首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Apolipoprotein(a), apo(a), contains 37 repeats structurally homologous to kringle 4 structures of the fibrinolysis zymogen plasminogen. The aim of the study was to explore the functional analogy between apolipoprotein(a) and plasminogen in the binding to the kringle-4-binding plasma protein, tetranectin. With a modified crossed immunoelectrophoresis technique, reversible binding between lipoprotein(a) and tetranectin could be demonstrated with an apparent Kd of 0.013 muMol/l. Lys- and Glu-plasminogen showed an apparent Kd of 0.5 muMol/l. Binding of lipoprotein(a) to fibrin and to fibrin-bound tetranectin was found to be negligible. The absence of fibrin binding of lipoprotein(a) excludes a potential mechanism of coexistence of fibrin and lipid deposits in arterial diseases and does not provide for a link between lipoprotein and the clotting system. Plasminogen and lipoprotein(a) show functional analogy in their binding to tetranectin, but tetranectin primarily targets at lipoprotein(a).  相似文献   

2.
Plasminogen activator inhibitor-1 is the main physiological regulator of tissue-type plasminogen activator in normal plasma. In addition to its critical function in fibrinolysis, plasminogen activator inhibitor-1 has been implicated in roles in other physiological and pathophysiological processes. To investigate structure-function aspects of mouse plasminogen activator inhibitor-1, the recombinant protein was expressed in Escherichia coli and purified. Five variant recombinant murine proteins (R76E, Q123K, R346A, R101A, and Q123K/R101A) were also generated using site-directed mutagenesis. The variant (R346A) was found to be defective in its inhibitory activity against tissue plasminogen activator relative to its wild-type counterpart. Enzyme-linked immunosorbent assay and surface plasmon resonance experiments demonstrated reduced vitronectin-binding affinity of the (Q123K) variant (K(D) = 1800 nm) relative to the wild-type protein (K(D) = 5.4 nm). Kinetic analyses indicated that the (Q123K) variant had a slower association (k(on) = 2.92 x 10(4) m(-1) s(-1)) to, and a faster dissociation from, vitronectin (k(off) = 5.3 x 10(-2) s(-1)), (wild-type k(on) = 1.03 x 10(6) m(-1) s(-1) and k(off) = 5.27 x 10(-3) s(-1)). The Q123K/R101A variant demonstrated an even lower vitronectin-binding ability. Low density lipoprotein receptor-related protein binding was decreased for the (R76E) variant. It was also demonstrated that the plasminogen activator inhibitor-1/vitronectin complex decreased the interaction of plasminogen activator inhibitor-1 with low density lipoprotein receptor-related protein. These results indicate that the complex interactions traditionally associated with different plasminogen activator inhibitor-1 functions apply to the murine system, thus showing a commonality of subtle functions among different species and evolutionary conservation of this protein. Further, this study provides additional evidence that the human hemostasis system can be studied effectively in the mouse, which is a great asset for investigations with gene-altered mice.  相似文献   

3.
Lipoprotein(a) is composed of low density lipoprotein and apolipoprotein(a). Apolipoprotein(a) has evolved from plasminogen and contains 10 different plasminogen kringle 4 homologous domains [KIV(1-110)]. Previous studies indicated that lipoprotein(a) non-covalently binds the N-terminal region of lipoprotein B100 and the plasminogen kringle 4 binding plasma protein tetranectin. In this study recombinant KIV(2), KIV(7) and KIV(10) derived from apolipoprotein(a) were produced in E. coli and the binding to tetranectin and low density lipoprotein was examined. Only KIV(10) bound to tetranectin and binding was similar to that of plasminogen kringle 4 to tetranectin. Only KIV(7) bound to LDL. In order to identify the residues responsible for the difference in specificity between KIV(7) and KIV(10), a number of surface-exposed residues located around the lysine binding clefts were exchanged. Ligand binding analysis of these derivatives showed that Y62, and to a minor extent W32 and E56, of KIV(7) are important for LDL binding to KIV(7), whereas R32 and D56 of KIV(10) are required for tetranectin binding of KIV(10).  相似文献   

