objective was to develop a fast, cheap and reliable PCR-based assay. Towards this goal, we employed PCR-walking technology to isolate sequences adjacent to the linked AFLP marker. Based on the sequence information of the cloned flanking sequence of marker AFLP8, primers were designed. Amplification using the locus-specific primers generated bands at 0.5 kb and 1.2 kb with the yellow-seeded parent and a 1.1-kb band with the brown-seeded parent. Thus, the dominant AFLP marker (AFLP8) was converted into a simple codominant SCAR (Sequence Characterized Amplified Region) marker and designated as SCM08. Scoring of this marker in a segregating population easily distinguished yellow- and brown-seeded B. juncea and also differentiated between homozygous (BB) and heterozygous (Bb) brown-seeded individuals. Thus, this marker will be useful for the development of yellow seed B. juncea cultivars and facilitate the map-based cloning of genes responsible for seed coat colour trait. Received: 2 October 1999 / Accepted: 11 November 1999  相似文献   

11.
A G McCubbin  X Wang  T H Kao 《Génome》2000,43(4):619-627
Solanaceous type self-incompatibility (SI) is controlled by a single polymorphic locus, termed the S-locus. The only gene at the S-locus that has been characterized thus far is the S-RNase gene, which controls pistil function, but not pollen function, in SI interactions between pistil and pollen. One approach to identifying additional genes (including the pollen S-gene, which controls pollen function in SI) at the S-locus and to study the structural organization of the S-locus is chromosome walking from the S-RNase gene. However, the presence of highly repetitive sequences in its flanking regions has made this approach difficult so far. Here, we used RNA differential display to identify pollen cDNAs of Petunia inflata, a self-incompatible solanaceous species, which exhibited restriction fragment length polymorphism (RFLP) for at least one of the three S-haplotypes (S1, S2, and S3) examined. We found that the genes corresponding to 10 groups of pollen cDNAs are genetically tightly linked to the S-RNase gene. These cDNA markers will expedite the mapping and cloning of the chromosomal region of the Solanaceae S-locus by providing multiple starting points.  相似文献   

12.
Genetic markers can efficiently be obtained by using amplified fragment length polymorphism (AFLP) fingerprinting because no prior information on DNA sequence is required. However, the conversion of AFLP markers from complex fingerprints into simple single locus assays is perceived as problematic because DNA sequence information is required for the design of new locus-specific PCR primers. In addition, single locus polymorphism (SNP) information is required to design an allele-specific assay. This paper describes a new and versatile method for the conversion of AFLP markers into simple assays. The protocol presented in this paper offers solutions for frequently occurring pitfalls and describes a procedure for the identification of the SNP responsible for the AFLP. By following this approach, a high success rate for the conversion of AFLP markers into locus-specific markers was obtained.  相似文献   

13.
STS markers linked to the Rf 1 fertility restorer gene of cotton   总被引:4,自引:0,他引:4  
Marker-assisted selection (MAS) can accelerate the process of plant breeding, and sequence-tagged site (STS) markers are highly specific for regions of DNA being used for MAS. The objective of this research was to develop STS markers tightly linked with Rf1, the fertility restoring gene for cytoplasmic male sterility (CMS) in cotton (Gossypium hirsutum L.). Bulked segregant analysis was employed to screen for Rf1-linked RAPD markers in a backcross population. Four RAPD markers were identified, three of which co-segregated with Rf1 (UBC1471400, UBC607500, and UBC679700). Another fragment, UBC169800, co-segregated with the previously reported UBC169700 in repulsion phase at a distance of 4.5 cM from Rf1. A marker published by others (UBC6591500) mapped to 2.7 cM from Rf1 and 1.8 cM from UBC169800. Four sets of STS primer pairs were designed based on the RAPD fragment sequences. The primer pairs from the UBC1471400 and UBC607500 fragments both amplified a single fragment specific to fertile plants. The UBC679700 and UBC6591500 STS primer pairs each amplified one fragment specific to fertile plants and a monomorphic fragment. These four Rf1-linked STS markers were also present in the Rf1 donor species G. harknessii (D2-2). The three primer pairs that produced co-segregating STS markers also amplified fragments from G. trilobum (D8). However, the D8 fragment amplified by the UBC1471400 STS primers was larger than that from D2-2, and G. trilobum does not restore fertility to CMS-D2-2 lines. These STS markers will be useful in the development of restorer parental lines in cotton CMS breeding efforts.  相似文献   

14.
Tm-2 and Tm-2a are genes conferring resistance to tomato mosaic virus in Lycopersicon esculentum. They are allelic and originated from different lines of L. peruvianum, a wild relative of tomato. In this study, random amplified polymorphic DNA (RAPD) markers linked to these genes were screened in nearly isogenic lines (NILs). To detect RAPDs differentiating NILs, 220 different 10-base oligonucleotide primers were examined by the polymerase chain reaction (PCR), and 43 of them generated 53 consistent polymorphic fragments among the NILs. Out of these 53 fragments, 13 were arbitrarily chosen and examined in respect of whether they were linked to the netted virescent (nv) gene, since nv is tightly linked to the Tm-2 locus and its phenotype is more easily distinguishable. As a result, all 13 markers were shown to be linked to nv, and hence to the Tm-2 locus. Among them, two fragments specific to the NIL carrying Tm-2 three specific to the NIL carrying Tm-2a, and four specific to both of these NILs were closely linked to nv.  相似文献   

