首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of the cyclic AMP-dependent protein kinase in intact lymphosarcoma cells can be promoted by epinephrine. The lymphosarcoma protein kinase is approximately 90% Isozyme I. Using the synthetic peptide PK-1 (LeuArgArgAlaSerLeuGly) as substrate for the kinase, the cyclic AMP-dependent protein kinase activity was 95% of the total protein phosphotransferase activity in the cell extract. In control cells the optimum extraction buffer for preventing enzyme subunit dissociation or reassociation contained buffer (2(N-morpholino)ethanesulfonic acid), EDTA, 2-mercaptoethanol, and charcoal. The absence of charcoal or the presence of 0.14 m KCl in the buffer promoted enzyme dissociation in the extract. The phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine had no effect. In extracts from epinephrine-treated cells or extracts to which purified catalytic subunit of the cyclic AMP-dependent protein kinase was added, recovery of the total protein kinase activity was 25% of that predicted in experiments with control cells. Recovery of enzyme activity increased to 80–95% of the predicted value when 0.14 m KCl was included in the extraction buffer. Methods involving a two-buffer extraction procedure are presented as the optimum protocol for determining in vivo activation of the cyclic AMP-dependent protein kinase, Isozyme I. Using these methods, epinephrine (1 μm) dissociated the cyclic AMP-dependent protein kinase essentially 100% in intact lymphosarcoma cells. The dissociation was apparently maintained for up to 60 min. Approximately 10–15% of the dissociated enzyme may be specifically associated with particulate cell fractions. Collectively the data emphasize the experimental difficulty inherent in determination of the extent of in vivo dissociation of the cyclic AMP-dependent protein kinase.  相似文献   

2.
The cloning of a T4 transfer RNA gene cluster   总被引:6,自引:0,他引:6  
  相似文献   

3.
4.
The pressure dependence (10–4000 bar) of the kinetics of the ammoniation of[Co(NH3)5X](ClO4)2 (X = N3, Cl) and the isomerization of [Co(NH3)5(ONO)](ClO4)2 in liquid ammonia is reported. The conjugate-base mechanism is operative for these complexes over the entire pressure range used. Activation and thermodynamic parameters were obtained for each of the two steps of the mechanism for [Co(NH3)5(N3)](ClO4)2 at 20 bar. Values for the overall activation volume extrapolated to zero pressure are ΔV3(0) = ?12 (11.35 °C, ONO); ?20 (24.45 °C, N3) and ?30 (0.50 °C, Cl) cm3 mol?1. Application of El'yanov and Hamann's empirical relation for the pressure dependence of the ionization of weak acids separates the contributions of the pre-equilibrium (ΔVCB0) and the elimination or isomerization reaction (ΔV23) (at zero pressure). The values obtained for [Co(NH3)5X](ClO4)2 are (givens as X; ΔVCB0 and ΔV23 in cm3 mol?1; T in °C): (ONO; ?16 and ?15; 11.35), (N3; ?22 and 1;24.45), (Cl; ?22 and 3;0.50). These values fit in the accepted picture of volume effects in cobalt(III) ammine kinetics.  相似文献   

5.
Analysis of the effects on membrane function and protein composition of altering phospholipid synthesis in Caulobacter crescentus showed that, like other bacteria, C. crescentus continues to induce a lactose transport system and to synthesize most membrane proteins. However, we show that the incorporation of a set of outer membrane proteins primarily synthesized in stalked cells is dependent on DNA replication which, in turn, is dependent on membrane phospholipid synthesis. Furthermore, the incorporation of another set of membrane proteins, two of which are synthesized primarily in the swarmer cell, appears to be independent of the replication of the chromosome but to be directly dependent on phospholipid synthesis. We have also found that when phospholipid synthesis is blocked, the synthesis of the flagellar proteins is inhibited and that this effect may be mediated by the primary inhibition of DNA replication. Newton has presented evidence that the synthesis of flagellar proteins is dependent on specific execution points in DNA replication and that this connection serves as a temporal regulator of differential protein synthesis (Osley et al., 1977; Sheffery & Newton, 1981). We suggest here that a direct link between the replicating chromosome and the growing membrane might serve, in turn, to dictate the site of membrane assembly of newly synthesized gene products.  相似文献   