4.
Abstract In an in vitro direct assay with tissue-type plasminogen activator (tPA), plasminogen and the chromogenic substrate S-2251, the ability of Mycoplasma fermentans KL4 to stimulate tPA-mediated activation of plasminogen to plasmin was studied. Mycoplasma cells markedly enhanced the activation of plasminogen by tPA in a concentration-, temperature- and pH-dependent manner. Nonidet P-40 (0.01%), sonication, and freezing and thawing of the cells substantially increased the stimulatory effect of mycoplasma on tPA activity. In contrast, the activation of plasminogen by urokinase was refractory to mycoplasma cells. The mycoplasma-mediated stimulation of tPA activity was prevented by ϵ-aminocaproic acid (EACA), a lysine analogue known to block lysine-binding sites (LBS) in plasminogen and tPA. Among several Mycoplasma fermentans strains tested, incognitus strain demonstrated the highest stimulation activity. These results suggest that mycoplasma cells interact with LBS in tPA and plasminogen to enhance plasminogen activation.  相似文献   

5.
The plasma concentration of human lipoprotein(a) [Lp(a)] is correlated with the risk of heart disease. A distinct feature of the Lp(a) particle is the apolipoprotein (a) [apo(a)], which is associated with apoB-100, the main protein component of low-density lipoprotein. We now report that apo(a), which has extensive homology to plasminogen, binds to immobilized fibronectin. The binding of Lp(a) was localized to the C-terminal heparin-binding domain of fibronectin. Incubation of Lp(a) with fibronectin resulted in fragmentation of fibronectin. The cleavage pattern, as visualized by gel electrophoresis and immunoblotting, was reproducibly obtained with Lp(a) purified from five different individuals and was distinct from that obtained upon proteolysis of fibronectin by plasmin or kallikrein. The use of synthetic peptide substrates demonstrated that the amino acid specificity for Lp(a) was arginine rather than lysine. The proteolytic activity of Lp(a) was localized to apo(a) and experiments with inhibitors indicated that the proteolytic activity was of serine proteinase-type.  相似文献   

6.
7.
Selmeci L 《Free radical research》2011,45(10):1115-1123
In 1996, a novel oxidative stress biomarker, referred to as advanced oxidation protein products (AOPP), was detected in the plasma of chronic uremic patients. It was suggested that AOPP measure highly oxidized proteins, especially albumin. Recent data in turn appear to indicate that oxidized fibrinogen is the key molecule responsible for the AOPP reaction in the human plasma. Since fibrinogen is an acute-phase reactant, it is evident that during each episode of inflammatory response, the antioxidant capacity of the plasma is enhanced. In this context, fibrinogen can be regarded as a component of the antioxidant system of the plasma proteome. It was also demonstrated that oxidized fibrinogen is bound to apolipoprotein(a) of lipoprotein(a) via lysine binding sites. Thus, apo(a) could compete with plasminogen (and/or tissue plasminogen activator) for its binding sites of fibrin(ogen), causing inhibition of fibrinolysis, and thereby promote atherosclerosis and cardiovascular disease.  相似文献   

8.
Rhesus monkey apolipoprotein(a). Sequence, evolution, and sites of synthesis   总被引:11,自引:0,他引:11  
Human lipoprotein(a) is a low density lipoprotein-like lipoprotein whose concentration in plasma is correlated with atherosclerosis. The characteristic protein component of lipoprotein(a) is apolipoprotein(a) (apo(a)) which is disulfide-linked to apolipoprotein B-100. Sequencing of rhesus monkey apo(a) cDNA suggests that this protein, like human apo(a), is highly similar to plasminogen. Sequence data suggests that a plasminogen-like protease activity and kringle 1-, 2-, 3-, and 5-like domains are unnecessary for apo(a) function, but a highly repeated kringle four-like domain is important. Liver is the major site of apo(a) RNA synthesis; reduced amounts of message were also found in testes and brain. Co-expression with apoB-100 and plasminogen in rhesus tissues is not mandatory.  相似文献   

9.
We have previously demonstrated that human recombinant soluble melanotransferrin (hr-sMTf) interacts with the single-chain zymogen pro urokinase-type plasminogen activator (scu-PA) and plasminogen. In the present work, the impact of exogenous hr-sMTf on endothelial cells (EC) migration and morphogenic differentiation into capillary-like structures (tubulogenesis) was assessed. hr-sMTF at 10 nM inhibited by 50% the migration and tubulogenesis of human microvessel EC (HMEC-1). In addition, in hr-sMTf-treated HMEC-1, the expression of both urokinase-type plasminogen activator receptor (u-PAR) and low-density lipoprotein receptor-related protein (LRP) are down-regulated. However, fluorescence-activated cell sorting analysis revealed a 25% increase in cell surface u-PAR in hr-sMTf-treated HMEC-1, whereas the binding of the urokinase-type plasminogen activator (u-PA)*plasminogen activator inhibitor-1 (PAI-1) complex is decreased. This reduced u-PA-PAI-1 binding is correlated with a strong inhibition of the HMEC-1 plasminolytic activity, indicating that exogenous hr-sMTf treatment alters the internalization and recycling processes of free and active u-PAR at the cellular surface. Overall, these results demonstrate that exogenous hr-sMTf affects plasminogen activation at the cell surface, thus leading to the inhibition of EC movement and tubulogenesis. These results are the first to consider the potential use of hr-sMTf as a possible therapeutic agent in angiogenesis-related pathologies.  相似文献   

