首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
8,5'-Cyclopurine 2'-deoxynucleosides are among the major lesions in DNA that are formed by attack of hydroxyl radical. These compounds represent a concomitant damage to both sugar and base moieties of the same nucleoside and thus can be considered tandem lesions. Because of the presence of a covalent bond between the sugar and purine moieties, these tandem lesions are not repaired by base excision repair but by nucleotide excision repair. Thus, they may play a role in diseases with defective nucleotide excision repair. We recently reported the identification and quantification of 8,5'-cyclo-2'-deoxyadenosine (8,5'-cdAdo) in DNA by liquid chromatography/mass spectrometry with the isotope dilution technique (LC/IDMS) [Dizdaroglu, M., Jaruga, P., and Rodriguez, H. (2001) Free Radical Biol. Med. 30, 774-784]. In the present work, we investigated the measurement of 8,5'-cyclo-2'-deoxyguanosine (8,5'-cdGuo) in DNA by LC/IDMS. A methodology was developed for the separation of both (5'R)- and (5'S)-diastereomers of this compound in enzymic hydrolysates of DNA. The mass spectra were recorded using an atmospheric pressure ionization-electrospray process in the positive ionization mode. For quantification, stable isotope-labeled analogues of (5'R)-8,5'-cdGuo and (5'S)-8,5'-cdGuo were prepared and isolated by semipreparative LC to be used as internal standards. The sensitivity level of LC/MS in the selected ion monitoring mode (LC/MS-SIM) was determined to be approximately 15 fmol of these compounds on the LC column. The yield of 8,5'-cdGuo was measured in DNA exposed in aqueous solution to ionizing radiation at doses from 2.5 to 40 Gy. For comparison, gas chromatography/mass spectrometry with the isotope dilution technique (GC/IDMS) was also employed to measure both (5'R)-8,5'-cdGuo and (5'S)-8,5'-cdGuo in DNA. Both techniques yielded nearly identical results. The radiation chemical yield of 8,5'-cdGuo was similar to those of other major purine-derived lesions in DNA. The sensitivity level of GC/MS-SIM was determined to be significantly greater than that of LC/MS-SIM (1 vs 15 fmol). The background levels of (5'R)-8,5'-cdGuo and (5'S)-8,5'-cdGuo were measured in calf thymus DNA and in DNA samples isolated from three different types of cultured human cells. The levels of (5'R)-8,5'-cdGuo and (5'S)-8,5'-cdGuo were approximately 2 lesions/10(6) DNA nucleosides and 10 lesions/10(6) DNA nucleosides, respectively. No significant differences between tissues were observed in terms of these background levels. The results showed that both LC/IDMS and GC/IDMS are well suited for the sensitive detection and precise quantification of both (5'R)-8,5'-cdGuo and (5'S)-8,5'-cdGuo in DNA.  相似文献   

3.
Bulky endogenous oxidative lesions (type II I-compounds) reflect DNA damage associated with oxidative stress. As shown by 32P-postlabeling, their levels are enhanced by pro-oxidant genotoxins and also shortly after normal birth in several rat tissues as a function of time and the maternal diet. In order to elucidate which dietary components contribute to postnatal DNA damage, we have focused, herein, on the possible role of transition metals (iron, copper, and nickel). Pregnant Fischer 344 (F344) rats were fed AIN-93G purified diet containing different amounts of iron, copper, and nickel, or Purina-5001 natural-ingredient diet (which contains relatively high concentrations of these metals). Type II I-compounds were estimated by nuclease P1-enhanced 32P-postlabeling in liver and lung DNA of fetuses and at 24h and day 9 post-partum. Increased postnatal oxidative damage was detected in liver but not lung DNA of neonates exposed to higher amounts of dietary transition metals. There were significant positive linear correlations between maternal transition metal intake and neonatal, but not fetal and maternal type II I-compound levels. The results show that transition metals in the maternal diet affect perinatal oxidative DNA damage, presumably via a Fenton-type reaction. They also provide evidence for optimal levels in the maternal diet of transition metals, which on one hand, are essential for life, but on the other, can cause potentially deleterious DNA alterations in the offspring.  相似文献   

