首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 678 毫秒
1.
The human protein C precursor undergoes extensive co- and posttranslational modification during its biosynthesis in the liver. These modifications include glycosylation, gamma-carboxylation and beta-hydroxylation of specific amino acids, and endoproteolytic processing to remove the pre- and propeptides and also to remove the pair of basic amino acids that connect the light and heavy chains in the precursor. Specific molecular signals have been elucidated which direct several of these modifications; however, the mechanism for cleavage and removal of the basic amino acid pair has not been established. In the present study, a recombinant mammalian expression system has been used to study the molecular signals that direct removal of this basic amino acid pair. Mutations were introduced by site-directed mutagenesis either to insert additional basic amino acids or to alter the sequence adjacent to the basic pair by point mutations. The mutant protein precursors were expressed and analyzed for the degree of processing to 2-chain form and also for the location of the cleavage site (by N-terminal sequencing) and subsequent removal of the basic amino acids from the newly formed C terminus of the light chain. These experiments have shown that human protein C can be readily synthesized and secreted in several mammalian cell lines. However, cell lines vary considerably in their capacity to remove the dibasic pair in the protein C precursor and, like the liver, secrete a mixed population of 1-chain and 2-chain forms of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
One of the late processing events in the flavivirus replication cycle involves cleavage of the intracellular form of the flavivirus capsid protein (Cint) to the mature virion form (Cvir) lacking the carboxy-terminal stretch of hydrophobic amino acids which serves as a signal peptide for the downstream prM protein. This cleavage event was hypothesized to be effected by a viral protease and to be associated with virion formation. We have proposed a model of flavivirus virion formation in which processing of the C-prM precursor at the upstream signalase site is upregulated by interaction of the NS2B part of the protease with the prM signal peptide or with an adjacent carboxy-terminal region of the capsid protein in the precursor, and processing of Cint by the NS2B-NS3 protease follows the signalase cleavage. Recently, an alternative hypothesis was proposed which suggests a reverse order of these two cleavage events, namely, that cleavage of the C-prM precursor by the NS2B-NS3 protease at the Cint-->Cvir dibasic cleavage site is a prerequisite for the subsequent signalase cleavage of the prM signal peptide. To distinguish between these alternative models, we prepared a series of expression cassettes carrying mutations at the Cint-->Cvir dibasic cleavage site and investigated the effects of these mutations on signalase processing of C-prM and on formation and secretion of prM-E heterodimers. For certain mutated C-prM precursors, namely, for those with Lys-->Gly disruption of the dibasic site, efficient formation of prM was observed upon expression from larger cassettes encoding the viral protease, despite the absence of processing at the Cint-->Cvir cleavage site. Surprisingly, formation and secretion of prM-E heterodimers accompanied by late cleavage of prM was also observed for these cassettes, with an efficiency comparable to that of the wild-type expression cassette. These observations contradict the model in which cleavage of the C-prM precursor at the Cint-->Cvir dibasic site is a prerequisite for signalase cleavage.  相似文献   

3.
Amino acid analogs, which can be incorporated into nascent peptide chains were used in cultures of endocrine cells from canine pancreas to study the effect on processing of the metabolically labeled precursor for pancreatic polypeptide. Analogs for basic amino acids, canavanine, and aminoethylcysteine prevented the di-basic processing of the prohormone. The polar leucine analog, beta-hydroxyleucine, only partially perturbed the function and cleavage of the signal peptide but efficiently and unexpectedly blocked the dibasic cleavage of the prohormone. Other nonbasic amino acid analogs, beta-hydroxynorvaline and azetidine-2-carboxylic acid, which only could be incorporated into the prohormone at a distance from the processing site, also prevented dibasic cleavage of the prohormone. Although there are no phenylalanine residues in the prohormone, analogs for this amino acid, fluoro-phenylalanine and particularly phenylserine, could also block the processing of the prohormone at the dibasic site. This effect was prevented by addition of a small quantity of phenylalanine. It is concluded that amino acid analogs can interfere with precursor processing through altering both the primary and the secondary structure of the precursor but also through incorporation into cosynthesized protein(s) which are necessary for the precursor processing.  相似文献   

