首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Bohrer KE  Friese CF  Amon JP 《Mycorrhiza》2004,14(5):329-337
The dynamics and role of arbuscular mycorrhizal fungi (AMF) have been well described in terrestrial ecosystems; however, little is known about how the dynamics of AMF are related to the ecology of wetland ecosystems. The seasonal dynamics of arbuscular mycorrhizal (AM) colonization within different wetland habitats were examined in this study to determine the factors that influence AM associations and to further assess the ecological role of AMF in wetlands. Fen and marsh habitats of four wetlands in west central Ohio were sampled monthly from March to September. AMF were found at all four sites for each month sampled and were present in all of the dominant plant species. A significant effect of month (P<0.001) on AM colonization did occur and was attributable to maximum colonization levels in the spring and minimum levels in late summer. This trend existed in all four wetlands in both fen and marsh habitats, regardless of variation in water levels, percent soil moisture, or available phosphorus levels. Because abiotic factors had minimal influence on AM colonization variation and the level of AM colonization paralleled plant growth patterns, we conclude that the AM seasonal dynamic was in response to plant phenology. Our data suggest that AM associations in temperate fen and marsh habitats are prevalent in the spring during new root and vegetative growth, even for plants experiencing flooded conditions. Evidence of an overriding AM seasonal trend indicates that future studies should include a seasonal component to better assess the role and distribution of AMF in wetland ecosystems.  相似文献   

2.
This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5–8% and 25–30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.  相似文献   

3.
A fundamental goal of restoration is the re-establishment of plant diversity representative of native vegetation. However, many prairie restorations or Conservation Reserve Program sites have been seeded with warm-season grasses, leading to grass-dominated, low-diversity restorations not representative of native grasslands. These dominant grasses are strongly mycotrophic, while many subordinate forb species appear to be less dependent on mycorrhizal symbiosis. Therefore, manipulating arbuscular mycorrhizal fungi (AMF) may be useful in promoting establishment and growth of forb species in grass-dominated prairie restorations. To assess the potential role of mycorrhizae in affecting the productivity and community composition of restored tallgrass prairie, we conducted a 4-year field experiment on an 8-year-old grassland restoration at the Konza Prairie in northeastern Kansas, USA. At the initiation of our study, seeds of 12 forb species varying in degree of mycorrhizal dependence were added to established grass-dominated plots. Replicate plots were treated bi-weekly with a soil drench of fungicide (Topsin-M®) over four growing seasons and compared to non-treated control plots to assess the role of AMF in affecting plant species composition, productivity, leaf tissue quality, and diversity in restored tallgrass prairie. Topsin applications successfully reduced mycorrhizal colonization of grass roots to approximately 60–80% relative to roots in control plots. Four years of mycorrhizal suppression reduced productivity of the dominant grasses and increased plant species richness and diversity. These results highlight the importance of mycorrhizae as mediators of plant productivity and community dynamics in restored tallgrass prairie and indicate that temporarily suppressing AMF decreases productivity of the dominant C4 grasses and allows for establishment of seeded forb species.  相似文献   

4.
Little of the historical extent of tallgrass prairie ecosystems remains in North America, and therefore there is strong interest in restoring prairies. However, slow‐growing prairie plants are initially weak competitors with the fast‐growing yet short‐lived weedy plant species that are typically abundant in recently established prairie restorations. One way to aid establishment of slow‐growing plant species is through adding soil amendments to prairie restorations before planting. Arbuscular mycorrhizal (AM) fungi form mutualisms with the roots of most terrestrial plants and are particularly important for the growth of slow‐growing prairie plant species. As prairie ecosystems are adapted to fires that leave biochar (charred organic material) in the soil, adding biochar as well as AM fungal strains from undisturbed remnant prairies into the soil of prairie restorations may improve restoration outcomes. Here, we test this prediction during the first four growing seasons of a prairie restoration. When prairie plant seedlings were inoculated prior to planting into the field with AM fungi derived from remnant prairies, that one‐time inoculation significantly increased growth of five of the nine tested plant species through at least two growing seasons. This long‐term benefit of AM fungal inoculation was unaffected by biochar addition to the soil. Biochar application rates of at least 10 tons/ha significantly decreased Coreopsis tripteris growth but acted synergistically with AM fungal inoculation to significantly improve survival of Schizachyrium scoparium. Overall, inoculation with native AM fungi can help promote prairie plant establishment, but concomitant use of biochar soil amendments had relatively little effect.  相似文献   