10.
Conditioned medium (CM) derived from co-cultures of bovine aortic endothelial cells (BAECs) and bovine smooth muscle cells (BSMCs) contains transforming growth factor-beta (TGF-beta) formed via a plasmin-dependent activation of latent TGF-beta (LTGF beta), which occurs in heterotypic but not in homotypic cultures (Sato, Y., and D. B. Rifkin. 1989. J. Cell Biol. 107: 1199-1205). The TGF-beta formed is able to block the migration of BSMCs or BAECs. We have found that the simultaneous addition to heterotypic culture medium of plasminogen and the atherogenic lipoprotein, lipoprotein (a) (Lp(a)), which contains plasminogen-like kringles, inhibits the activation of LTGF-beta in a dose-dependent manner. The inclusion of LDL in the culture medium did not show such an effect. Control experiments indicated that Lp(a) does not interfere with the basal level of cell migration, the activity of exogenous added TGF-beta, the release of LTGF-beta from cells, the activation of LTGF-beta either by plasmin or by transient acidification, or the activity of plasminogen activator. The addition of Lp(a) to the culture medium decreased the amount of plasmin found in BAECs/BSMCs cultures. Similar results were obtained using CM derived from cocultures of human umbilical vein endothelial cells and human foreskin fibroblasts. These results suggest that Lp(a) can inhibit the activation of LTGF-beta by competing with the binding of plasminogen to cell or matrix surfaces. Therefore, high plasma levels of Lp(a) might enhance smooth muscle cell migration by decreasing the levels of the migration inhibitor TGF-beta thus contributing to generation of the atheromatous lesions.  相似文献   

11.
Plasminogen activator inhibitor-1 (PAI-1) regulates fibrinolysis by inhibiting tissue type plasminogen activator (t-PA). Fibrinogen, heparin, and vitronectin enhance the rate of inhibition of t-PA by PAI-1. Kinetic studies indicate that both fibrinogen and heparin increase the second-order inhibition constant by a maximum of approximately 4-fold, whereas vitronectin increases the rate constant by a maximum of approximately 6-fold. The dissociation constants of fibrinogen, heparin, and vitronectin for the inhibition reaction were 200 nM, 20 nM, and 600 pM, respectively. In addition, PAI-1 inhibition of t-PA may be regulated by the presence of lipoprotein(a) (Lp(a)). Previous studies demonstrated that Lp(a) competes with plasminogen for the active site of fibrinogen- and heparin-bound t-PA. Kinetic studies described here demonstrate that Lp(a) prevents the inhibition of t-PA by PAI-1 in the presence of fibrinogen and heparin, but has no effect on the reaction in the presence of vitronectin or in the absence of either fibrinogen or heparin. The data suggest that fibrinogen and heparin may enhance the rate of inhibition through an interaction with t-PA, and that vitronectin may enhance the inhibition through an interaction with PAI-1. In addition, these experiments indicate that Lp(a) may regulate fibrinolysis by competing with PAI-1 and plasminogen for fibrinogen- and heparin-bound t-PA. These data suggest that PAI-1 inhibition of t-PA in vivo is primarily mediated via interaction with fibrinogen, heparin, vitronectin, and Lp(a), and therefore, the functional levels of PAI-1 activity in the vasculature may be regulated by the presence of these components.  相似文献   