6.
7.
Tyrosinase from normal human skin was purified to high specific activity; 228 nmol of dopa formed/min/mg protein. The properties of the purified enzyme differ from those of the same enzyme in crude homogenates. The activity of the purified enzyme is not affected by dopa. It is not inhibited by excess tyrosine and exhibits no lag in its rate at 4 mm concentration of ascorbic acid. This preparation is free of peroxidase and yet will catalyze both hydroxylation of tyrosine to dopa and its further oxidation to dopa quinone with fourfold more activity with dopa as substrate suggesting that mammalian tyrosinase catalyzes both reactions rather than dopa oxidation alone as suggested by M. Okun, L. Edelstein, R. Patel, and B. Donnellan (1973, Yale J. Biol. Med.46, 535–540). A protein present in the cytosol and melanosomes that constitutes 30% of soluble epidermal proteins was purified and found to inhibit tyrosinase competitively with tyrosine. Its molecular weight was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 66,000.  相似文献   

8.
A recombinant DNA plasmid, pMHC8, that contains gene sequences for embryonic chick cardiac myosin heavy chain was constructed, identified and characterized. The identity of the clone was established by hybridization with labeled probes that afford screening of MHC22 with high specificity, by inhibition of MHC synthesis in the in vitro hybrid-arrested translation assay, and by tissue-specific hybridization of labeled pMHC8 DNA to MHC messenger RNA.The pMHC8 DNA probe is highly specific for chick heart muscle tissue, since it hybridized poorly to chick skeletal muscle RNA and did not detectably hybridize to adult rat heart RNA. Upon screening the embryonic chick heart cells in culture, no detectable level of MHC mRNA was observed in dividing myoblasts, but the mRNA appeared in differentiated cardiac myocytes paralleling morphogenetic changes in the embryonic cells.  相似文献   

9.
We have determined the nucleotide sequence of a secondary λ attachment site in proAB, a site that accounts for 3% of lysogens isolated from Escherichia coli strains deleted for the primary site. Direct sequence analysis of the transducing bacteriophages carrying the left and right att junctions, as well as the recombinant pro+ phage reveals that the proAB site shares an 11-nucleotide interrupted homology with the core sequence of the primary site. We have compared the proABatt site with other secondary attachment sites to gain insights into the structural features important for λ integration.  相似文献   

10.
Kinetics and mechanism in the reaction of gene regulatory proteins with DNA   总被引:28,自引:0,他引:28  
We have measured the kinetic properties of the Escherichia coli cAMP receptor protein (CAP) and lac repressor interacting with lac promoter restriction fragments. Under our reaction conditions (10 mM-Tris X HCl (pH 8.0 at 21 degrees C), 1 mM-EDTA, 10 microM-cAMP, 50 micrograms bovine serum albumin/ml, 5% glycerol), the association of CAP is at least a two-step process, with an initial, unstable complex formed with rate constant kappa a = 5(+/- 2.5) X 10(7) M-1 s-1. Subsequent formation of a stable complex occurs with an apparent bimolecular rate constant kappa a = 6.7 X 10(6) M-1 s-1. At low total DNA concentration, the dissociation rate constant for the specific CAP-DNA complex is 1.2 X 10(-4) s-1. The ratio of formation and dissociation rate constants yields an estimate of the equilibrium constant, Keq = 5 X 10(10) M-1, in good agreement with static results. We observed that the dissociation rate constant of both CAP-DNA and repressor-DNA complexes is increased by adding non-specific "catalytic" DNA to the reaction mixture. CAP dissociation by the concentration-dependent pathway is second-order in added non-specific DNA, consistent with either the simultaneous or the sequential participation of two DNA molecules in the reaction mechanism. The results imply a role for distal DNA in assembly-disassembly of specific CAP-DNA complexes, and are consistent with a model in which the subunits in the CAP dimer separate in the assembly-disassembly process. The dissociation of lac repressor-operator complexes was found to be DNA concentration-dependent as well, although in contrast to CAP, the reaction is first-order in catalytic DNA. Added excess operator-rich DNA gave more rapid dissociation than equivalent concentrations of non-specific DNA, indicating that the sequence content of the competing DNA influences the rate of repressor dissociation. The simplest interpretation of these observations is that lac repressor can be transferred directly from one DNA molecule to another. A comparison of the translocation rates calculated for direct transfer with those predicted by the one-dimensional sliding model indicates that direct transfer may play a role in the binding site search of lac repressor.  相似文献   