5.
The strength and direction of plant response to inoculation with arbuscular mycorrhizal fungi (AM fungi) is dependent on both abiotic and biotic contexts, often generating patterns of AM fungal mediation of plant adaptation. However, knowledge of plant‐community level effects of these interactions in grassland restoration is limited. We conducted a field inoculation experiment by inoculating five plant species native to a drier prairie and five plant species native to a moister prairie with mycorrhizal fungal communities from each prairie type. Species were paired by genus or family to account for phylogenetic effects. The inoculated plants were transplanted to study plots seeded with a restoration seed mix. Plots were manipulated to create either moister or drier conditions similar to environments of the plant species and mycorrhizal communities. In both transplanted and seeded plant species, we found that only drier prairie‐range species benefited from moisture‐regime matched AM fungal inoculum. Other seeded prairie plant species demonstrated a negative response to inoculation, likely due to the earlier successional stage of these species. Additionally, nonseeded plants benefited from inoculation in different ways: native nonseeded plants had highest cover with drier prairie inoculum in drier conditions, while nonnative plants had highest cover with moister prairie‐origin inoculum. These results suggest that use of local AM fungi may be particularly important in restorations at drier sites, even at relatively small differences in moisture availability. Further, specific knowledge of relative responsiveness of seeded plant species and nonseeded plant species to AM fungal inoculation will be useful in planning restorations.  相似文献   

6.
Soil organisms play important roles in regulating ecosystem-level processes and the association of arbuscular mycorrhizal (AM) fungi with a plant species can be a central force shaping plant species' ecology. Understanding how mycorrhizal associations are affected by plant invasions may be a critical aspect of the conservation and restoration of native ecosystems. We examined the competitive ability of old world bluestem, a non-native grass (Caucasian bluestem [Bothriochloa bladhii]), and the influence of B. bladhii competition on AM root colonization of native warm-season prairie grasses (Andropogon gerardii or Schizachyrium scoparium), using a substitutive design greenhouse competition experiment. Competition by the non-native resulted in significantly reduced biomass production and AM colonization of the native grasses. To assess plant-soil feedbacks of B. bladhii and Bothriochloa ischaemum, we conducted a second greenhouse study which examined soil alterations indirectly by assessing biomass production and AM colonization of native warm-season grasses planted into soil collected beneath Bothriochloa spp. This study was conducted using soil from four replicate prairie sites throughout Kansas and Oklahoma, USA. Our results indicate that a major mechanism in plant growth suppression following invasion by Bothriochloa spp. is the alteration in soil microbial communities. Plant growth was tightly correlated with AM root colonization demonstrating that mycorrhizae play an important role in the invasion of these systems by Bothriochloa spp. and indicating that the restoration of native AM fungal communities may be a fundamental consideration for the successful establishment of native grasses into invaded sites.  相似文献   

7.
Anthropogenic drainage causes loss of natural character in herbaceous wetlands due to increased soil oxygen penetration. We related vegetation gradients in a New Zealand polje fen to long-term effects of drains by using hydrological, edaphic and vegetation data, and a before-after-control-impact (BACI) design to test responses to experimental drain closure. Soil profiles and continuous water level records revealed a site subject to frequent disturbance by intense but brief floods, followed by long drying periods during which areas close to drains experienced lower water tables and more variable water levels. Classification of vegetation data identified 12 groups along a moisture gradient, from dry areas dominated by pastoral alien species, to wet communities dominated by native wetland sedges. Lower total species diversity and native representation in pastoral communities were related to the high proportion of alien competitor and competitor-disturbance species, compared with the stress tolerator-dominated flora of other groups. Species–environment relationships revealed highly significant correlations with soil water content and aeration as measured by redox potential (EH) and steel rod oxidation depth, as well as soil nutrient content and bulk density. Comparison of root anatomy confirmed greater development of flood-tolerant traits in native species than in pastoral aliens, and vegetation N:P ratios indicated that most communities were probably nitrogen-limited. Flooding rapidly re-established wetland hydrology in dried sites in the impact area, and lowered EH and soil oxidation depth, but had no effect on N and P availability. Presence and cover of pastoral alien species decreased in these areas. This study supports the use of hydrological manipulation as a tool for reducing soil oxidation and thus the impact of alien plant species at restoration sites with minimal intervention, but suggests the need for detailed information on species flooding tolerances and hydrological preferences to underpin this approach.  相似文献   

