首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gram-negative chemoorganotrophic soil ultramicrobacteria (UMB), strains NF1 and NF3, have been isolated. In their development cycle, the strains formed small coccoid cells of 400-800 nm and ultrasmall cells of 200-300 nm. Phylogenetically, the strains NF1 and NF3 belong to Alphaproteobacteria and are close to the type strain of the recently described species Kaistia adipata. The ultrastructure of UMB cells has been studied using ultrathin sections and freeze-fracturing. It has been shown that the structure of UMB cell walls is of the gram-negative type; the outer membrane and peptidoglycan layer are well differentiated. The cell surface has numerous protrusions (prosthecae) of conical or spherical shape filled with the contents of the periplasm. The formation of unusual cellular structures (not occurring in known free-living bacteria) is a feature of UMB: these include the following: (a) piles of rod-like subunits, ca. 30 A in diameter and 150-250 angstroms in length: (b) long bunches (up to 300-400 angstroms) comprised of filamentous subunits; and (c) large electron-dense spherical bodies (up to 200-300 angstroms in diameter) localized in the periplasm. A distinctive feature of UMB is their ability to grow as facultative parasites on living cyanobacterial (CB) cells. In this case, three types of interaction between UMB and CB have been revealed: (1) adsorption of UMB cells on the surface of CB cells; (2) penetration of UMB into polysaccharide sheathes; and (3) penetration of UMB into CB eytoplasm. UMB cells have been shown to reproduce by budding, with buds (up to 2-3) located directly on the mother cell, without formation of intennediate hyphae.  相似文献   

2.
Transmission electron and fluorescence microscopy was used to study the character of the interaction of free-living ultramicrobacterial (UMB) strains NF1 and NF3, affiliated with the genus Kaistia, and seven species of gram-positive and gram-negative heterotrophic bacteria. Strains NF1 and NF3 were found to exhibit parasitic activity against gram-positive Bacillus subtilis and gram-negative Acidovorax delafildii. UMB cells are tightly attached to the envelopes of the victim cells and induce their lysis, thus demonstrating the features of typical ectoparasitism. The selectivity of parasitism of the studied UMB to the victim bacteria has been shown: only two soil microorganisms of the seven test objects, B. subtilis ATCC 6633 and an aerobic gramnegative bacterium A. delafildii 39, were found to be sensitive to UMB attack. Other bacteria (Micrococcus luteus VKM Ac-2230, Staphylococcus aureus 209-P, Pseudomonas putida BS394, Escherichia coli C 600, and Pantoea agglomerans ATCC 27155) were not attacked by UMB. It was established for the first time that free-living UMB may be facultative parasites not only of phototrophic bacteria, as we have previously demonstrated [1], but of heterotrophic bacteria as well. The UMB under study seem to play an important role in the regulation of the quantity of microorganisms and in the functioning of microbial communities in some natural ecotopes.  相似文献   

3.
The effect of ultramicrobacterial epibionts of the genera Kaistia (strain NF1), Chryseobacterium (strain NF4), and Stenotrophomonas (strain FM3) on the process of sporulation of Bacillus subtilis ATCC 6633 was studied. The investigated strains of ultramicrobacteria (UMB) were found to inhibit the sporulation process of B. subtilis ATCC 6633 in binary mixed cultures, exhibiting a 3-day delay of the onset of sporulation compared to the control one, an extended period of the prospore maturation, formation of the fraction of immature spores, and development of ultrastructural defects in many endospores. Thus, investigation of binary mixed cultures of B. subtilis and UMB revealed that, apart from suppression of reproduction and lysis of host vegetative cells, inhibition of spore formation and destruction of endospores was yet another feature of intermicrobial parasitism. The UMB parasites of the studied genera are assumed to participate in the regulation of development and reproduction of B. subtilis in natural habitats of this spore-forming bacterium.  相似文献   