15.
We constructed a BAC contig of about 300 kb spanning the Rdr1 locus for black spot resistance in Rosa multiflora hybrids, using a new BIBAC library from DNA of this species. From this contig, we developed broadly applicable simple sequence repeat (SSR) markers tightly linked to Rdr1, which are suitable for genetic analyses and marker-assisted selection in roses. As a source for the high molecular weight DNA, we chose the homozygous resistant R. multiflora hybrid 88/124-46. For the assembly of the BAC contig, we made use of molecular markers derived from a previously established R. rugosa contig. In order to increase the resolution for fine mapping, the size of the population was increased to 974 plants. The genomic region spanning Rdr1 is now genetically restricted to 0.2 cM, corresponding to a physical distance of about 300 kb. One single-stranded conformational polymorphism (SSCP) and one SSR marker cosegregate with the Rdr1-mediated black spot resistance, while one SSR and several cleaved amplified polymorphic sequence or SSCP markers are very tightly linked with one to three recombinants among the 974 plants. The benefits of the molecular markers developed from the R. multiflora contig for the genetic analysis of roses and the integration of rose genetic maps are discussed.  相似文献   

16.
Recessive mlo alleles of the barley Mlo gene confer resistance to almost all known isolates of the powdery mildew fungal pathogen targeting barley (Hordeum vulgare). To characterize haplotypes present in the Mlo chromosomal region of cultivated Mlo and mlo barley genotypes, we conducted a polymorphism search in 3 predicted low-copy sequence regions adjacent to the Mlo gene by examining a sample of 4 Mlo and 3 mlo cultivars. Eight single-nucleotide polymorphisms (SNPs) and 1 insertion-deletion (indel) were detected, and easy to use PCR-based markers were developed for typing the SNPs. The PCR markers were used to characterize a collection of 46 Mlo and 25 mlo barley cultivars, identifying 3 distinct mlo-11 haplotypes, 1 mlo-9 haplotype, and 4 Mlo haplotypes. We summarized the haplotype and marker information obtained here and in a previous study to help breeders identify strategies for mlo marker-assisted selection. The ability of the markers to identify mlo-resistant genotypes in segregating populations was demonstrated using 2 resistance-characterized F2 populations derived by 3-way crosses.  相似文献   

17.
Multilocular plants generally have higher yield than bilocular plants, which is attributable to the difference in the number of seeds per silique. In this study, we investigated a landrace of Brassica juncea in China that has trilocular siliques. We discovered that two independent recessive genes (mc1 and mc2) controlled the trait of trilocular silique. Mc1 was preliminarily mapped using amplified fragment length polymorphism (AFLP) technology in combination with bulked segregant analysis. From a survey of 2,048 AFLP primer combinations, we obtained 24 AFLP markers linked to the target gene, of which five were successfully converted into sequence-characterized amplified region markers. Two of these five AFLP markers and two other AFLP markers shared high sequence homology with A07 in the Brassica rapa genome. We developed seven simple sequence repeat primer pairs based on their sequence homology with A07. Our result also demonstrated that EC14MC14 and SC20 are the closest markers flanking the Mc1 gene, at distances of 1.1 and 1.6 cM, respectively. These molecular markers will facilitate the fine mapping and cloning of the mc1 gene and accelerate the selection process for multilocular rapeseed through marker-assisted selection.  相似文献   

18.
The pod shattering or dehiscence is essential for the propagation of pod-bearing plant species in the wild, but it causes significant yield losses during harvest of domesticated crop plants. Identifying novel molecular makers, which are linked to seed-shattering genes, is needed to employ the molecular marker-assisted selection for efficiently developing shattering-resistant soybean varieties. In this study, a genetic linkage map was constructed using 115 recombinant inbred lines (RILs) developed from crosses between the pod shattering susceptible variety, Keunol, and resistant variety, Sinpaldal. A 180 K Axiom® SoyaSNPs data and pod shattering data from two environments in 2001 and 2015 were used to identify quantitative trait loci (QTL) for pod shattering. A major QTL was identified between two flanking single nucleotide polymorphism (SNP) markers, AX-90320801 and AX-90306327 on chromosome 16 with 1.3 cM interval, 857 kb of physical range. In sequence, genotype distribution analysis was conducted using extreme phenotype RILs. This could narrow down the QTL down to 153 kb on the physical map and was designated as qPDH1-KS with 6 annotated gene models. All exons within qPDH1-KS were sequenced and the 6 polymorphic SNPs affecting the amino acid sequence were identified. To develop universally available molecular markers, 38 Korean soybean cultivars were investigated by the association study using the 6 identified SNPs. Only two SNPs were strongly associated with the pod shattering. These two identified SNPs will help to identify the pod shattering responsible gene and to develop pod shattering-resistant soybean plants using marker-assisted selection.  相似文献   

19.
Using the technique of amplified restriction fragment polymorphism (AFLP) analysis, and bulked segregant pools from F2 progeny of the cross Lycopersicon esculentum (Cf9)× L. pennellii , approximately 42 000 AFLP loci for tight linkage to the tomato Cf-9 gene for resistance to Cladosporium fulvum have been screened. Analysis of F2 recombinants identified three markers which co-segregated with Cf-9 . The Cf-9 gene has recently been isolated by transposon tagging using the maize transposon Dissociation ( Ds ). Analysis of plasmid clones containing Cf-9 shows that two of these markers are located on opposite sides of the gene separated by 15.5 kbp of intervening DNA. AFLP analysis provides a rapid and efficient technique for detecting large numbers of DNA markers and should expedite plant gene isolation by positional cloning and the construction of high-density molecular linkage maps of plant genomes.  相似文献   

20.
Cha YS  Ji H  Yun DW  Ahn BO  Lee MC  Suh SC  Lee CS  Ahn EK  Jeon YH  Jin ID  Sohn JK  Koh HJ  Eun MY 《Molecules and cells》2008,26(2):146-151
The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号