8.
特殊生境中丛枝菌根真菌多样性   总被引:2,自引:0,他引:2  
李素美  王银桥  刘润进 《生态学杂志》2013,24(11):3325-3332
丛枝菌根真菌(AMF)是生态系统的重要组分之一,不仅具有丰富的遗传、物种和功能多样性,而且还具有生态系统多样性,即该真菌的分布与栖息生境复杂多样.AMF侵染植物根系形成菌根,营专性活体共生营养,生态适应性强,除了森林、草原和农田生态系统外,还广泛分布于保护地、盐碱地、矿区污染地、石化与农药污染地、荒漠地、干旱地、湿地、沼泽地、火山地、高原、低温与极地等植物多样性匮乏的特殊生境,形成独特的群落结构,发挥着不可替代的生理生态功能.本文总结了上述生境中AMF物种多样性与菌根发育特点,旨在为进一步开展这些特殊生境和极端环境下的AMF研究提供基本信息.  相似文献   

9.
Arbuscular mycorrhizal and dark septate endophytic fungal colonization in a grassland in Kunming, southwest China, was investigated monthly over one year. All plant roots surveyed were co-colonized by arbuscular mycorrhizal and dark septate endophytic fungi in this grassland. Both arbuscular mycorrhizal and dark septate endophytic fungal colonization fluctuated significantly throughout the year, and their seasonal patterns were different in each plant species. The relationships between environmental (climatic and edaphic) factors and fungal colonization were also studied. Correlation analysis demonstrated that arbuscular mycorrhizal colonization was significantly correlative with environmental factors (rainfall, sunlight hours, soil P, etc.), but dark septate endophytic fungal colonization was only correlative with relative humidity and sunlight hours.  相似文献   

10.
Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative plant traits on moisture, nutrient regime and seed dispersal in three case studies of re wetted vs. control wetlands with the same actual groundwater levels. Soil conditions included mineral (calcareous and non‐calcareous) soils with no initial vegetation, mineral soils with established vegetation and organic soils with vegetation. Results: The responsiveness of traits to raised groundwater tables was related to soil type and vegetation presence and depended on actual groundwater levels. In the moist‐wet zone, oligotrophic species, ‘drier’ species with higher seed longevity occupied gaps created by vegetation dieback on rewetting. The other rewetted zones still reflected trait values of the vegetation prevalent prior to rewetting with fewer adaptations to wet conditions, increased nutrient richness and higher seed longevity. Moreover, ‘eutrophic’ and ‘drier’ species increased at rewetted sites, so that these restored sites became dissimilar to control wetlands. Conclusions: The prevalent traits of the restored wetlands do not coincide with traits belonging to generally targeted plant species of wetland restoration. Long‐term observations in restored and control wetlands with different groundwater regimes are needed to determine whether target plant species eventually re vegetate restored wetlands.  相似文献   

11.
I compared growth and arbuscular mycorrhizal fungal (AMF) colonization of two prairie grasses (Wild rye [Elymus canadensis] and Little bluestem [Schizachyrium scoparium]), an early‐ and a late‐dominating species in prairie restorations, respectively, grown in soil from restored prairies of differing age, soil characteristics, and site history. There were no consistent patterns between restoration age and soil inorganic nutrients or organic matter. The oldest restoration site had higher soil mycorrhizal inoculum potential (MIP) than 2‐ and 12‐year‐old restorations. However, MIP did not translate into actual colonization for two species grown in soils from the three restorations, nor did MIP relate to phosphorus availability. There were significant differences in root mass and colonization among Wild rye plants but not among Little bluestem plants grown in soils from the three restorations. Wild rye grown in 2‐year‐old restoration soil had significantly higher AMF colonization than when it was grown in soils from the 12‐ and 17‐year‐old restorations. Wild rye grown in 2‐year‐old restoration soil also had higher colonization than Little bluestem grown in 2‐ and 12‐year‐old restoration soils. Little bluestem had no significant correlations between shoot biomass, root biomass or colonization, and concentrations of soil P, total N, or N:P. However, for Wild rye, total soil N was positively correlated with root mass and negatively correlated with colonization, suggesting that in this species, mycorrhizae may affect N availability. Collectively, these results suggest that soil properties unrelated to restoration age were important in determining differences in growth and AMF colonization of two species of prairie grasses.  相似文献   

12.
The trajectory of forests establishing on reclaimed oil sands mines in the Canadian boreal forest is uncertain. Soil microbes, namely mycorrhizal fungi, partly underlie successional trajectories of plant communities, yet their role in restoration is often overlooked. Here, we tested the relative importance of common management tools used in restoration—species planted and soil placement—on the recovery of ectomycorrhizal fungal communities over 4 years. Importantly, we further compared the community assembly of fungi on reclaimed landscapes to that in reference ecosystems disturbed to different degrees. This latter test addresses whether disturbance intensity is more important than common management interventions to restore fungal communities in these ecosystems. Three main findings emerged. (1) The effect of tree species planted and soil placement on ectomycorrhizal fungal communities establishing on reclaimed landscapes was dynamic through time. (2) Disturbances that remove or disrupt the organic layer of soils substantially affect the composition of ectomycorrhizal fungal communities. (3) Shifts in the community composition of ectomycorrhizal fungi were driven to a greater extent by disturbance severity than either tree species planted or soil placement.  相似文献   