4.
The maturation of [NiFe]-hydrogenases is a catalysed process in which the activities of at least seven proteins are involved. The last step consists of the endoproteolytic cleavage of the precursor of the large subunit after the [NiFe]-metal centre has been assembled. The amino acid sequence requirements for the endopeptidase HycI involved in the C-terminal processing of HycE, the large subunit of the hydrogenase 3 from Escherichia coli, were investigated. Mutational alteration of the amino acid residues neighbouring the cleavage site showed that proteolysis still occurred when chemically similar amino acids were exchanged. Processing was blocked, however, in a variant in which the methionine at the C-terminal side was replaced by a glutamate residue. Truncation of the precursor from the C-terminal end rendered variants amenable to maturation even when two-thirds of the extension were removed but abolished proteolysis upon further deletion of a cluster of six basic amino acids. A construct in which the C-terminal extension from the large subunit of the hydrogenase 2 was fused to the mature part of the large subunit of hydrogenase 3 was neither processed by HycI nor by HybD, the endopeptidase specific for the large subunit of hydrogenase 2. The maturation endopeptidase, therefore, exhibits a relaxed sequence constraint in recognition of its cleavage site and does not require the entire C-terminal extension. The results point to an interaction of the C-terminus with some domain of the large subunit, rendering a conformation amenable to recognition by the endopeptidase.  相似文献   

5.
《Gene》1996,169(2):269-273
The cDNA encoding clotting factor X, which participates in the middle stage of the blood coagulation cascade was cloned from a rat liver cDNA library. Sequencing of the rat factor-X-encoding cDNA revealed that this vitamin-K-dependent protein has a dibasic Arg-Arg sequence at the propeptide cleavage site, as occurs in other vitamin-K-dependent proteins. Although the human and rat deduced amino acid sequences are remarkably similar (76% identical), they do significantly differ in that human factor-X contains a unique Thr-Arg sequence at the propeptide cleavage site [Fung et al., Proc. Natl. Acad. Sci. USA 82 (1985) 3591–3595], where a dibasic sequence would normally be expected. This specific site is the recognition motif for the endoprotease, furin, which is located in the Golgi apparatus. Both rat and human cDNAs expressed in Cos-1 cells resulted in secretion of a mixture of single- and two-chain forms of factor X. The two-chain forms were devoid of the propeptide and were produced at similar rates by the transfected cells. The efficient processing of human factor X, when compared to rat factor X, may indicate that an additional protease(s), which recognizes the Thr-Arg motif, may be involved in proteolytic processing of the human enzyme  相似文献   

6.
Chromatographic peptide mapping of lysyl endopeptidase digests of penicillin-binding protein 3 (PBP 3) of Escherichia coli revealed peptides that differed in retention time between the precursor and mature forms. The peptides were purified from a processing-defective (prc) mutant and a wild-type (prc+) strain. These peptides were identified as the C-terminal region of the precursor form and mature PBP 3 by amino acid sequencing. Each of the C-terminal peptides was cleaved into two fragments by trypsin digestion. By sequencing the resultant carboxyl-side fragment derived from the mature form, it was concluded that the C-terminal residue of mature PBP 3 was Val-577, and thus the Val-577-Ile-578 bond is the cleavage site for processing. This conclusion was consistent with the amino acid compositions of the relevant peptides, which suggested that the peptide from the cleavage site to the end of the deduced sequence (Ile-578-Ser-588) was present in the precursor but absent in the mature form. One lysyl peptide bond resisted both lysyl endopeptidase and trypsin and remained uncleaved in the peptide analyzed above.  相似文献   

7.
The amino acid sequence predicted from a rat liver cDNA library indicated that the precursor of beta-AlaAT I (4-aminobutyrate aminotransferase, beta-alanine-oxoglutarate aminotransferase) consists of a mature enzyme of 466 amino acid residues and a 34-amino acid terminal segment, with amino acids attributed to the leader peptide. However, the mass of beta-AlaAT I from rat brain was larger than that from rat liver and kidney, as assessed by Western-blot analysis, mass spectroscopy and N-terminal sequencing. The mature form of beta-AlaAT I from the brain had an ISQAAAK- peptide on the N-terminus of the liver mature beta-AlaAT I. Brain beta-AlaAT I was cleaved to liver beta-AlaAT I when incubated with fresh mitochondrial extract from rat liver. These results imply that mature rat liver beta-AlaAT I is proteolytically cleaved in two steps. The first cleavage of the motif XRX( downward arrow)XS is performed by a mitochondrial processing peptidase, yielding an intermediate-sized protein which is the mature brain beta-AlaAT I. The second cleavage, which generates the mature liver beta-AlaAT I, is also carried out by a mitochondrial endopeptidase. The second peptidase is active in liver but lacking in brain.  相似文献   