4.
I-compounds are bulky covalent DNA modifications which increase with age in tissues of unexposed laboratory animals and are derived from endogenous DNA-reactive intermediates of nutrient and oxygen metabolism. They have been classified into 2 major groups, i.e., type I and type II. Profiles and levels of type I I-compounds show considerable variation depending on species, strain, tissue, and gender, but are also affected by diet and chemical and hormonal exposures, indicating their formation to be determined by genetic and environmental factors. For example, sex hormones, dietary oat lipids, and isoprenoids affect their profiles and/or levels in tissue DNA. A gradual depletion of many type I I-compounds occurs during carcinogenesis, as many carcinogens/tumor promoters significantly reduce their levels, and neoplasms display very low levels, apparently independent of growth rate, indicating a loss of the ability to form these modified nucleotides. Conversely, dietary restriction, the most effective method to retard carcinogenesis and aging, significantly elevates type I I-compound levels, as compared to age-matched ad libitum-fed animals. Levels of many liver and kidney I-compounds exhibit genotype- and diet-dependent positive linear correlations with median life span. Formation of high levels of oat-related type I I-compounds has been associated with reduced formation of carcinogen-induced preneoplastic hepatic foci. These results suggest that such DNA modifications may not represent DNA lesions but may rather be functionally important. This view is supported by circadian rhythms displayed by some I-compounds. Thus, certain type I I-compounds may play a protective role against carcinogenesis and age-associated degenerative processes. Type II I-compounds, on the other hand, represent DNA damage and include several bulky lesions, which are enhanced by pro-oxidant carcinogens such as ferric nitrilotri- acetate (Fe-NTA) in target organ (kidney) DNA of rodents and are identical to products generated by oxidizing DNA or oligonucleotides under Fenton reaction conditions in vitro. Some of these products appear to be base-base or base-sugar intrastrand crosslinks. Notably, Fe-NTA reduces the levels of type I I-compounds in renal DNA. Type II I-compound levels are increased in tissue DNA of normal newborn rats. The formation of oxidative DNA lesions in neonates is most likely caused by oxidative stress associated with the sudden increase of partial oxygen pressure in arterial blood and tissues at birth. In view of the rapid cell replication at this developmental stage, endogenous oxidative DNA lesions sustained early in life may contribute to the development of cancer and degenerative diseases later in life.  相似文献   

5.
Type II I-compounds (indigenous DNA adducts) denote a class of bulky oxidative DNA lesions that are detectable by 32P-postlabeling and represent useful biomarkers of DNA damage induced by oxidative stress. Their levels are increased in tissue DNA under pro-oxidant conditions, for example, as previously shown, in newborn rat organs. Here we have investigated whether the maternal diet affects perinatal type II I-compound levels. Pregnant F344 rats were fed Purina-5001 natural-ingredient or AIN-93G purified diet from day 11 of gestation. Type II I-compounds were measured in liver DNA at three different developmental stages, i.e., fetus, and 24 h and 9 days postnatally. Higher adduct levels were detected in the Purina-5001 group at each stage. In a second experiment, pregnant F344 rats were subjected to dietary restriction (DR) (by 40%; Purina-5001) from day 12 of gestation. At 24 h postpartum hepatic type II I-compound levels were decreased compared to parallel ad libitum (AL) fed controls. As an unrelated observation, fetal lung, but not liver, kidney, and skin DNA contained a different pattern of nonpolar, apparently nonoxidative adducts, which were not diet-dependent. These spots were not detectable 24 h after birth and were observed at much reduced levels and only in a few samples at 9 days. The main results show for the first time that the maternal nutrition modulated levels of oxidative lesions in fetal and neonatal DNA, but the underlying mechanisms (e.g., differences in metal or caloric content of the diets) still need to be determined. The dietary effects were apparently transmitted through both placenta and the mother's milk.  相似文献   