13.
The presence of arbuscular mycorrhizas in fens has received little attention, but because fen plants are often phosphorus limited, the plant-fungus interaction could be an important factor in plant competition for phosphorus. In this field study, we determined mycorrhizal colonization rates for 18 fen plant species. Also in the field, we examined the effect of four different forms of phosphorus on the percentage colonization for one fen plant species, Solidago patula. We found that in a species-rich, phosphorus-poor wetland both mycorrhizal and nonmycorrhizal species were common. Nine of ten dicotyledonous species examined formed arbuscular mycorrhizas, while all monocotyledonous species were at most very weakly mycorrhizal. A morphological explanation for this pattern is that the monocots in our study have more extensive aerenchyma, especially in coarse roots. Therefore, monocots are able to transport oxygen to their roots more effectively than dicots. In the organic wetland soil, additional oxygen in the rhizosphere promotes phosphorus mineralization and availability. Two of the monocot species (Typha latifolia and Carex lasiocarpa), which have been described previously as mycorrhizal in other wetland types, are surprisingly nonmycorrhizal in our phosphorus-poor study site, suggesting that a mycorrhizal association would not offer improved phosphorus nutrition to these species. In contrast, our field phosphorus addition decreased mycorrhizal colonization in S. patula, suggesting that one benefit to S. patula of the mycorrhizas is phosphorus uptake.  相似文献   

14.
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts.  相似文献   

15.
Ecological restoration is increasingly used to reverse degradation of rare ecosystems and maintain biological diversity. Pollinator communities are critical to maintenance of plant diversity and, in light of recent pollinator loss, we tested whether removal of invasive glossy buckthorn (Frangula alnus L.) from portions of a prairie fen wetland altered plant and pollinator communities. We compared herbaceous plant, bee, and butterfly abundance, diversity, and species composition in buckthorn invaded, buckthorn removal, and uninvaded reference plots. Following restoration, we found striking differences in plant and pollinator abundance and species composition between restored, unrestored, and reference plots. Within 2 years of F. alnus removal, plant species diversity and composition in restored plots were significantly different than invaded plots, but also remained significantly lower than reference plots. In contrast, in the first growing season following restoration, bee and butterfly abundance, diversity, and composition were similar in restored and reference plots and distinct from invaded plots. Our findings indicate that a diverse community of mobile generalist pollinators rapidly re‐colonizes restored areas of prairie fen, while the plant community may take longer to fully recover. This work implies that, in areas with intact pollinator metapopulations, restoration efforts will likely prevent further loss of mobile generalist pollinators and maintain pollination services. On the other hand, targeted restoration efforts will likely be required to restore populations of rare plants and specialist pollinators for which local and regional species pools may be lacking.  相似文献   

16.
Mycorrhizae are important in the functioning of forest ecosystems worldwide, and play a critical role in water uptake, nutrient acquisition, and prevention of feeder root disease. The majority of mycorrhizal research has been conducted on upland sites, especially in coniferous ecosystems and in commercial agricultural production. However, the maintenance and restoration of bottomland hardwood (BLH) forest ecosystems in the southern United States is of increasing concern. Both ectomycorrhizae and endomycorrhizae are present in BLH forests, although the dominance of one or the other type depends primarily on both the tree species and the hydrologic regime. Ectomycorrhizae tend to be more sensitive to flooding, while endomycorrhizal infection can be present even in permanently flooded soils. The mycorrhizae of sweetgum (Liquidambar styraciflua), green ash (Fraxinus pennsylvanica), and the oaks (Quercus spp.) have been studied most due to their economic importance.Considerable work is still needed to better understand mycorrhizal relationships in BLH ecosystems and associated trees, both with respect to infectivity and nutrient cycling. Such information may be necessary for restoration of BLH forests on old agricultural fields, or to maintain the productivity of BLH forests after harvest. This paper summarizes studies on mycorrhizae relationships in BLH forests and suggests future work necessary for understanding the role mycorrhizae can have in managing these ecosystems.  相似文献   