4.
Transmission electron and fluorescence microscopy was used to study the character of the interaction of free-living ultramicrobacterial (UMB) strains NF1 and NF3, affiliated with the genus Kaistia, and seven species of gram-positive and gram-negative heterotrophic bacteria. Strains NF1 and NF3 were found to exhibit parasitic activity against gram-positive Bacillus subtilis and gram-negative Acidovorax delafildii. UMB cells are tightly attached to the envelopes of the victim cells and induce their lysis, thus demonstrating the features of typical ectoparasitism. The selectivity of parasitism of the studied UMB to the victim bacteria has been shown: only two soil microorganisms of the seven test objects, B. subtilis ATCC 6633 and an aerobic gram-negative bacterium A. delafildii 39, were found to be sensitive to UMB attack. Other bacteria (Micrococcus luteus VKM Ac-2230, Staphylococcus aureus 209-P, Pseudomonas putida BS394, Escherichia coli C 600, and Pantoea agglomerans ATCC 27155) were not attacked by UMB. It was established for the first time that free-living UMB may be facultative parasites not only of phototrophic bacteria, as we have previously demonstrated, but of heterotrophic bacteria as well. The UMB under study seem to play an important role in the regulation of the quantity of microorganisms and in the functioning of microbial communities in some natural ecotopes.  相似文献   

5.
Neurofibromatosis type 1 (NF1) is a common monogenic disorder whereby affected individuals are predisposed to developing CNS tumors, including optic pathway gliomas (OPGs, occurring in ~15 to 20 % of cases). So far, no definite genotype–phenotype correlation determining NF1 patients at risk for tumor formation has been described, although enrichment for mutations in the 5′ region of the NF1 gene in OPG patients has been suggested. We used whole exome sequencing, targeted sequencing, and copy number analysis to screen 77 unrelated NF1 patients with (n = 41) or without (n = 36; age ≥10 years) optic pathway glioma for germline NF1 alterations. We identified germline NF1 mutations in 69 of 77 patients (90 %), but no genotype–phenotype correlation was observed. Our data using a larger patient cohort did not confirm the previously reported clustering of mutations in the 5′ region of the NF1 gene in patients with OPG. Thus, NF1 mutation location should not currently be used as a clinical criterion to assess the risk of developing OPGs.  相似文献   

6.
Sweet potato β-amylase is a tetramer of identical subunits, which are arranged to exhibit 222 molecular symmetry. Its subunit consists of 498 amino acid residues (Mr 55,880). It has been crystallized at room temperature using polyethylene glycol 1500 as precipitant. The crystals, growing to dimensions of 0.4 mm × 0.4 mm × 1.0 mm within 2 weeks, belong to the tetragonal space group P42212 with unit cell dimensions of a = b = 129.63 Å and c = 68.42 Å. The asymmetric unit contains 1 subunit of β-amylase, with a crystal volume per protein mass (VM) of 2.57 Å3/Da and a solvent content of 52% by volume. The three-dimensional structure of the tetrameric β-amylase from sweet potato has been determined by molecular replacement methods using the monomeric structure of soybean enzyme as the starting model. The refined subunit model contains 3,863 nonhydrogen protein atoms (488 amino acid residues) and 319 water oxygen atoms. The current R-value is 20.3% for data in the resolution range of 8–2.3 Å (with 2 σ cut-off) with good stereochemistry. The subunit structure of sweet potato β-amylase (crystallized in the absence of α-cyclodextrin) is very similar to that of soybean β-amylase (complexed with α-cyclodextrin). The root-mean-square (RMS) difference for 487 equivalent Cα atoms of the two β-amylases is 0.96 Å. Each subunit of sweet potato β-amylase is composed of a large (α/β)8 core domain, a small one made up of three long loops [L3 (residues 91–150), LA (residues 183–258), and L5 (residues 300–327)], and a long C-terminal loop formed by residues 445–493. Conserved Glu 187, believed to play an important role in catalysis, is located at the cleft between the (α/β)8 barrel core and a small domain made up of three long loops (L3, L4, and L5). Conserved Cys 96, important in the inactivation of enzyme activity by sulfhydryl reagents, is located at the entrance of the (α/β)8 barrel. © 1995 Wiley-Liss, Inc.  相似文献   