6.
Xeroderma pigmentosum (XP) patients with inherited defects in nucleotide excision repair (NER) are unable to excise from their DNA bulky photoproducts induced by UV radiation and therefore develop accelerated actinic damage, including cancer, on sun-exposed tissue. Some XP patients also develop a characteristic neurodegeneration believed to result from their inability to repair neuronal DNA damaged by endogenous metabolites since the harmful UV radiation in sunlight does not reach neurons. Free radicals, which are abundant in neurons, induce DNA lesions that, if unrepaired, might cause the XP neurodegeneration. Searching for such a lesion, we developed a synthesis for 8,5'-(S)-cyclo-2'-deoxyadenosine (cyclo-dA), a free radical-induced bulky lesion, and incorporated it into DNA to test its repair in mammalian cell extracts and living cells. Using extracts of normal and mutant Chinese hamster ovary (CHO) cells to test for NER and adult rat brain extracts to test for base excision repair, we found that cyclo-dA is repaired by NER and not by base excision repair. We measured host cell reactivation, which reflects a cell's capacity for NER, by transfecting CHO and XP cells with DNA constructs containing a single cyclo-dA or a cyclobutane thymine dimer at a specific site on the transcribed strand of a luciferase reporter gene. We found that, like the cyclobutane thymine dimer, cyclo-dA is a strong block to gene expression in CHO and human cells. Cyclo-dA was repaired extremely poorly in NER-deficient CHO cells and in cells from patients in XP complementation group A with neurodegeneration. Based on these findings, we propose that cyclo-dA is a candidate for an endogenous DNA lesion that might contribute to neurodegeneration in XP.  相似文献   

7.
Carcinogenesis may involve overproduction of oxygen-derived species including free radicals, which are capable of damaging DNA and other biomolecules in vivo. Increased DNA damage contributes to genetic instability and promote the development of malignancy. We hypothesized that the repair of oxidatively induced DNA base damage may be modulated in colorectal malignant tumors, resulting in lower levels of DNA base lesions than in surrounding pathologically normal tissues. To test this hypothesis, we investigated oxidatively induced DNA damage in cancerous tissues and their surrounding normal tissues of patients with colorectal cancer. The levels of oxidatively induced DNA lesions such as 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine, 8-hydroxyguanine and (5'S)-8,5'-cyclo-2'-deoxyadenosine were measured by gas chromatography/isotope-dilution mass spectrometry and liquid chromatography/isotope-dilution tandem mass spectrometry. We found that the levels of these DNA lesions were significantly lower in cancerous colorectal tissues than those in surrounding non-cancerous tissues. In addition, the level of DNA lesions varied between colon and rectum tissues, being lower in the former than in the latter. The results strongly suggest upregulation of DNA repair in malignant colorectal tumors that may contribute to the resistance to therapeutic agents affecting the disease outcome and patient survival. The type of DNA base lesions identified in this work suggests the upregulation of both base excision and nucleotide excision pathways. Development of DNA repair inhibitors targeting both repair pathways may be considered for selective killing of malignant tumors in colorectal cancer.  相似文献   

8.
Cockayne syndrome (CS) is a human genetic disorder characterized by sensitivity to UV radiation, neurodegeneration, premature aging among other phenotypes. CS complementation group B (CS-B) gene (csb) encodes the CSB protein (CSB) that is involved in base excision repair of a number of oxidatively induced lesions in genomic DNA in vivo. We hypothesized that CSB may also play a role in cellular repair of the DNA helix-distorting tandem lesion (5'S)-8,5'-cyclo-2'-deoxyadenosine (S-cdA). Among many DNA lesions, S-cdA is unique in that it represents a concomitant damage to both the sugar and base moieties of the same nucleoside. Because of the presence of the C8-C5' covalent bond, S-cdA is repaired by nucleotide excision repair unlike most of other oxidatively induced lesions in DNA, which are subject to base excision repair. To test our hypothesis, we isolated genomic DNA from brain, kidney and liver of wild type and csb knockout (csb(-/-)) mice. Animals were not exposed to any exogenous oxidative stress before the experiment. DNA samples were analysed by liquid chromatography/mass spectrometry with isotope-dilution. Statistically greater background levels of S-cdA were observed in all three organs of csb(-/-) mice than in those of wild type mice. These results suggest the in vivo accumulation of S-cdA in genomic DNA due to lack of its repair in csb(-/-) mice. Thus, this study provides, for the first time, the evidence that CSB plays a role in the repair of the DNA helix-distorting tandem lesion S-cdA. Accumulation of unrepaired S-cdA in vivo may contribute to the pathology associated with CS.  相似文献   