17.
草原区河流河漫滩草甸是生物多样性表现最充分和生物生产力最高的地段, 但由于过度放牧利用, 绝大部分草甸处于退化状态。该文以锡林河流域中游的河漫滩草甸为研究对象, 比较分析了围封保育湿地与放牧退化湿地的群落组成、地上生物量, 以及共有植物种的植株高度、节间长、叶长、叶宽, 土壤含水量、容重, 群落地下根量及根的分布, 土壤微生物生物量碳、氮的变化。结果表明: 1)放牧使得湿地植物群落优势种发生变化, 原有湿生植物逐渐向旱生化转变, 同时地上及地下生物量明显降低。2)退化湿地的植物呈现显著小型化现象。3)放牧退化湿地的土壤含水量较围封保育湿地低, 其垂直分布及地下根的垂直分布也发生变化。在低河漫滩, 土壤水分随土层的增加而增加, 根量也趋于深层化。但在高河漫滩湿地, 土壤含水量接近典型草原, 根未出现深层化分布趋势。4)放牧践踏引起土壤容重和土壤紧实度增加。5)放牧使得低河漫滩湿地土壤微生物生物量增加, 而在过渡区及高河漫滩湿地, 放牧使得土壤微生物生物量碳、氮含量显著降低。  相似文献   

18.
Although wetland plant species usually aggregate into zones that correspond with their water depth/dryness tolerances, it is not known whether associated arbuscular mycorrhizal (AM) fungi show a similar zonation. We assessed the distribution of AM fungi in two similar depressional wetlands dominated by the semi-aquatic grass Panicum hemitomon by sampling soil in plots along dry-to-wet gradients that spanned 80 cm in relative elevation, and identifying/counting viable AM fungal spores. We found that eight of nine AM fungal species were common to both of the wetlands. Within each wetland, there were significant differences in species composition related to relative water depth. The zonation patterns were not identical between wetlands but revealed that certain species were relegated to the drier portions of the gradient in both. No species were relegated to only the wet portions of the wetlands; those that dominated there were also present in the drier areas. Our data show that water depth is an important factor determining the distribution of the AM fungi, even when, as in our study wetlands, the host plant remains constant along a dry-to-wet gradient. This suggests that the fungi are not physiologically equivalent in their tolerance to wetland conditions. Received: 9 October 1998 / Accepted: 24 February 1999  相似文献   

19.
Prairie fen is a globally rare, groundwater dependent peatland community restricted to discrete portions of the glaciated north central USA. Prairie fen harbours a diverse flora composed of sedge wetland and tallgrass prairie species, which in turn support a diversity of rare insects. In Michigan, USA over 20% of the state’s insects of conservation concern are associated with prairie fen, including the globally imperilled Mitchell’s satyr butterfly, Neonympha mitchellii mitchellii (Lepidoptera: Nymphalidae). Here we investigate how global change drivers, including land use change, climate change, and invasive species, may interact to threaten this important community. Specifically, we examine how characteristics of prairie fen habitats—e.g., formation and distribution—interact with the biology of rare fen insects to suggest appropriate short to long term conservation strategies. Our results suggest that prairie fen associated insects are rare for a variety of reasons, including host plant specialization, habitat specialization, and shifting landscape context that limits opportunities for dispersal. We recommend that current conservation efforts focus on stabilization and restoration of existing prairie fens, coupled with directed surveys to monitor population change in insects of concern, and restoration of the landscape matrix to facilitate metapopulation dynamics. In the future, due to the severely fragmented nature of Michigan landscapes, captive rearing and assisted migration may be necessary to conserve some prairie fen insect species. Overall, the effective conservation of fen associated insects will require a shared vision by multiple actors and a willingness to purse that vision over a long time frame.  相似文献   

20.
Complex relationships occur among plants, mycorrhizal fungi, and herbivores. By altering plant nutrient status, mycorrhizas may alter herbivory or plant tolerance to herbivory via compensatory regrowth. We examined these interactions by assessing grasshopper preference and plant growth and fungal colonization responses to herbivory under mycorrhizal and non‐mycorrhizal conditions within tallgrass prairie microcosms. Mycorrhizal symbiosis increased plant regrowth following defoliation, and some strongly mycotrophic plant species showed overcompensation in response to herbivory when they were mycorrhizal. Although grasshoppers spent more time on mycorrhizal plants, herbivory intensity did not differ between mycorrhizal and non‐mycorrhizal plants. Aboveground herbivory by grasshoppers significantly increased mycorrhizal fungal colonization of plant roots. Thus mycorrhizas may greatly benefit plants subjected to herbivory by stimulating compensatory growth, and herbivores, in turn, may increase the development of the symbiosis. Our results also indicate strong interspecific differences among tallgrass prairie plant species in their responses to the interaction of aboveground herbivores and mycorrhizal symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号