11.
The steady-state kinetic behaviors of the five rabbit adrenal norepinephrine N-methyl transferase isozymes have been compared with particular reference to substrate inhibition patterns. Four distinct substrate inhibition patterns were observed. The E-1 isozyme was not subject to inhibition by either substrate, while the E-2 isozyme was inhibited by both substrates. The E-3 and E-4 isozymes were inhibited by norepinephrine only, while E-5 is inhibited only by S-adenosylmethionine. The substrate inhibition constants were sufficiently small in relation to the Michaelis constants to make substrate inhibition an important factor in regulation of activities of the isozymes.  相似文献   

12.
13.
The body of adenovirus fiber messenger RNA is specified by viral r-strand co-ordinates 86.2 to 91.2. Since this mRNA is transcribed from the major late promoter at map position 16, nuclear precursors to the mRNA could be as large as 84% of the length of the 35,000 nucleotide genome. This study identified and characterized polyadenylated nuclear RNAs that contain fiber sequences and therefore are possible processing intermediates. These nuclear RNAs were characterized by hybridization of [3H]RNA preparations and by electron microscopy of RNA-DNA hybrids. Three size classes of RNAs containing fiber sequences were identified: (1) a 22 S species maps from 86.2 to 90.3. This RNA has essentially the same co-ordinates as fiber mRNA. (2) Two 28 S species have co-ordinates of 80.1 to 90.4 and 85.9 to 96.9, respectively. Thus one species has a 5′ terminus coincident with that of the mRNA body, and one has a 3′ terminus coincident with that of the 3′ end of the mRNA body. The polyadenylated terminus at 96.9 does not coincide with the 3′ end of any known mRNA. (3) There are at least two 35 S species. The 3′ end of one species is coincident with that of fiber mRNA. The 3′ terminus of the second RNA is at approximately 96.9.The labeling kinetics of each of these polyadenylated nuclear RNAs were investigated. In continuous label experiments, the two 35 S RNAs and the 85.9 to 96.9 28 S RNA became uniformly labeled in approximately 60 minutes. The 22 S RNA and the 80.1 to 90.4 28 S species continued to accumulate for at least several hours. These results are consistent with a precursor function for the 35 S RNAs and the 85.9 to 96.9 28 S species. The structures of the putative precursors imply that processing of the 3′ end is not a prerequisite for 5′ cleavage.  相似文献   

14.
A quantitative model has been developed for processes in the bacteriophage lambda that control the switchover from lysogenic to lytic modes of growth. These processes include the interactions of cI repressor and cro proteins at the three DNA sites of the right operator, OR, the binding of RNA polymerase at promoters PR and PRM, the synthesis of cI repressor and cro proteins, and the degradative action of recA during induction of lysis. The model is comprised of two major physical-chemical components: a statistical thermodynamic theory for relative probabilities of the various molecular configurations of the control system; and a kinetic model for the coupling of these probabilities to functional events, including synthesis of regulatory proteins cI and cro. Using independently evaluated interaction constants and rate parameters, the model was found capable of predicting essential physiological characteristics of the system over an extended time. Sufficiency of the model to predict known physiological properties lends credence to the physical-chemical assumptions used in its construction. Several major physiological characteristics were found to arise as "system properties" through the non-linear, time-dependent, feedback-modulated combinations of molecular interactions prescribed by the model. These include: maintenance of the lysogenic state in the absence of recA-mediated cI repressor degradation; induction of lysis and the phenomenon of subinduction; and autogenous negative control of cro. We have used the model to determine the roles, within the composite system, of several key molecular processes previously characterized by studies in vitro. These include: co-operativity in cI repressor binding to DNA; interactions between repressors and RNA polymerase (positive control); and the monomer-dimer association of cI repressor molecules. A major role of cI repressor co-operativity is found to be that of guaranteeing stability of the lysogenic state against minor changes in cI repressor levels within the cell. The role of positive control seems to be that of providing for a peaked, rather than monotonic, dependence of PRM activity on cI repressor level, while permitting PR activity to be a step function. The model correlates an immense body of studies in vivo and in vitro, and it makes testable predictions about molecular phenomena as well as physiological characteristics of bacteriophage lambda. The approach developed in this study can be extended to include more features of the lambda system and to treat other systems of gene regulation.  相似文献   