8.
Salivary glands of the leech Haementeria officinalis contain a protein, leech antiplatelet protein (LAPP), that specifically blocks collagen-mediated platelet aggregation (Connolly, T. M., Jacobs, J. W., and Condra, C. (1992) J. Biol. Chem. 267, 6893-6898). Degenerate oligonucleotides whose sequences were derived from two short peptides from V8 digests of the native LAPP were used as primers to generate a polymerase chain reaction (PCR) product which contains the cDNA region coding for the sequence between these two peptides. Using this PCR product as a hybridization probe, phage containing cDNA clones were isolated containing the entire deduced amino acid sequence for LAPP. Computer analysis of the amino acid sequence predicts a peptidase cleavage site between a 21-residue pre-peptide and a mature protein of 126 amino acids. A DNA insert to express the predicted mature LAPP protein was generated by PCR amplification using phage-derived cDNA clones as a substrate. This insert encoded a fusion protein with the leader sequence of the yeast alpha mating factor and the mature LAPP cDNA. These PCR products were cloned into the yeast expression vector pKH4 alpha 2. A KEX 2 Lys-Arg endopeptidase cleavage site was placed NH2-terminal to the predicted mature protein. This vector transfected into the yeast Saccharomyces cerevisiae directs expression of a secreted mature protein at levels up to 200 mg of LAPP/liter of culture medium. The recombinant protein was comparable to native LAPP in its electrophoretic mobility, its reactivity with anti-LAPP antisera, and its biological activity including inhibition of collagen-stimulated platelet aggregation and the adhesion of platelets to collagen. Availability of significant quantities of recombinant LAPP opens the way to further biochemical structure/function studies and to studies on the effects of an inhibitor of collagen-stimulated platelet aggregation in vivo.  相似文献   

9.
Mitochondrial uptake of the cytoplasmically synthesized precursor of the mammalian enzyme ornithine transcarbamylase is mediated by an N-terminal leader sequence of 32 amino acids. In the mitochondrial matrix, the precursor form is processed to the mature subunit by proteolytic removal of this pre-sequence and in the enzyme from rat liver it has been suggested that this occurs in a two-step process which involves an intermediate cleavage at residue 24. We show that deletion of residues 20-26 spanning this intermediate cleavage site prevents correct processing to the mature subunit but it does not prevent mitochondrial targeting and internalization or assembly of the incorrectly processed product into a catalytically active enzyme. The incorrectly processed enzyme, which is larger than the normal mature enzyme, is nevertheless more susceptible to proteolytic degradation in permanently transfected human cells than the correctly processed enzyme.  相似文献   

10.
Purified cathepsin L from carp, Cyprinus carpio, consists of a 28 kDa single-chain form that is different from the 24 and 5 kDa mammalian two-chain form. We cloned cathepsin L from carp hepatopancreas. The sequence consisted of a 1490 bp cDNA and a 1014 bp open reading frame, encoding a deduced protein of 337 amino acids that is likely processed to an active enzyme (single-chain form) with 222 amino acids. Its similarity to other types of vertebrate cathepsin L is less than 69%. Mammalian cathepsin L is further processed to a two-chain form, but possibly this is not the case with carp cathepsin L: the P1 site where cleavage occurred in the two-chain form of mammalian cathepsin L contains a serine, while carp cathepsin L processes a valine. Therefore, carp cathepsin L may have a different mechanism of action from mammalian cathepsin L.  相似文献   