9.
10.
11.
Xeroderma pigmentosum (XP) C is involved in the recognition of a variety of bulky DNA-distorting lesions in nucleotide excision repair. Here, we show that XPC plays an unexpected and multifaceted role in cell protection from oxidative DNA damage. XP-C primary keratinocytes and fibroblasts are hypersensitive to the killing effects of DNA-oxidizing agents and this effect is reverted by expression of wild-type XPC. Upon oxidant exposure, XP-C primary keratinocytes and fibroblasts accumulate 8,5'-cyclopurine 2'-deoxynucleosides in their DNA, indicating that XPC is involved in their removal. In the absence of XPC, a decrease in the repair rate of 8-hydroxyguanine (8-OH-Gua) is also observed. We demonstrate that XPC-HR23B complex acts as cofactor in base excision repair of 8-OH-Gua, by stimulating the activity of its specific DNA glycosylase OGG1. In vitro experiments suggest that the mechanism involved is a combination of increased loading and turnover of OGG1 by XPC-HR23B complex. The accumulation of endogenous oxidative DNA damage might contribute to increased skin cancer risk and account for internal cancers reported for XP-C patients.  相似文献   

12.
DNA polymerase beta is required in mammalian cells for the predominant pathway of base excision repair involving single nucleotide gap filling DNA synthesis. Here we examine the relationship between oxidative stress, cellular levels of DNA polymerase beta and base excision repair capacity in vitro , using mouse monocytes and either wild-type mouse fibroblasts or those deleted of the DNA polymerase beta gene. Treatment with an oxidative stress-inducing agent such as hydrogen peroxide, 3-morpholinosydnonimine, xanthine/xanthine oxidase or lipopolysaccharide was found to increase the level of DNA polymerase beta in both monocytes and fibroblasts. Base excision repair capacity in vitro , as measured in crude cell extracts, was also increased by lipopolysaccharide treatment in both cell types. In monocytes lipopolysaccharide-mediated up-regulation of the base excision repair system correlated with increased resistance to the monofunctional DNA alkylating agent methyl methanesulfonate. By making use of a quantitative PCR assay to detect lesions in genomic DNA we show that lipopolysaccharide treatment of fibroblast cells reduces the incidence of spontaneous DNA lesions. This effect may be due to the enhanced DNA polymerase beta-dependent base excision repair capacity of the cells, because a similar decrease in DNA lesions was not observed in cells deficient in base excision repair by virtue of DNA polymerase beta gene deletion. Similarly, fibroblasts treated with lipopolysaccharide were more resistant to methyl methanesulfonate than untreated cells. This effect was not observed in cells deleted of the DNA polymerase beta gene. These results suggest that the DNA polymerase beta-dependent base excision repair pathway can be up-regulated by oxidative stress-inducing agents in mouse cell lines.  相似文献   

13.
Mutations in breast and ovarian cancer susceptibility genes BRCA1 and BRCA2 predispose women to a high risk of these cancers. Here, we show that lymphoblasts of women with BRCA1 mutations who had been diagnosed with breast cancer are deficient in the repair of some products of oxidative DNA damage, namely, 8-hydroxy-2'-deoxyguanosine and 8,5'-cyclopurine-2'-deoxynucleosides. Cultured lymphoblasts from 10 individuals with BRCA1 mutations and those from 5 control individuals were exposed to 5 Gy of ionizing radiation to induce oxidative DNA damage and then allowed to repair this damage. DNA samples isolated from these cells were analyzed by liquid chromatography/mass spectrometry and gas chromatography/mass spectrometry to measure 8-hydroxy-2'-deoxyguanosine, (5'-S)-8,5'-cyclo-2'-deoxyadenosine, (5'-R)-8,5'-cyclo-2'-deoxyguanosine, and (5'-S)-8,5'-cyclo-2'-deoxyguanosine. After irradiation and a subsequent period of repair, no significant accumulation of these lesions was observed in the DNA from control cells. In contrast, cells with BRCA1 mutations accumulated statistically significant levels of these lesions in their DNA, providing evidence of a deficiency in DNA repair. In addition, a commonly used breast tumor cell line exhibited the same effect when compared to a relevant control cell line. The data suggest that BRCA1 plays a role in cellular repair of oxidatively induced DNA lesions. The failure of cells with BRCA1 mutations to repair 8,5'-cyclopurine-2'-deoxynucleosides indicates the involvement of BRCA1 in nucleotide-excision repair of oxidative DNA damage. This work suggest that accumulation of these lesions may lead to a high rate of mutations and to deleterious changes in gene expression, increasing breast cancer risk and contributing to breast carcinogenesis.  相似文献   

