首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian immune responses to Trypanosoma brucei infection are important to control of the disease. In rats infected with T. brucei gambiense (Wellcome strain; WS) or T. brucei brucei (interleukin-tat 1.4 strain [ILS]), a marked increase in the number of macrophages in the spleen can be observed. However, the functional repercussions related to this expansion are not known. To help uncover the functional significance of macrophages in the context of trypanosome infection, we determined the mRNA levels of genes associated with an increase in macrophage number or macrophage function in WS- and ILS-infected rats and in cultured cells. Specifically, we assayed mRNA levels for macrophage colony stimulating factor (M-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage migration inhibitory factor (MIF). Upregulation of GM-CSF and MIF mRNA levels was robust in comparison with changes in M-CSF levels in ILS-infected rats. By contrast, upregulation of M-CSF was more robust in WS-infected rats. The phagocytic activity in macrophages harvested from ILS-infected rat spleens, but not WS-infected spleens, was higher than that in macrophages from uninfected rats. These results suggest that macrophages of WS-infected rats change to an immunosuppressive type. However, when WS or ILS is cocultured with spleen macrophages or HS-P cells, a cell line of rat macrophage origin, M-CSF is upregulated relative to GM-CSF and MIF in both cell types. Anemia occurs in ILS-, but not WS-infected, rats. Treatment of spleen macrophages or HS-P cells cocultured with ILS with cobalt chloride, which mimics the effects of anemia-induced hypoxia, led to downregulation of M-CSF mRNA levels, upregulation of GM-CSF and MIF, and an increase in phagocytic activity. However, the effect of cobalt chloride on spleen macrophages and HS-P cells cocultured with WS was restricted. These results suggest that anemia-induced hypoxia in ILS-infected rats stimulates the immune system and activates macrophages.  相似文献   

2.
Feeding polyamine-deficient chow (PDC) to rats decreases blood polyamines, increases the activity of ornithine decarboxylase as an index of polyamine production, and increases resistance to Trypanosoma brucei gambiense (Wellcome strain) (WS) infection. In this study, we investigated the influence on cytokine and nitric oxide (NO) production of feeding PDC to rats infected with WS. At 4 days postinfection with WS, serum concentration of interleukin (IL)-12, tumor necrosis factor-alpha, interferon-gamma, IL-10, and NO increased in PDC-fed rats; however, IL-12 concentration in normal chow (NC)-fed rats did not increase. In spleen cells cocultured with WS, levels of IL-12 and inducible NO synthase (NOS) mRNA expression were higher in PDC-fed rats than in NC-fed rats. Proliferation of WS in coculture with spleen cells from PDC-fed rats was inhibited, but inhibition of WS proliferation was not observed when an NOS inhibitor was added into the culture media. Ornithine decarboxylase (ODC) activity increased in NC-fed rats after WS infection, but decreased in PDC-fed rats. These results show that feeding WS-infected rats PDC influences the production of cytokines such as IL-12 and the regulation of NO and polyamine production, and also leads to an increase in resistance against WS.  相似文献   

3.
4.
Here we show that CD40L (ligand for CD40) failed to induce the production of tumour necrosis factor alpha (TNF-alpha), interleukin (IL-)-1 beta, IL-10 and IL-12 in macrophages matured in vitro in the absence of growth factors or in the presence of macrophage colony-stimulating factor (M-CSF). In contrast, enzyme-linked immunoabsorbent assay (ELISA) testing and cytofluorimetric (FACS) analysis demonstrated significant production of TNF-alpha and IL-1 beta, but not of IL-10 and IL-12 in macrophages maturated in the presence of CD40L and re-stimulated with CD40L. The priming effect of CD40L on TNF-alpha and IL-1 beta production was related to induction of CD40 expression. Finally, CD40L priming did not modify the cytokine response of macrophages to lipopolysaccharide. In conclusion, our results suggest that CD40/CD40L interactions are important for the activation of macrophages as effector cells that mediate inflammation and tissue damage in T cell-mediated inflammatory processes.  相似文献   