12.
13.
To define determinants of interactions of tissue-type plasminogen activator (t-PA) with plasminogen activator inhibitor type-1 (PAI-1), we utilized site-directed mutagenesis to substitute either threonine or glycine for the active-site serine of tissue-type plasminogen activator. Assays of conditioned media of transfected cells demonstrated that the threonine substitution markedly decreased but did not entirely abolish plasminogen activating activity. In contrast, the glycine substitution yielded a mutant with absolutely no detectable plasminogen activating activity. Wild-type t-PA formed stable complexes with PAI-1. However, even when exogenous inhibitor was present in the medium or purified mutant was added to plasma that had been rendered PAI-1-rich in vivo, the mutants were present in the free form exclusively judging from results of fibrin autography and Western blot analysis. Thus, despite maintenance of some residual plasminogen-activating activity associated with preservation of the hydroxyl group at the active site, the threonine mutant did not form stable complexes with inhibitor. The glycine mutant, developed so that steric hindrance or other unfavorable interactions at the modified active site would be minimal, was similarly incapable of forming complexes with PAI-1. These results show that the presence of an active site serine residue is necessary for formation of stable complexes between t-PA and PAI-1.  相似文献   

14.
15.
Elevated plasma concentrations of lipoprotein(a) are a risk factor for the development of a variety of atherosclerotic disorders. Despite intensive study, the mechanisms by which lipoprotein(a) promotes these disorders remain to be unequivocally defined. It has been demonstrated that lipoprotein(a), through its unique constituent apolipoprotein(a) (apo(a)), stimulates vascular smooth muscle cell (SMC) migration and proliferation. These effects arise from the ability of apo(a) to inhibit the formation of active transforming growth factor beta (TGF-beta) from its latent precursor, which in turn is caused by the ability of apo(a) to decrease the formation of plasmin from its precursor plasminogen. We utilized a battery of recombinant apo(a) variants that represent systematic deletions of the various domains in the molecule to further probe the mechanism underlying the effect of apo(a) on SMC responses. All recombinant apo(a) variants that contained kringle IV type 9 were able to stimulate SMC proliferation and migration and to decrease the formation of active TGF-beta; conversely all recombinant apo(a) variants lacking kringle IV type 9 had no effect on these parameters. The kringle IV type 9-dependent effects of apo(a) on SMC proliferation required the presence of plasminogen, suggesting for the first time that this kringle mediates the ability of apo(a) to inhibit pericellular plasmin formation.  相似文献   

16.
The plasminogen activator (PA)/plasminogen/plasmin proteolytic system has begun to be taken into account in the fertilization process. In this study, we demonstrated the presence of plasminogen in the extracellular matrix (ECM) of hamster oocytes by indirect immunofluorescence and immunoperoxidase assays using human anti-plasminogen. Plasminogen appeared first on the zona pellucida (ZP) of ovarian oocytes and later on the plasma membrane (PM) of oviducal eggs. This would suggest that oviducal oocytes modulate the expression of plasminogen binding sites on the PM. Human plasminogen as well as that of other species, known to be activated by streptokinase (SK), is rapidly converted to a plasmin-SK complex. We demonstrated the rapid formation of a SK-plasminogen complex that yields plasmin in the blood plasma of hamsters. Both the in vivo and in vitro SK treatment of eggs from superovulated female hamsters caused a decreased in the ZP dissolution time (ZPdt), probably either due to the proteolytic effect of plasmin or due to the SK-Plasminogen. Extracellular proteolysis assays carried out on agar-casein plates confirmed the proteolytic activity of SK-incubated eggs; the controls, on the contrary, failed to display a halo. These studies show that (1) superovulated hamster eggs contain plasminogen in their ECM, (2) oviducal eggs exhibit plasminogen on their PMs, indicating the presence of their corresponding binding sites, (3) in hamsters, SK, a non-enzymatic exogenous protein would be capable of activating ECM plasminogen to plasmin, and (4) the complex SK-plasminogen and/or the plasmin are capable of changing the ZPdt with alpha-chymotrypsin.  相似文献   