15.
L-929 cell surface membranes were incubated with S-adenosyl-l-[methyl-3H]-methionine and found to contain phosphatidylethanolamine: S-adenosylmethionine N-methyltransferase (phosphatidylethanolamine N-methyltransferase) activity. The enzyme or combination of enzymes responsible for this activity methylated endogenous phosphatidylethanolamine and its methylated derivatives to yield phosphatidyl-N-monomethylethanolamine, phosphatidyl-N,N-dimethylethanolamine, and phosphatidylcholine. Maximum enzyme activity was expressed at pH 6.9, the reaction was not dependent on the presence of divalent cations, and exogenously added phospholipids did not stimulate the rate of reaction. Phospholipid methylation was inhibited by S-adenosyl-l-homocysteine and by local anaesthetic drugs such as chlorpromazine and tetracaine which partition into the lipid bilayer. Control experiments demonstrated that the surface membrane-associated methyltransferase activity was not due to contamination of surface membrane preparations with intracellular membranes. Surface membranes were found to have higher specific methyltransferase activities than whole L-cell homogenates or endoplasmic reticulum-enriched microsomes. The low rate of methyltransferase function expressed in vitro (approximately 1 pmol/min · mg protein) suggests that phospholipid methylation is not a major metabolic source of surface membrane phosphatidylcholine.  相似文献   

16.
Hepatic ATP-citrate lyase prepared with a fluoride-free step to allow endogenous phosphatases to dephosphorylate the enzyme was phosphorylated in vitro by the catalytic subunit of cyclic AMP-dependent protein kinase and [γ-32P]ATP. After electrophoresis the radioactive phosphate was located predominantly in the gel slice containing the Coomassie blue stained protein corresponding to ATP-citrate lyase. The Stoichiometry of phosphorylation of hepatic ATP-citrate lyase in vitro by the catalytic subunit was such that 0.53 ± 0.02 molecules of phosphate were incorporated per subunit. The degree of phosphorylation was independent of the amount of ATP-citrate lyase present as substrate in the concentration range 1.2–6.4 μm. In the absence of catalytic subunit there was very little labeled phosphate incorporated into ATP-citrate lyase. Phosphorylation of ATP-citrate lyase by catalytic subunit was abolished by the specific protein inhibitor of cyclic AMP-dependent protein kinase. When ATP-citrate lyase was subjected to electrophoresis under nondenaturing conditions, lyase activity was recovered from the gel slice corresponding to the Coomassie blue staining phosphoprotein of a stained gel run in parallel.  相似文献   

17.
In view of the importance of Pi in the control of cell metabolism, it was of interest to study the mechanism and regulation of Pi uptake by Acer pseudoplatanus cells grown as cell suspensions. At low external Pi concentrations up to 10 mm, sycamore cells incorporate phosphate against a concentration gradient, by a process which is energy dependent. Under these conditions the intracellular Pi concentration is maintained constant (2–3 mm). On the contrary at high external Pi concentrations, higher than that which counterpoises the cytoplasmic Pi concentration (approximately 10 mm), Pi enters the cell by slow diffusion and the intracellular Pi concentration increases continuously as the extracellular Pi concentration increases from 15 to 50 mm. When sycamore cells are transferred to a phosphate-deficient medium, growth slows down considerably and ceases after 4–5 days. During this time, intracellular Pi concentration falls from 3 to 0.1 mm and phosphate esters from 8 to 2 mm. Phosphate starvation stimulates the uptake indicating that phosphate uptake depends on the intracellular phosphate and/or cytoplasmic ester-P pool. Pi uptake by Pi-starved cells is strongly dependent on the pH of the medium.  相似文献   