5.
There are clones of myeloid leukemic cells that can be induced to undergo terminal cell differentiation to macrophages by normal hemopoietic regulatory proteins. Induction of differentiation in two different clones of myeloid leukemic cells with interleukin 6 (IL-6) or granulocyte-macrophage colony-stimulating factor (GM-CSF) resulted in induction of mRNA for the hemopoietic regulatory proteins IL-6, GM-CSF, interleukin 1 alpha and interleukin 1 beta, tumor necrosis factor, and transforming growth factor beta 1. In one of these clones, induction of differentiation with GM-CSF was also associated with induction of mRNA for macrophage colony-stimulating factor (M-CSF) but not for the receptor for M-CSF (c-fms), whereas in the other clone, induction of differentiation with IL-6 was associated with induction of mRNA for both c-fms and M-CSF. The clones also differed in their responsiveness to these regulators. There was no induction of mRNA for granulocyte colony-stimulating factor or interleukin 3 during differentiation of either clone. The results indicate that the genes for a nearly normal network of positive and negative hemopoietic regulatory proteins are induced during differentiation of these myeloid leukemic cells and that there are leukemic clones with specific defects in this network.  相似文献   

6.
Caprine arthritis encephalitis virus (CAEV) is a lentivirus of goats that leads to chronic mononuclear infiltration of various tissues, in particular, the radiocarpal joints. Cells of the monocyte/macrophage lineage are the major host cells of CAEV in vivo. We have shown that infection of cultured goat macrophages with CAEV results in an alteration of cytokine expression in vitro. Constitutive expression of interleukin 8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) was increased in infected macrophages, whereas transforming growth factor beta1 (TGF-beta1) mRNA was down-regulated. When macrophages were infected with a CAEV clone lacking the trans-acting nuclear regulatory gene tat, IL-8 and MCP-1 were also increased. No significant differences from cells infected with the wild-type clone were observed, suggesting that Tat is not required for the increased expression of IL-8 and MCP-1 in infected macrophages. Furthermore, infection with CAEV led to an altered pattern of cytokine expression in response to lipopolysaccharide (LPS), heat-killed Listeria monocytogenes plus gamma interferon, or fixed cells of Staphylococcus aureus Cowan I. In infected macrophages, tumor necrosis factor alpha, IL-1beta, IL-6, and IL-12 p40 mRNA expression was reduced in response to all stimuli tested whereas changes in expression of granulocyte-macrophage colony-stimulating factor depended on the stimulating agent. Electrophoretic mobility shift assays demonstrated that, in contrast to effects of human immunodeficiency virus infection of macrophages, CAEV infection had no effect on the level of constitutive nuclear factor-kappaB (NF-kappaB) activity or on the level of LPS-stimulated NF-kappaB activity, suggesting that NF-kappaB is not involved in altered regulation of cytokine expression in CAEV-infected cells. In contrast, activator protein 1 (AP-1) binding activity was decreased in infected macrophages. These data show that CAEV infection may result in a dysregulation of expression of cytokines in macrophages. This finding suggests that CAEV may modulate the accessory functions of infected macrophages and the antiviral immune response in vivo.  相似文献   

7.
Recently, we found that resident peritoneal macrophages produce MIP-2, one of the major chemokines for neutrophils, upon coculturing with late apoptotic cells, and that intraperitoneal injection of late apoptotic cells into the peritoneal cavity causes neutrophil infiltration via MIP-2. It is not known, however, whether or not macrophages are heterogeneous in such MIP-2 production. In this study, we examined changes in the surface phenotype during the differentiation of bone marrow cells into macrophages due to M-CSF and GM-CSF, and then examined the production of cytokines, namely IL-12 p40, MIP-2, IL-10, and TGF-β, following phagocytosis of late apoptotic cells with these macrophages or LPS stimulation of these macrophages. GM-CSF and M-CSF induced macrophage populations with distinct but overlapping cell surface phenotype. Although these macrophages phagocytosed late apoptotic cells to a similar extent, they produced either IL-12 p40 or IL-10, whereas they produced MIP-2 to a similar extent after the coculture, raising the possibility that late apoptotic cells may induce neutrophil infiltration in any organs, such as the liver and lungs, where the macrophages are differentiated by either M-CSF or GM-CSF, respectively.  相似文献   