7.
Bacillus sp. strain MA04 a plant growth-promoting rhizobacteria (PGPR) showed hemolytic activity on blood agar plates, and the supernatant from liquid culture in nutrient broth at 24 h exhibited emulsification activity, suggesting the production of biosurfactants. In antagonist assays, the supernatant showed antifungal activity against phytopathogenic fungi such as Penicillium expansum, Fusarium stilboides, Sclerotium rolfsii y Rhizoctonia solani, finding a reduction of mycelial growth of all fungi tested, ranging from 35 to 69%, this activity was increased with time of culture, accomplishing percentages of inhibition up to 85% with supernatants obtained at 72 h. Then, the crude biorsurfactant (CB) was isolated from the supernatant in order to assay its antagonistic effect on the phytopathogens previously tested, finding an increase in the inhibition up to 97% at 500 mg/L of CB. The composition of CB was determined by infrared spectroscopy, identifying various functional groups related to lipopeptides, which were purified by high-performance liquid chromatography and analyzed by MALDI-TOF/TOF–MS, revealing a mixture of fengycins A and B whose high antifungal activity is been widely recognized. These results show that PGPR Bacillus sp. MA04 could also contribute to plant health status through the production of metabolites with antimicrobial activity.  相似文献   

8.
Two strains (NF1 and NF3) of free-living chemoorganotrophic bacteria have been isolated from multiyear oil slime and Pedilanthus tithymaloides rhizosphere and ascribed to the genus Kaistia of the class Alphaproteobacteria on the basis of the nucleotide sequences of 16S rRNA gene and phenotypic characteristics. These strains can be assigned to ultramicrobacteria as their populations are represented by two subpopulations: (1) ultrasmall cells, on average 200–300 nm in diameter and <0.1 μm3 in volume, of up to 60% of the total number of cells in a population, and (2) cells 400–800 nm in diameter and 0.15–0.5 μm3 in volume, of up to 40% of the total number of cells in a population. The interaction of the isolated ultramicrobacteria strains (IUMB) with different bacterial species has been studied in cocultures grown under starvation and in complete nutrient media. It has been found that IUMB can be facultative parasites on certain species of chemoorganotrophic and phototrophic bacteria. The interaction of IUMB with prey bacteria exhibits the extracellular type of parasitism and involves establishing stable cell–cell contacts between the parasites and their prey to cause destruction of host cells.  相似文献   

9.
Umbelliprenin (UMB) has shown various pharmacological properties in vitro. We investigated the antineoplastic and immunostimulatory effects of UMB in 4T1 mammary‐tumor‐bearing mice. Two‐hundred microliter of UMB (12.5 mg/ml) was intraperitoneally administrated to healthy and tumor‐bearing female Balb/c mice for a period of 18 days. Data was analyzed using GraphPad Prism 5 software for Windows (version 5, La Jolla, CA). UMB caused a significant decrease in tumor size (P < 0.01). Serum interferon gamma (IFNγ) was augmented in both healthy and tumor‐bearing animals (P < 0.01), and IL‐4 declined in healthy animals (P < 0.01) treated with UMB. Expressions of Ki‐67, VEGF, CD31, MMP2, MMP9, VCAM1, and NF‐κB were significantly decreased in tumors from UMB‐treated animals (P < 0.001), whereas E‐Cadherin and TNFR1 expressions were markedly increased (P < 0.001). The rates of liver and lung metastases in UMB‐administrated animals were smaller compared to the control. UMB can potently inhibit tumor growth, angiogenesis, metastasis, and inflammation and potentiate an antitumor immune response in vivo. However, further investigations are required to evaluate the UMB mechanisms of action in cancerous cells.  相似文献   

10.
Two strains (KM3 and KM5) of halophilic methylobacteria isolated from Red Sea algae do not require vitamin B12 for growth and can use methanol, methylamine, dimethylamine, trimethylamine, dimethyl sulfide, and fructose as sources of carbon and energy. The cells of these strains are gram-negative motile monotrichous (strain KM3) or peritrichous (strain KM5) rods. The strains are strictly aerobic and require Na+ ions but not growth factors. They are oxidase-and catalase-positive and reduce nitrates to nitrites. Both strains can grow in a temperature range of 4 to 37°C (with optimal growth at 29–34°C), at pH between 5.5 and 8.5 (with optimal growth at pH 7.5–8.0), and in a range of salt concentrations between 0.5 and 15% NaCl (with optimal growth at 5–9% NaCl). The phospholipids of these strains are dominated by phosphatidylethanolamine and phosphatidylglycerol and also include phosphatidylcholine, phosphatidylserine, and cardiolipin. The dominant fatty acids are C16:1ω7c and C16:0. The major ubiquinone is Q8. The cells accumulate ectoin, glutamate, and sucrose as intracellular osmoprotectants. The strains implement the 2-keto-3-deoxy-6-phosphogluconate-dependent variant of the ribulose monophosphate pathway. The G+C content of the DNA is 44.4–44.7 mol%. Analysis of the 16S rRNA genes showed that both strains belong to Gammaproteobacteria and have a high degree of homology (99.4%) to Methylophaga marina ATCC 35842T. Based on the data of polyphasic taxonomy, isolates KM3 and KM5 are identified as new strains M. marina KM3 (VKM B-2386) and M. marina KM5 (VKM B-2387). The ability of these strains to produce auxins (indole-3-acetic acid) suggests their metabolic association with marine algae.  相似文献   