11.
Lakshmi Devi 《FEBS letters》1991,280(2):189-194
Many regulatory peptide precursors undergo post-translational processing at mono- and/or dibasic residues. Comparison of amino acids around the monobasic cleavage sites suggests that these cleavages follow certain sequence motifs and can be described as the rules that govern monobasic cleavages: (i) a basic amino acid it present at either 3, 5, or 7 amino acids N-terminal to the cleavage site, (ii) hydrophobic aliphatic amino acids (leucine, isoleucine, valine, or methionine) are never present in the position C-terminal to the monobasic amino acid at the cleavage site, (iii) a cysteine is never present in the vicinity of the cleavage site, and (iv) an aromatic amino acid is never present at the position N-terminal to the monobasic amino acid at the cleavage site. In addition to these rules, the monobasic cleavages follow certain tendencies: (i) the amino acid at the cleavage site tends to be predominantly arginine, (ii) the amino acid at the position C-terminal to the cleavage site tends to be serine, alanine or glycine in more than 60% of the cases, (iii) the amino acid at either 3, 5, or 7 position N-terminal to the cleavage site tends to be arginine, (iv) aromatic amino acids are rare at the position C-terminal to the monobasic amino acid at the cleavage site, and (v) aliphatic amino acids tend to be in the two positions N-terminal to and the two positions C-terminal to the cleavage site, except as noted above. When compared with a large number of sequence containing single basic amino acids, these rules and tendencies are capable of not only correctly predicting the processing sites, but also are capable of excluding most of the single basic sequences that are known to be uncleaved. Many or these rules can also be applied to correctly predict the dibasic and multibasic cleavage sites suggesting that the rules and tendencies could govern endoproteolytic processing at the monobasic, dibasic and multibasic sites.  相似文献   

12.
Asparaginyl endopeptidase is a cysteine endopeptidase that has strict substrate specificity toward the carboxyl side of asparagine residues, and is possibly involved in the post-translational processing of proproteins. In this report one full-length cDNA, SPAE, was isolated from senescent leaves of sweet potato (Ipomoea batatas (L.) Lam). SPAE contained 1479 nucleotides (492 amino acids) in the open reading frame, and exhibited high amino acid sequence homologies (c. 61-68%) with asparaginyl endopeptidases of Vicia sativa, Phaseolus vulgaris, Canavalia ensiformis, and Vigna mungo. SPAE probably encoded a putative precursor protein. Via cleavage of the N- and C-termini, it produced a mature protein containing 325 amino acids (from the 51st to the 375th amino acid residues), the conserved catalytic residues (the 173rd His and 215th Cys amino acid residues), and the putative N-glycosylation site (the 332nd Asn amino acid residue). Semi-quantitative RT-PCR and western blot hybridization showed that SPAE gene expression was enhanced significantly in natural senescent leaves and in dark- and ethephon-induced senescent leaves, but was much less in mature green leaves, stems, and roots. Phylogenic analysis showed that SPAE displayed close association with vacuolar processing enzymes (legumains/asparaginyl endopeptidases), which function via cleavage for proprotein maturation in the protein bodies during seed maturation and germination. In conclusion, sweet potato SPAE is probably a functional, senescence-associated gene and its mRNA and protein levels were significantly enhanced in natural and induced senescent leaves. The possible role and function of SPAE associated with bulk protein degradation and mobilization during leaf senescence were also discussed.  相似文献   

13.
The classical conversion site in precursors of regulatory peptides is a sequence of two basic amino acids. During recent years, however, a group of monobasic cleavage sites has emerged. In certain cell systems it has been shown that the monobasic cleavage mechanism is both a specific mechanism which only attacks a particular basic residue, and a distinct mechanism which can be separated from the dibasic cleaving mechanism within the same cell. The vast majority of monobasic cleavages occur at single arginines although cleavage after a lysine residue has also been demonstrated. There is no 'consensus sequence' of amino acids surrounding the single basic residue which is the apparent signal for proteolytic processing. However, in approximately one third of the cases, a proline residue is found either just before or just after the basic residue. On the basis of this 'proline-directed arginyl cleavage' it is discussed how the conformation of the peptide backbone might be important for this type of cleavage. Finally, it is suggested that tissue-specific expression of different processing enzymes, e.g. dibasic and monobasic specific forms, might explain the tissue-specific processing of precursors like the pro-opiomelanocortin and the CKK and somatostatin precursor.  相似文献   