17.
Apolipoprotein(a) [apo(a)] is the distinctive glycoprotein of lipoprotein Lp(a), which is disulfide linked to the apo B100 of a low density lipoprotein particle. Apo(a) possesses a high degree of sequence homology with plasminogen, the precursor of plasmin, a fibrinolytic and pericellular proteolytic enzyme. Apo(a) exists in several isoforms defined by a variable number of copies of plasminogen-like kringle 4 and single copies of kringle 5, and the protease region including the backbone positions for the catalytic triad (Ser, His, Asp). A lysine-binding site that is similar to that of plasminogen kringle 4 is present in apo(a) kringle IV type 10. These kringle motifs share some amino acid residues (Asp55, Asp57, Phe64, Tyr62, Trp72, Arg71) that are key components of their lysine-binding site. The spatial conformation and the function of this site in plasminogen kringle 4 and in apo(a) kringle IV-10 seem to be identical as indicated by (i) the ability of apo(a) to compete with plasminogen for binding to fibrin, and (ii) the neutralisation of the lysine-binding function of these kringles by a monoclonal antibody that recognises key components of the lysine-binding site. In contrast, the lysine-binding site of plasminogen kringle 1 contains a Tyr residue at positions 64 and 72 and is not recognised by this antibody. Plasminogen bound to fibrin is specifically recognised and cleaved by the tissue-type plasminogen activator at Arg561-Val562, and is thereby transformed into plasmin. A Ser-Ile substitution at the activation cleavage site is present in apo(a). Reinstallation of the Arg-Val peptide bond does not ensure cleavage of apo(a) by plasminogen activators. These data suggest that the stringent specificity of tissue-type plasminogen activator for plasminogen requires molecular interactions with structures located remotely from the activation disulfide loop. These structures ensure second site interactions that are most probably absent in apo(a).  相似文献   

18.
Elevated levels of low-density lipoproteins (LDL) and lipoprotein(a) [Lp(a)] have been considered strong risk factors for atherosclerotic cardiovascular disease. Increased production of plasminogen activator inhibitor-1 (PAI-1) has been implicated in the development of thrombosis and atherosclerosis. Previous studies by our group and others demonstrated that oxidation enhances LDL- and Lp(a)-induced production of PAI-1 in human umbilical vein endothelial cells (HUVEC). The present study examined the involvement of protein kinase C (PKC) and its isoform in vascular endothelial cells (EC) induced by native or oxidized LDL and Lp(a). Treatment with Lp(a) or LDL transiently increased PKC activity at 15 min and 5.5 h after the start of lipoprotein treatment in EC. Copper-oxidized LDL and Lp(a) induced greater PKC activation in EC compared with comparable forms of those lipoproteins. Additions of 1 microM calphostin C, a PKC-specific inhibitor, at the beginning or > or =5 h, but not > or = 9 h, after the initiation of lipoprotein treatment, blocked native and oxidized LDL- or Lp(a)-induced increases in PKC activity and PAI-1 production. Treatment of LDL, Lp(a), or their oxidized forms was induced in translocation of PKC-beta1 from cytosol to membrane in HUVEC. Treatments with 60 nM 379196, a PKC-beta-specific inhibitor, effectively prevented PAI-1 production induced by LDL, Lp(a), or their oxidized forms in HUVEC and human coronary artery EC. The results suggest that activation of PKC-beta may mediate the production of PAI-1 in cultured arterial and venous EC induced by LDL, Lp(a), or their oxidized forms.  相似文献   

19.
Lipoprotein(a): still an enigma?   总被引:5,自引:0,他引:5  
PURPOSE OF REVIEW: Lipoprotein(a) belongs to the class of the most atherogenic lipoproteins. Despite intensive research - in the last year more than 80 papers have been published on this topic - information is still lacking on the physiological function of lipoprotein(a) and the site of its catabolism. Important advances have been made in the knowledge of these points, which may have some therapeutic implications. RECENT FINDINGS: The association of high lipoprotein(a) values with an increase in risk for coronary events has been documented in further prospective studies. This increased risk may relate to recent findings that apolipoprotein(a) is produced in situ within the vessel wall. In addition, lipoprotein(a) binds and inactivates the tissue factor pathway inhibitor and induces plasminogen activator inhibitor type 2 expression in monocytes. A new antisense oligonucleotide strategy has been proposed which efficiently inhibits apolipoprotein(a) expression in vitro and in vivo. Apolipoprotein(a), however, suppresses angiogenesis and thus may interfere with the infiltration of tumor cells. Finally, the enzymatic activity leading to the formation of apolipoprotein(a) fragments in plasma and their catabolism have been further elucidated. SUMMARY: We are still far away from understanding the pathways involved in lipoprotein(a) catabolism, and the physiological function of this lipoprotein. Recent findings, however, provide new insight into pathomechanisms in patients with increased lipoprotein(a) related to hemostasis, which may serve as a basis for designing new treatment strategies.  相似文献   

20.
Lipoprotein (a)--a component of plasma lipoproteins is characterized by a high similarity to plasminogen. Epidemiological studies indicate, that increased lipoprotein (a) levels predispose to the atherosclerosis. Certain studies of fibrinolytic system indicate also, that lipoprotein (a) inhibits the activity of this system. These actions may explain its contribution to the development of the arterial thrombosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号