11.
The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS–PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.  相似文献   

12.
13.
The potential of endophytic bacteria to act as biofertilizers and bioprotectants has been demonstrated, and considerable progress has been made in explaining their role in plant protection. In the present study, three endophytic bacterial strains (BHU 12, BHU 16 isolated from the leaves of Abelmoschus esculentus, and BHU M7 isolated from the leaves of Andrographis paniculata) were used which displayed high sequence similarity to Alcaligenes faecalis. The biofilm formation ability of these endophytic strains in the presence of okra root exudates confirms their chemotactic ability, an initial step for successful endophytic colonization. Further, reinoculation of spontaneous rifampicin-tagged mutants into okra seedlings revealed a CFU count above 105 cells g?1 of all three endophytic strains in root samples during the first 15 days of plant growth. The CFU count increased up to 1013 by 30 days of plant growth, followed by a gradual decline to approximately 1010 cells g?1 at 45 days of plant growth. Systemic endophytic colonization was further supported by 2, 3, 5-triphenyl tetrazolium chloride staining and fluorescence imaging of ds-RED expressing conjugants of the endophytic strains. The strains were further assessed for their plausible in vivo and in vitro plant growth-promoting and antagonistic abilities. Our results demonstrated that the endophytic strains BHU 12, BHU 16, and BHU M7 augmented plant biomass by greater than 40 %. Root and shoot lengths of okra plants when primed by BHU 12, BHU 16, and BHU M7 increased up to 34 and 14.5 %, respectively. The endophytic isolates also exhibited significant in vitro antagonistic potential against the collar rot pathogen Sclerotium rolfsii. In summary, our results demonstrate excellent potential of the three endophytic bacterial strains as biofertilizers and biocontrol agents, indicating the possibility for use in sustainable agriculture.  相似文献   

14.
Two strains, NF4 and NF5, of a yellow-colored gram-negative bacterium were isolated from sediments of Lake Baikal and from old oil sludge of the Nizhnekamsk oil-processing plant. The cells of the strains are ultrasmall coccoids or short rods, measuring 0.2–0.4 × 0.2–0.5 μm; the average cell volume ranges from 0.004 to 0.04 μm3. A considerable proportion (30–60%) of cells have nanometer dimensions (180–300 nm in diameter and 0.004–0.02 μm3 in volume). The new isolates are thus among the smallest representatives of presently known free-living ultramicrobacteria. The two studied isolates are gram-negative nonmotile cells possessing a pronounced outer membrane. The cells do not have flagella and are not capable of gliding motility. They divide by constriction, budding, and multiple septation. The multiplicity of reproduction mechanisms results in a high degree of cell polymorphism. The isolates are chemoorganotrophic, aerobic, psychrotolerant, oxidase- and catalase-positive. Their characteristic trait is the absence of extracellular hydrolytic enzymes, such as proteases, lipases, pectinases, and cellulases. Menaquinone MK-6 is the main respiratory quinone; the flexirubin pigment was not detected. The G + C contents of the DNA of strains NF4 and NF5 are 40.8 and 40.5 mol %, respectively. The DNA-DNA hybridization level of strains NF4 and NF5 was close to 100%. Analysis of the 16S rRNA gene sequences and the fatty acid compositions showed that the isolates are most closely related to certain representatives of the genus Chryseobacterium (C. solincola, C. antarcticum, and C. jeonii). However, the differences in the 16S rRNA gene sequences, as well as in the phenotypic properties, such as formation of ultrasmall cells, the absence of extracellular hydrolases, oligotrophy, and the capacity for epibiosis on bacterial cells, suggest that the studied strains belong to a new species of the genus Chryseobacterium. The capacity for epibiosis, i.e., the ability to exist in a tightly adhered state on the surfaces of host Bacillus subtilis cells, is a peculiar trait of the studied isolates. It is assumed that adhesion of the cells of strains NF4 and NF5 (members of the phylum Bacteroidetes) occurs via by the same unique mechanism as the mechanism that we previously described for representatives of Alphaproteobacteria (Kaistia sp., NF1, and NF3), which use polysaccharide chains equipped with sticky granules as trapping and constricting cords.  相似文献   