14.
Many peptide hormones are produced from larger precursors by endoproteolysis at pairs of basic amino acids (e.g. Lys-Arg and Arg-Arg) within the regulated secretory pathway in endocrine cells. However, many other secretory and membrane proteins appear to be produced from precursors through cleavage at multiple, rather than paired, basic residues within the constitutive secretory pathway in non-endocrine cells. By surveying various precursors processed constitutively, we noticed that most of them have the consensus sequence, Arg-X-Lys/Arg-Arg (RXK/RR), at the cleavage site. When expressed in endocrine and non-endocrine cells, a precursor with the RXKR sequence was cleaved in both types of cells, whereas that with the Lys-Arg pair was cleaved only in the endocrine cells. When the RXKR precursor was coexpressed with furin and PC3, both of which are mammalian homologues of the yeast precursor-processing endoprotease Kex2, in non-endocrine cells, enhancement of the precursor cleavage by furin but not by PC3 was observed. By contrast, when the Lys-Arg precursor was coexpressed with the two mammalian proteases in endocrine cells with no endogenous processing activity at dibasic sites, it was cleaved only by PC3. These results indicate that the basic pair and the RXK/RR sequence are the signals for precursor cleavages catalyzed by PC3 within the regulated secretory pathway and by furin within the constitutive pathway, respectively.  相似文献   

15.
《The Journal of cell biology》1987,105(6):2631-2639
The mitochondrial matrix enzyme ornithine transcarbamylase (OTC) is synthesized on cytoplasmic polyribosomes as a precursor (pOTC) with an NH2-terminal extension of 32 amino acids. We report here that rat pOTC synthesized in vitro is internalized and cleaved by isolated rat liver mitochondria in two, temporally separate steps. In the first step, which is dependent upon an intact mitochondrial membrane potential, pOTC is translocated into mitochondria and cleaved by a matrix protease to a product designated iOTC, intermediate in size between pOTC and mature OTC. This product is in a trypsin-protected mitochondrial location. The same intermediate-sized OTC is produced in vivo in frog oocytes injected with in vitro-synthesized pOTC. The proteolytic processing of pOTC to iOTC involves the removal of 24 amino acids from the NH2 terminus of the precursor and utilizes a cleavage site two residues away from a critical arginine residue at position 23. In a second cleavage step, also catalyzed by a matrix protease, iOTC is converted to mature OTC by removal of the remaining eight residues of leader sequence. To define the critical regions in the OTC leader peptide required for these events, we have synthesized OTC precursors with alterations in the leader. Substitution of either an acidic (aspartate) or a "helix-breaking" (glycine) amino acid residue for arginine 23 of the leader inhibits formation of both iOTC and OTC, without affecting translocation. These mutant precursors are cleaved at an otherwise cryptic cleavage site between residues 16 and 17 of the leader. Interestingly, this cleavage occurs at a site two residues away from an arginine at position 15. The data indicate that conversion of pOTC to mature OTC proceeds via the formation of a third discrete species: an intermediate-sized OTC. The data suggest further that, in the rat pOTC leader, the essential elements required for translocation differ from those necessary for correct cleavage to either iOTC or mature OTC.  相似文献   

16.
We cloned and sequenced a cDNA from a library of mouse pituitary AtT-20 cells which are known to cleave an endogenous and various foreign prohormones at dibasic sites. This cDNA encodes a novel 753-residue protein, named PC3, which is structurally related to the yeast Kex2 protease involved in precursor cleavage at dibasic sites and to recently identified mammalian Kex2-like proteins, furin and PC2. Among examined cell lines and tissues, PC3 mRNA was only detected in AtT-20 cells. The substrate specificity of PC3 expressed in mammalian cells was similar to that observed in AtT-20 cells. We conclude that PC3 is a resident prohormone processing endoprotease in AtT-20 cells.  相似文献   