18.
The application of 1H-nuclear Overhauser enhancement, 1H-spin-lattice-relaxation-time and 1H-chemical shift measurements for the assessment of the conformational preferences of oligosaccharides are briefly reviewed. It is demonstrated that additivity rules, for the correlation of the chemical shifts of similar hydrogen atoms in different oligosaccharides, can be useful in the conformational analysis of oligosaccharides when the differential chemical shifts are greater than 0.1 ppm. These often can be attributed to specific interunit deshielding of a hydrogen atom by an oxygen atom with which it is in strong nonbonded interaction. HSEA calculations are used to demonstrate that differential chemical shifts of less than 0.1 ppm can have origins that are not significant to the overall conformational preferences of the oligosaccharides which are being compared. Both shielding and deshielding effects can arise from a change in the orientation of a substituent group as the result of the introduction of a sugar on a neighboring unit. It is demonstrated that substituent groups, such as hydroxymethyl and acetamido groups, on occasions, should be treated in HSEA calculations as freely rotating about their linkage to a pyranose ring.  相似文献   

19.
A steady-state kinetic analysis of the activation of bovine Factor X, by bovine Factor Xa, was undertaken. The activation was found to be dependent on the presence of divalent cations; Ca2+ showing the greatest stimulatory effect and Mn2+ exhibiting a lower degree of activity for this reaction. Although Sr2+ and Mg2+ were ineffective when present alone, each contributed synergistically to the activation rate at suboptimal levels of Ca2+. The effect of phospholipid (phosphatidylcholine:phosphatidylserine, 4:1, w:w) on the rate of activation and on the activation pathway was investigated. Phospholipid (PL) concentrations of up to 40 μm had no effect on the activation rate; whereas, concentrations of 40–180 μm were slightly inhibitory. In the absence of PL, the major product of the activation was Factor α-Xa, while in the presence of PL, lower-molecular-weight forms of Factor X (Factor β-X) and Factor Xa (Factor β-Xa were produced. At saturating levels of Ca2+, the Km app for the activation, at pH 7.4 and 37 °C, in the absence of PL, was found to be 0.6 ± 0.1 μm and the V was 1.7 ± 0.3 mol Factor X cleaved min?1 mol?1 Factor Xa. The corresponding values, in the presence of 90 μm PL, were 1.4 ± 0.2 μm and 2.2 ± 0.2 mol Factor X cleaved min?1 mol?1 Factor Xa.  相似文献   

20.
Previous studies with soluble enzyme preparations from sage (Salvia officinalis) demonstrated that the monoterpene ketone (+)-camphor was synthesized by the cyclization of neryl pyrophosphate to (+)-bornyl pyrophosphate followed by hydrolysis of this unusual intermediate to (+)-borneol and then oxidation of the alcohol to camphor (R. Croteau, and F. Karp, 1977, Arch. Biochem. Biophys.184, 77–86). Preliminary investigation of the (+)-bornyl pyrophosphate synthetase in crude preparations indicated that both neryl pyrophosphate and geranyl pyrophosphate could be cyclized to (+)-bornyl pyrophosphate, but the presence of high levels of phosphatases in the extract prevented an accurate assessment of substrate specificity. The competing phosphatases were removed by combination of gel filtration on Sephadex G-150, chromatography on hydroxylapatite, and chromatography on O-(diethylaminoethyl)-cellulose. In these fractionation steps, activities for the cyclization of neryl pyrophosphate and geranyl pyrophosphate to bornyl pyrophosphate were coincident, and on the removal of competing phosphatases, the synthetase was shown to prefer geranyl pyrophosphate as substrate (VKm for geranyl pyrophosphate was 20-fold that of neryl pyrophosphate). No interconversion of geranyl and neryl pyrophosphates was detected. The partially purified bornyl pyrophosphate synthetase had an apparent molecular weight of 95,000, and required Mg2+ for catalytic activity (Km for Mg2+ ~ 3.5 mm). Mn2+ and other divalent cations were ineffective in promoting the formation of bornyl pyrophosphate. The enzyme exhibited a pH optimum at 6.2 and was strongly inhibited by both p-hydroxymercuribenzoate and diisopropylfluorophosphate. Bornyl pyrophosphate synthetase is the first monoterpene synthetase to be isolated free from competing phosphatases, and the first to show a strong preference for geranyl pyrophosphate as substrate. A mechanism for the cyclization of geranyl pyrophosphate to bornyl pyrophosphate is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号