15.
The Fenna–Matthews–Olson (FMO) antenna protein from the green bacterium Pelodictyon phaeum mediates the transfer of energy from the peripheral chlorosome antenna complex to the membrane-bound reaction center. The three-dimensional structure of this protein has been solved using protein crystallography to a resolution limit of 2.0 Å, with R work and R free values of 16.6 and 19.9%, respectively. The structure is a trimer of three identical subunits related by a threefold symmetry axis. Each subunit has two beta sheets that surround 8 bacteriochlorophylls. The bacteriochlorophylls are all five-coordinated, with the axial ligand being a histidine, serine, backbone carbonyl, or bound water molecule. The arrangement of the bacteriochlorophylls is generally well conserved in comparison to other FMO structures, but differences are apparent in the interactions with the surrounding protein. In this structure the position and orientation of the eighth bacteriochlorophyll is well defined and shows differences in its location and the coordination of the central Mg compared to previous models. The implications of this structure on the ability of the FMO protein to perform energy transfer are discussed in terms of the experimental optical measurements.  相似文献   

16.
The structure of the intact heterotrimeric translation initiation factor 2 (e/aIF2) is of great interest due to its key role in the initiator tRNA delivery to the ribosome and in translation initiation regulation in eukaryotes and archaea. We have chosen aIF2 from the hyperthermophilic archaeobacterium Sulfolobus solfataricus (SsoIF2) as an object for crystallization and structural investigations. Genes of the SsoIF2 subunits α, β, and γ were cloned and superexpressed. A method for heterotrimer SsoIF2αβγ purification was elaborated with at least 95% purity. Highly ordered crystals of the full-sized SsoIF2, reflecting X-rays at the resolution up to 2.8 Å, were obtained for the first time.  相似文献   

17.
Lima bean (Phaseolus lunatus L.) is an important legume species that establishes symbiosis with rhizobia, mainly of the Bradyrhizobium genus. The aim of this study was to evaluate the efficiency of rhizobia of the genus Bradyrhizobium in symbiosis with lima bean, in both Leonard jars and in pots with a Latossolo Amarelo distrófico (Oxisol). In the experiment in Leonard jars, 17 strains isolated from nodules of the three legume subfamilies, Papilionoideae (Vigna unguiculata, Pterocarpus sp., Macroptilium atropurpureum, Swartzia sp., and Glycine max), Mimosoideae (Inga sp.), and Caesalpinioideae (Campsiandra surinamensis) and two uninoculated controls, one with a low concentration (5.25 mg L?1) and another with a high concentration (52.5 mg L?1) of mineral nitrogen (N) were evaluated. The six strains that exhibited the highest efficiency in Leonard jars, isolated from nodules of Vigna unguiculata (UFLA 03–144, UFLA 03–84, and UFLA 03–150), Campsiandra surinamensis (INPA 104A), Inga sp. (INPA 54B), and Swartzia sp. (INPA 86A), were compared to two uninoculated controls, one without and another with 300 mg N dm?3 (NH4NO3) applied to pots with samples of an Oxisol in the presence and absence of liming. In this experiment, liming did not affect nodulation and plant growth; the INPA 54B and INPA 86A strains stood out in terms of shoot dry matter production and provided increases of approximately 48% in shoot N accumulation compared to the native rhizobia populations. Our study is the first to indicate Bradyrhizobium strains isolated from the three legume subfamilies are able to promote lima bean growth via biological nitrogen fixation in soil conditions.  相似文献   