14.
BRG1 is a catalytic subunit of the human SWI/SNF-like BAF chromatin remodeling complexes. Recent findings have shown that inactivation of BRG1 sensitizes mammalian cells to various DNA damaging agents, including ultraviolet (UV) and ionizing radiation. However, it is unclear whether BRG1 facilitates nucleotide excision repair (NER). Here we show that re-expression of BRG1 in cells lacking endogenous BRG1 expression stimulates nucleotide excision repair of UV induced DNA damage. Using a micropore UV radiation technique, we demonstrate that recruitment of the DNA damage recognition protein XPC to sites of UV lesions is significantly disrupted when BRG1 is depleted. Chromatin immunoprecipitation of the endogenous DDB2 protein, which is involved in recruiting XPC to UV-induced CPDs (cyclobutane pyrimidine dimers), shows that elevated levels of BRG1 are associated with DDB2 in chromatin in response to UV radiation. Additionally, we detected slow BRG1 accumulation at sites of UV lesions. Our findings suggest that the chromatin remodeling factor BRG1 is recruited to sites of UV lesions to facilitate NER in human chromatin.  相似文献   

15.
Nucleotide excision repair and translesion DNA synthesis are two processes that operate at arrested replication forks to reduce the frequency of recombination and promote cell survival following UV-induced DNA damage. While nucleotide excision repair is generally considered to be error free, translesion synthesis can result in mutations, making it important to identify the order and conditions that determine when each process is recruited to the arrested fork. We show here that at early times following UV irradiation, the recovery of DNA synthesis occurs through nucleotide excision repair of the lesion. In the absence of repair or when the repair capacity of the cell has been exceeded, translesion synthesis by polymerase V (Pol V) allows DNA synthesis to resume and is required to protect the arrested replication fork from degradation. Pol II and Pol IV do not contribute detectably to survival, mutagenesis, or restoration of DNA synthesis, suggesting that, in vivo, these polymerases are not functionally redundant with Pol V at UV-induced lesions. We discuss a model in which cells first use DNA repair to process replication-arresting UV lesions before resorting to mutagenic pathways such as translesion DNA synthesis to bypass these impediments to replication progression.  相似文献   

16.
Irradiation of mammalian cells with solar light is associated with the generation of reactive oxygen species (ROS) and oxidative stress, which is mediated in part by endogenous photosensitizers absorbing in the visible range of the solar spectrum. Accordingly, oxidative DNA base modifications such as 7,8-dihydro-8-oxoguanine (8-oxoG) are the predominant types of DNA damage in cells irradiated at wavelengths >400 nm. We have analysed the repair of oxidative purine modifications in human skin fibroblasts and melanoma cells using an alkaline elution technique, both under normal conditions and after depletion of glutathione. Similar repair rates were observed in fibroblasts and melanoma cells from three different patients (t1/2 approximately 4h). In both cell types, glutathione depletion (increased oxidative stress) caused a pronounced repair retardation even under non-toxic irradiation conditions. Furthermore, the cleavage activity at 8-oxoG residues measured in protein extracts of the cells dropped transiently after irradiation. An addition of dithiothreitol restored normal repair rates. Interestingly, the repair rates of cyclobutane pyrimidine dimers (t1/2 approximately 18 h), AP sites (t1/2 approximately 1h) and single-strand breaks (t1/2 <30 min) were not affected by the light-induced oxidative stress. We conclude that the base excision repair of oxidative purine modifications is surprisingly vulnerable to oxidative stress, while the nucleotide excision repair of pyrimidine dimers is not.  相似文献   

17.
18.
19.
The repair of oxidative base lesions in DNA is a coordinated chain of reactions that includes removal of the damaged base, incision of the phosphodiester backbone at the abasic sugar residue, incorporation of an undamaged nucleotide and sealing of the DNA strand break. Although removal of a damaged base in mammalian cells is initiated primarily by a damage-specific DNA glycosylase, several lyases and DNA polymerases may contribute to the later stages of repair. DNA polymerase beta (Pol beta) was implicated recently as the major polymerase involved in repair of oxidative base lesions; however, the identity of the lyase participating in the repair of oxidative lesions is unclear. We studied the mechanism by which mammalian cell extracts process DNA substrates containing a single 8-oxoguanine or 5,6-dihydrouracil at a defined position. We find that, when repair synthesis proceeds through a Pol beta-dependent single nucleotide replacement mechanism, the 5'-deoxyribosephosphate lyase activity of Pol beta is essential for repair of both lesions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号