8.
J Marcelletti  P Furmanski 《Cell》1979,16(3):649-659
Resident peritoneal macrophages from normal mice were refractory to infection with the RFV or conventional strains of Friend virus (FV). Stimulation of DNA synthesis in the macrophage population by induction of an exudate in vivo or treatment in vitro with macrophage colony-stimulating factor resulted in productive infection following exposure to virus. Similarly, normal resident macrophages did not become infected in vivo following transfer to leukemic mice, while exudate macrophages did become infected. Bone marrow macrophage stem cells were stimulated to replicate and mature in clonal agar cultures in the presence of colony-stimulating factor. These replicating stem cells could be infected with RFV, as shown by virus production in the resultant progeny macrophages. Transfer of normal resident peritoneal macrophages to leukemic progressor mice caused regression of the disease. In contrast, transfer of normal bone marrow cells was ineffective in causing leukemia regression. During erythroleukemogenesis induced by RFV, macrophage precursor cells in all of the mice became infected with virus. In mice with a progressive and lethal leukemia, mature end-stage macrophages were produced which were also infected with virus. In mice in which the leukemia would later spontaneously regress, the infected stem cells were eliminated and the marrow became repopulated with uninfected cells. The resultant progeny macrophages which appeared in the peritoneal cavity were uninfected and thus capable of participating in or causing leukemia regression.  相似文献   

9.
Trypanosome-derived lymphocyte-triggering factor (TLTF) produced by Trypanosoma brucei brucei stimulates production of interferon-gamma (IFN-gamma) by CD8+ T cells, and it is reported that, in turn, IFN-gamma stimulates proliferation of T. b. brucei. We studied the role of TLTF in trypanosome proliferation using the Wellcome strain (WS) of Trypanosoma brucei gambiense and the ILtat 1.4 strain (IL) of T. b. brucei. Increase in the number of WS in infected rats is more rapid than IL and corresponds with comparatively higher levels of IFN-gamma. Production of IFN-gamma, as measured by protein and messenger RNA (mRNA) levels, was maintained by splenocytes from WS-infected rats, whereas levels decreased in IL-infected rats, accompanied by prolongation of infection. Expression of TLTF mRNA by in vitro-cultured WS was promoted in a dose-dependent fashion by addition of recombinant rat IFN-gamma at all concentrations tested. The addition of lower concentrations of IFN-gamma to cultured IL increased expression of TLTF mRNA, whereas, in contrast to WS, addition of 100 and 1,000 U/ml IFN-gamma decreased expression of TLTF by IL. These results show that unlike WS, elevated IFN-gamma concentrations lead to decreased TLTF production by IL. It is believed that decreased TLTF production in IL-infected rats leads to lowered IFN-gamma production, thereby slowing IL proliferation.  相似文献   

10.
A D Foey  M Feldmann  F M Brennan 《Cytokine》2001,16(4):131-142
Interleukin 10 (IL-10) is an anti-inflammatory cytokine produced in the rheumatoid arthritis (RA) joint by macrophages/monocytes and infiltrating peripheral blood derived lymphocytes. Recent data suggest a role for physical cell-to-cell interactions in the production of IL-10. In this report, we have investigated the signalling mechanisms involved in IL-10 production by peripheral blood-derived macrophages upon interaction with fixed CD40L transfectants. IL-10 and tumour necrosis factor alpha (TNF-alpha) are produced by macrophage colony-stimulating factor (M-CSF)-primed monocytes/macrophages in response to CD40 ligation. The utilization of the inhibitors, wortmannin and LY294002, demonstrated a role for phosphatidylinositol 3-kinase (PI3K) whereas rapamycin demonstrated p70 S6-kinase (p70S6K) involvement in the production of IL-10 by these monocytes. The production of TNF-alpha was enhanced by wortmannin and LY294002, suggesting negative regulation by PI3K; however, it was dependent on p70S6K suggesting a PI3K-independent mechanism of p70S6K activation. One alternative pathway that activates p70S6K independently of PI3K and also differentiates between IL-10 and TNF-alpha is the p42/44 mitogen-activated protein kinase (MAPK), which regulates TNF-alpha production in a PI3K-independent manner. These observations suggest that CD40 ligation induces macrophage IL-10 and TNF-alpha production, the mechanism of which is p70S6K-dependent yet bifurcates at the level of PI3K and p42/44 MAPK.  相似文献   