18.
Type VI secretion systems (T6SSs) are cell envelope-spanning protein complexes that Gram-negative bacteria use to inject a diverse arsenal of antibacterial toxins into competitor cells. Recently, Wang et al. reported that the H2-T6SS of Pseudomonas aeruginosa delivers the peptidoglycan recycling amidase, AmpDh3, into the periplasm of recipient cells where it is proposed to act as a peptidoglycan degrading toxin. They further reported that PA0808, the open reading frame downstream of AmpDh3, encodes an immunity protein that localizes to the periplasm where it binds to and inactivates intercellularly delivered AmpDh3, thus protecting against its toxic activity. Given that AmpDh3 has an established role in cell wall homeostasis and that no precedent exists for cytosolic enzymes moonlighting as T6SS effectors, we attempted to replicate these findings. We found that cells lacking PA0808 are not susceptible to bacterial killing by AmpDh3 and that PA0808 and AmpDh3 do not physically interact in vitro or in vivo. Additionally, we found no evidence that AmpDh3 is exported from cells, including by strains with a constitutively active H2-T6SS. Finally, subcellular fractionation experiments and a 1.97 Å crystal structure reveal that PA0808 does not contain a canonical signal peptide or localize to the correct cellular compartment to confer protection against a cell wall targeting toxin. Taken together, these results cast doubt on the assertion that AmpDh3-PA0808 constitutes an H2-T6SS effector–immunity pair.  相似文献   

19.
A 1000 base pair (bp) model supercoiled DNA is simulated using spherical screened Coulomb interactions between subunits on one hand and equivalent hard-cylinder interactions on the other. The amplitudes, or effective charges, of the spherical screened Coulomb electrostatic potentials are chosen so that the electrostatic potential surrounding the middle of a linear array of 2001 subunits (31.8 Å diameter) closely matches the solution of the nonlinear Poisson-Boltzmann equation for a cylinder with 12 Å radius and the full linear charge density of DNA at all distances beyond the 24 Å hard-core diameter. This superposition of spherical screened Coulomb potentials is practically identical to the particular solution of the cylindrical linearized Poisson-Boltzmann equation that matches the solution of the nonlinear Poisson-Boltzmann equation at large distances. The interaction energy between subunits is reckoned from the effective charges according to the standard DLVO expression. The equivalent hard-cylinder diameter is chosen following Stigter's protocol for matching second virial coefficients, but for the full linear charge density of DNA. The electrostatic persistence length of the model with screened Coulomb interactions is extremely sensitive to the (arbitrarily) chosen subunit length at the higher salt concentrations. The persistence length of the hard-cylinder model is adjusted to match that of the screened Coulomb model for each ionic condition. Simulations for a superhelix density σ = -0.05 using a spherical screened Coulomb interaction plus a 24 Å hard-cylinder core (SCPHC) potential indicate that the radius of gyration of this 1000 bp DNA actually undergoes a slight increase as the NaCl concentration is raised from 0.01 to 1.0M. Thus, merely softening the potential from hard-cylinder to screened Coulomb form does not produce a large decrease in radius of gyration with increasing NaCl concentration for DNAs of this size. Radii of gyration, static structure factors, and diffusion coefficients obtained using the equivalent hard-cylinder (EHC) potential agree well with those obtained using the SCPHC potential in 1.0M NaCl, but in 0.1M NaCl the agreement is not as good, and in 0.01M NaCl the agreement is definitely unsatisfactory. These conclusions differ in significant respects from those obtained in previous studies. © 1997 John Wiley & Sons, Inc. Biopoly 42: 455–470, 1997  相似文献   

20.
The study evaluates the survivability and storage stability of seven Trichoderma strains belonging to the species: T. harzianum (1), T. atroviride (4), and T. virens (2) after the lyophilization of their solid state cultures on wheat straw. Biomass of Trichoderma strains was freeze-dried with and without the addition of maltodextrin. Furthermore, in order to determine the ability of tested Trichoderma strains to preserve selected technological features, the biosynthesis of extracellular hydrolases (cellulases, xylanases, and polygalacturonases) after a 3-month storage of lyophilizates was investigated. Strains of T. atroviride (except TRS40) and T. harzianum TRS85 showed the highest viability after lyophilization process (up to 100%). After 3 months of storage, T. atroviride TRS14 exhibited the highest stability (95.23%); however, the number of active conidia remained at high level of 106–107 cfu/g for all tested T. atroviride strains and T. harzianum TRS85. Interestingly, after a 3-month storage of lyophilized formulations, most of the tested Trichoderma strains exhibited higher cellulolytic and xylanolytic activities compared to the control, i.e., before freeze-drying process. The highest activities of these enzymes exhibited the following: T. atroviride TRS14–2.37 U/g and T. atroviride TRS25–21.47 U/g, respectively, whereas pectinolytic activity was weak for all tested strains, with the highest value of 0.64 U/g registered for T. virens TRS109.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号