17.
Endoproteolytic cleavage of the glycoprotein precursor to the mature SU and TM proteins is an essential step in the maturation of retroviral glycoproteins. Cleavage of the precursor polyprotein occurs at a conserved, basic tetrapeptide sequence and is carried out by a cellular protease. The glycoprotein of the human immunodeficiency virus type 1 contains two potential cleavage sequences immediately preceding the N terminus of the TM protein. To determine the functional significance of these two potential cleavage sites, a series of mutations has been constructed in each site individually, as well as in combinations that altered both sites simultaneously. A majority of the mutations in either potential cleavage site continued to allow efficient cleavage when present alone but abrogated cleavage of the precursor when combined. Despite being transported efficiently to the cell surface, these cleavage-defective glycoproteins were unable to initiate cell-cell fusion and viruses containing them were not infectious. Viruses that contained glycoproteins with a single mutation, and that retained the ability to be processed, were capable of mediating a productive infection, although infectivity was impaired in several of these mutants. Protein analyses indicated that uncleaved glycoprotein precursors were inefficiently incorporated into virions, suggesting that cleavage of the glycoprotein may be a prerequisite to incorporation into virions. The substitution of a glutamic acid residue for a highly conserved lysine residue in the primary cleavage site (residue 510) had no effect on glycoprotein cleavage or function, even though it removed the only dibasic amino acid pair in this site. Peptide sequencing of the N terminus of gp41 produced from this mutant glycoprotein demonstrated that cleavage continued to take place at this site. These results, demonstrating that normal cleavage of the human immunodeficiency virus type 1 glycoprotein can occur when no dibasic sequence is present at the cleavage site, raise questions about the specificity of the cellular protease that mediates this cleavage and suggest that cleavage of the glycoprotein is required for efficient incorporation of the glycoprotein into virions.  相似文献   

18.
As a preliminary step in the understanding of the function of the Escherichia coli HtrA (DegP) protein, which is indispensable for bacterial survival only at elevated temperatures, the protein was purified and partially characterized. The HtrA protein was purified from cells carrying the htrA gene cloned into a multicopy plasmid, resulting in its overproduction. The sequence of the 13 N-terminal amino acids of the purified HtrA protein was determined and was identical to the one predicted for the mature HtrA protein by the DNA sequence of the cloned gene. Moreover, the N-terminal sequence showed that the 48-kilodalton HtrA protein is derived by cleavage of the first 26 amino acids of the pre-HtrA precursor polypeptide and that the point of cleavage follows a typical target sequence recognized by the leader peptidase enzyme. The HtrA protein was shown to be a specific endopeptidase which was inhibited by diisopropylfluorophosphate, suggesting that HtrA is a serine protease.  相似文献   

19.
The two subunits of beta-hexosaminidase undergo many post-translational modifications characteristic of lysosomal proteins, including limited proteolysis. To identify proteolytic cleavage sites in the alpha-chain, we have biosynthetically radiolabeled the transient forms, isolated these by immunoprecipitation, gel electrophoresis, and electroelution, and subjected them to automated Edman degradation. The position of the NH2-terminal amino acid was inferred from the elution cycle of the radioactive amino acid and the primary sequence encoded in the alpha-chain cDNA. The amino terminus of the precursor obtained by in vitro translation of SP6 alpha-chain mRNA in the presence of microsomes was leucine 23. The same amino terminus was found in precursor alpha-chain synthesized by normal human fibroblasts (IMR90) in a 1- or 3-h pulse or secreted by these cells in the presence of NH4Cl. The alpha-chain isolated after a 3-h pulse followed by a 5-h chase (intermediate form) included a mixture of molecular species of which the amino terminus was arginine 87 (most abundant), histidine 88, or leucine 90. After a 20-h chase (mature form) the latter species predominated. This mature form of the alpha-chain remained fully reactive with antibody raised against the carboxyl-terminal 15 amino acids, indicating little if any proteolysis at the carboxyl terminus. Thus synthesis and maturation of the alpha-chain of beta-hexosaminidase includes two major proteolytic cleavages: the first, between alanine 22 and leucine 23, removes the signal peptide to generate the precursor form, whereas the second occurs between the dibasic amino acids, lysine 86 and arginine 87. The second cleavage is followed by trimming of 3 additional amino acids to give the mature form of the alpha-chain.  相似文献   

20.
We have recently demonstrated that the Arg-X-Lys/Arg-Arg sequence is a signal for precursor cleavage catalyzed by furin, a mammalian homologue of the yeast precursor-processing endoprotease Kex2, within the constitutive secretory pathway. In this study, we further examined sequence requirements for the constitutive precursor cleavage by expression of various prorenin mutants with amino acid substitutions around the native Lys-Arg cleavage site in Chinese hamster ovary cells. The results delineate the following sequence rules that govern the constitutive precursor cleavage. (a) A basic residue (Lys or Arg) at the 4th (position -4) or 6th (position -6) residue upstream of the cleavage site besides basic residues at positions -1 and -2 is necessary. (b) At position -2, a Lys residue is more preferable than Arg. (c) At position -4, an Arg residue is more preferable than Lys. (d) At position 1, a hydrophobic aliphatic amino acid is not suitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号