11.
The ability of purified human macrophage colony-stimulating factor (M-CSF) to accelerate the formation of stromal cells from murine bone marrow cells was investigated. The liquid culture of the marrow cells with M-CSF resulted in the formation of monolayers of macrophages on day 7. When the M-CSF was removed on that day and the residual adherent cells were cultured in the absence of M-CSF for an additional 7 days, many colonies appeared with cells that were morphologically distinguishable from M-CSF-derived macrophages. The appearance of the colonies was dependent on the concentration of M-CSF used at the beginning of the culture. Each colony was isolated as a single clone and analyzed. All clones were negative for esterase staining. These cells did not express M-CSF receptor mRNA and did not show a mitogenic response to M-CSF. On the contrary, these cells could be stimulated to proliferate by fibroblast growth factor and platelet-derived growth factor. The polymerase chain reaction analysis of these cells demonstrated constitutive expression of mRNA for M-CSF, stem cell factor, and interleukin (IL)-1, but not IL-3. Some clones expressed mRNA for granulocyte/M-CSF and IL-6. We also examined the ability of the cells to maintain murine bone marrow high proliferative potential colony-forming cells (HPP-CFC) in a coculture system. Most of the clones showed a significant increase in total HPP-CFC numbers after 2 weeks of coculture, although the extent of stimulation differed among clones. These results suggested that the colonies established by M-CSF were composed of functional stromal cells that were phenotypically different from macrophages. J. Cell. Physiol. 173:1–9, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
The tumoricidal effects of M-CSF were examined using two subcutaneously-transplanted rat brain tumor cell lines, 9L and T9 gliomas. In rats treated with high-dose M-CSF (16 million U/kg administered for 4 days a week for 3 weeks), 9L glioma growth was inhibited by 81.9% following subcutaneous (s.c.) injection and by 70.5% after intraperitoneal (i.p.) injection and T9 glioma growth was inhibited by 69.2% after i.p. injection. After short-term treatment with high-dose M-CSF (32 million U/kg administered s.c. for 6 consecutive days, 9L glioma growth was inhibited by 82.1%. All these inhibitory effects differed significantly compared with the respective untreated control groups. However, treatment with low-dose M-CSF (1.6 million U/kg administered s.c. for 4 days a week for 3 weeks) showed no significant effects against 9L and T9 glioma growth compared with the untreated controls. No significant effects of M-CSF against cell proliferation, measured as PCNA expression, were observed in any group. Significant hematopoietic effects on the leukocyte counts were observed only in the groups treated with high dose M-CSF. These results suggest that M-CSF at a high dose which produces hematopoietic effects on peripheral leukocytes inhibits the growth of gliomas. This inhibitory effect may have been due to a tumoricidal mechanism of M-CSF that depended on the production or release of some hematopoietic soluble factors, but was independent of PCNA expression by the tumors.Abbreviations BBB blood-brain barrier - G-CSF granulocyte colony-stimulating factor - GM-CSF granulocyte-macrophage colony-stimulating factor - hM-CSF human macrophage colony-stimulating factor - IFN interferon - IL-1 interleukin-1 - IL-6 interleukin-6 - M-CSF macrophage colony-stimulating factor - PCNA proliferating cell nuclear antigen - rhM-CSF recombinant human macrophage colony-stimulating factor - TNF tumor necrosis factor  相似文献   

13.
14.
Viruses have evolved strategies to protect infected cells from apoptotic clearance. We present evidence that HIV-1 possesses a mechanism to protect infected macrophages from the apoptotic effects of the death ligand TRAIL (tumor necrosis factor-related apoptosis-inducing ligand). In HIV-1-infected macrophages, the viral envelope protein induced macrophage colony-stimulating factor (M-CSF). This pro-survival cytokine downregulated the TRAIL receptor TRAIL-R1/DR4 and upregulated the anti-apoptotic genes Bfl-1 and Mcl-1. Inhibition of M-CSF activity or silencing of Bfl-1 and Mcl-1 rendered infected macrophages highly susceptible to TRAIL. The anti-cancer agent Imatinib inhibited M-CSF receptor activation and restored the apoptotic sensitivity of HIV-1-infected macrophages, suggesting a novel strategy to curtail viral persistence in the macrophage reservoir.  相似文献   

15.
16.
The influence of macrophage (M)-CSF on the production of inflammatory mediators has been examined in murine peritoneal macrophages. Cultures of macrophages treated with up to 30,000 U/ml of human rM-CSF or with 10,000 U/ml of L929-derived M-CSF did not reveal either PGE2, IL-1, or IL-6 secretion. In contrast, LPS, which served as a positive control, stimulated production of significant levels of PGE2, IL-1, and IL-6. Furthermore, Northern blot analysis of macrophage RNA revealed a strong induction of IL-1 alpha and IL-6 mRNA by LPS but not by M-CSF. Conditioned medium from macrophage cultures treated with purified L929 or human rM-CSF in combination with LPS exhibited a significant reduction of IL-1 bioactivity as compared with an LPS challenge alone. To investigate the mechanism involved in this M-CSF-dependent reduction of IL-1 bioactivity, we measured IL-1 alpha gene expression. The addition of M-CSF to LPS-treated macrophages did not affect IL-1 alpha mRNA levels suggesting that M-CSF may regulate production of an IL-1 inhibitor. This hypothesis was shown to be valid because removal of IL-1 alpha from conditioned medium of LPS plus M-CSF-treated cells allowed the detection of a nondialyzable factor that blocked IL-1-dependent thymocyte proliferation. The inhibitor appeared to be specific because it did not inhibit IL-2 and TNF bioactivities. Furthermore, this IL-1 inhibitor, which binds to cells and not to IL-1, competed with the binding of radioactive IL-1 alpha or beta to EL-4.6.1 cells. The results demonstrate that M-CSF alone does not induce proinflammatory mediators and PGE2 as was previously published. The data also suggest that M-CSF may play a role in the down-regulation of inflammatory responses.  相似文献   

17.
Bioactive IL-12 is composed of two subunits, p35 and p40. In the APC-Th cell interaction, p40 mRNA accumulation in APC was shown to be up-regulated by stimulation with CD40 ligand (CD40L) on Th cells. However, the CD40-CD40L interaction scarcely induced p35 mRNA accumulation in APC. In the present experiments, p35 mRNA accumulation was induced in splenic macrophages/dendritic cells by the interaction with paraformaldehyde-fixed Th1 cells in the presence of Ag, and the p35 mRNA accumulation was abrogated by the inclusion of anti-I-A in cultures to block TCR/MHC class II interaction. The accumulation was also induced by the stimulation with agonistic anti-I-A. These results indicate that the interaction of the MHC class II molecule with TCR evokes an activation signal for p35 mRNA accumulation in APC. Furthermore, the production of bioactive IL-12 in macrophages/dendritic cells stimulated with CD40L was enhanced by the inclusion of agonistic anti-I-A. The p35 mRNA accumulation and IL-12 production of macrophages/dendritic cells induced by stimulation with OVA-specific fixed Th1 clone expressing CD40L were also enhanced by adding OVA in cultures. These results indicate that the p35 mRNA accumulation induced by MHC class II stimulation plays a role in bioactive IL-12 production.  相似文献   

18.
Macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-kappaB ligand (RANKL) induce the differentiation of bone marrow macrophages (BMMs) into osteoclasts. To delineate mechanisms involved, the effect of M-CSF on the production of osteoprotegerin (OPG), decoy receptor of RANKL, in BMMs was investigated. Mouse bone marrow cells were cultured with M-CSF for 4 days and adherent cells formed were used as BMMs. BMMs were cultured with or without M-CSF, and analyzed for expression of OPG and receptor activator of NF-kappaB (RANK; receptor for RANKL) mRNAs by real-time polymerase chain reaction and secretion of OPG by enzyme-linked immunosorbent assay. BMMs expressed macrophage markers, CD115 (c-fms), Mac-1 and F4/80, and showed phagocytotic activity. In addition, BMMs expressed OPG mRNA and secreted OPG into medium. M-CSF inhibited both the OPG mRNA expression and the OPG secretion dose-dependently and reversibly. The expression of RANK mRNA was not significantly affected by M-CSF. The results showed that M-CSF suppresses the OPG production in BMMs, which may increase the sensitivity of BMMs to RANKL.  相似文献   

19.
We have investigated the effect of growth factors, inflammatory and anti-inflammatory cytokines on the macrophage colony-stimulating factor (M-CSF) secretion by cultured human bone marrow stromal cells. Their production of M-CSF cultured in serum-free medium is enhanced in a time-dependent manner in response to tumour necrosis factor (TNF-)alpha and interleukin (IL-)4 but not to IL-1, IL-3, IL-6, IL-7, IL-10, SCF, granulocyte-macrophage colony-stimulating factor (GM-CSF), G-CSF, bFGF and transforming growth factor (TGF-)beta. The co-addition of IL-4 and TNF-alpha has a greater than additive effect on the secretion of M-CSF suggesting that they act synergistically. The anti-inflammatory molecules IL-10 and TGF-beta have no effect on the TNF-alpha-induced M-CSF synthesis by marrow stromal cells. In conclusion TNF-alpha and IL-4 are potent stimulators of the M-CSF synthesis by human bone marrow stromal cells, a result of importance regarding the role of M-CSF in the proliferation/differentiation of mononuclear-phagocytic cells and the role of marrow stromal cells as regulators of marrow haematopoiesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号