首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The initial burst of Pi liberation during the hydrolysis of Mn(II)-ATP by heavy meromyosin from rabbit psoas muscle was investigated. Below 10 degrees, the initial burst of Pi liberation was inhibited by the pre-addition of ADP without any change in the steady-state activity, but it was not inhibited above 10 degrees. The burst size was about one mole per mole of heavy meromyosin. The initial burst of Pi liberation in Mg-ATP hydrolysis at 8 degrees, however, was not inhibited by the pre-addition of ADP. These results, obtained with psoas muscle heavy meromyosin, were almost the same as those obtained with heavy meromyosin from rabbit leg and back muscles (Hozumi and Tawada (1975) Biochim. Biophys. Acta 376, 1-12) and, therefore, indicate that in Mn-ATP above 10 degrees there is at the burst site a predominant myosin -product complex generated by ATP hydrolysis. Similarly, below 10 degrees there is a myosin-product complex identical with the one generated by adding ADP (and Pi) to myosin.  相似文献   

2.
The temperature dependence of sliding force, velocity, and unbinding force was studied on actin filaments when they were placed on heavy meromyosin (HMM) attached to a glass surface. A fluorescently labeled actin filament was attached to the gelsolin-coated surface of a 1-microm polystyrene bead. The bead was trapped by optical tweezers, and HMM-actin interaction was performed at 20-35 degrees C to examine whether force is altered by the temperature change. Our experiments demonstrate that sliding force increased moderately with temperature (Q(10) = 1.6 +/- 0.2, +/-SEM, n = 9), whereas the velocity increased significantly (Q(10) = 2.9 +/- 0.4, n = 10). The moderate increase in force is caused by the increased number of available cross-bridges for actin interaction, because the cross-bridge number similarly increased with temperature (Q(10) = 1. 5 +/- 0.2, n = 3) when measured during rigor induction. We further found that unbinding force measured during the rigor condition did not differ with temperature. These results indicate that the amount of force each cross-bridge generates is fixed, and it does not change with temperature. We found that the above generalization was not modified in the presence of 1 mM MgADP or 8 mM phosphate.  相似文献   

3.
The effects of temperature on Mg-ITPase activity of heavy meromyosin and myosin subfragment 1 were measured in 0.1 M KC1. The initial burst of Pi liberation was one mol per mol of heavy meromyosin or two mol of myosin subfragment 1, i.e. one mol per two mol of myosin active sites, at 20 degrees C. However, it was almost zero mol below 8degrees C. Effects of KC1 concentration and pH on ITPase activity of heavy meromyosin at 20 degrees C were different from those below 8 degrees C, suggesting that the rate-limiting step in the Mg-ITP hydrolysis of myosin depends on temperature. The effect of temperature on the actin activation of heavy meromyosin Mg-ITPase was analyzed by measuring the temperature dependence of double-reciprocal plots of ITPase activity against actin concentration. The extent of actin activation was larger at low temperture. The results presented in this paper might be explained by assuming the existence of two kinds of active sites on a myosin molecule.  相似文献   

4.
The UV absorption difference spectrum of heavy meromyosin induced by adenylyl imidodiphosphate (AMP-PNP) was found to be changed by temperature. At higher temperatures, the shape of the difference spectrum resembled the ATP-form of difference spectrum induced by ATP. At lower temperatures, a different shape was observed, resembling that induced by ADP. This temperature transition was found in the presence of both MgCl2 and MnCl2. The transition temperatures, were 21 degrees and 9 degrees in the presence of MnCl2 and MgCl2, respectively. A similar temperature dependence was observed with the difference spectrum induced by ATP at the steady state. The transition temperatures in this case were 11 degrees and 4.5 degrees in the presence of MnCl2 and MgCl2, respectively. The similarity of the effects of the two kinds of divalent cation on both transitions indicates that the temperature induced transition between two species of heavy meromyosin-AMP-PNP complex mimics the step in APTase [EC 3.6.1.3] reaction in which the intermediate complex showing the ATP-form of difference spectrum changes to that showing the ADP-form. The equilibrium constant of the decay step of the ATP-form of difference spectrum to the ADP-form in ATPase is, therefore, thought to be highly temperature dependent. Thermodynamic parameters were calculated for the transition between the two species of heavy meromyosin AMP-PNP complex. Large decreases in enthalpy and entropy were observed, while the standard free energy change was small. The results suggest that the intermediate showing the ATP-form of difference spectrum hardly changes to the forward direction in the ATPase reaction at higher temperature. The complex appears to be so stable in the steady state that almost all the myosin is present as this complex. The decay step in ATPase of the difference spectrum from the ATP-form to to the ADP-form may be coupled to muscular contraction. The temperature induced transition of heavy meromyosin AMP-PNP complex may, therefore, provide information concerning the state of myosin in active muscles.  相似文献   

5.
The pH-activity curve of heavy meromyosin ATPase [EC 3.6.1.3] was measured at various temperatures. The pH-activity curve at higher temperatures showed a maximum at low pH and a minimum at pH 7 to 8 as has been already reported. At lower temperatures it was sigmoidal in shape, similar to a simple dissociation curve of pKa 6 to 7. The pH-activity curve at intermediate temperatures appeared to be inbetween the two extreme shapes. These changes in pH-activity curve with temperature were found to be common in the presence of divalent cations such as Mg2+, Mn2+, and Ca2+. The ATPase mechanism may be identical in the presence of any divalent cation, and the rate determining step revealing the steady state rate alters by changing the temperature. The transition temperatures estimated at pH 8 were 10 degrees, 8 degrees, and about 5 degrees in the presence of MnCl2, CaCl2, and MgCl2, respectively. The difference in the temperature coefficients above and below the transition temperature was most distinct in the presence of MnCl2, and vague in the presence of CaCl2. A similar change of pH-activity curve with temperature was found with heavy meromyosin ITPase in the presence of MgCl2.  相似文献   

6.
A Ginsburg  M Zolkiewski 《Biochemistry》1991,30(39):9421-9429
Partial unfolding of dodecameric glutamine synthetase (GS) from Escherichia coli has been studied by differential scanning calorimetry (DSC). A single endotherm (tm = 51.6 +/- 0.1 degrees C and delta Hcal = 211 +/- 4 kcal/mol of enzyme) was observed in DSC experiments with Mn.GS in the presence of 1.0 mM free Mn2+ and 100 mM KCl at pH 7. The dodecameric structure of Mn.GS was retained throughout heating cycles, and thermal transitions were reversible as shown by rescans [with 6-18 mg of GS (Mr 622,000) from 15 to 68 degrees C at 20-60 degrees C/h] and by greater than 93% recovery of activity. A cooperative ratio delta Hcal/delta HvH of 1.6 +/- 0.1 and deconvolution analysis show two cooperative units (two-state transitions): t1 = 50.4 and t2 = 51.7 degrees C; the ratio of the relative sizes of thermally labile domains is approximately 1:2 as judged by delta H2/delta H1 approximately equal to 2. However, the thermally induced overall enthalpy change (0.34 cal/g) for GS dodecamer is only 5-10% of that for thermal unfolding of small globular proteins at 50 degrees C. The t1 and t2 values from deconvolutions of DSC data agree with t0.5 values previously calculated from spectral measurements of temperature-induced exposures of approximately 0.7 of 2 Trp and approximately 2 of 17 Tyr per subunit, respectively [Shrake et al. (1989) Biochemistry 28, 6281-6294], over a 14 degrees C temperature range using both stabilizing and destabilizing conditions for Mn.GS.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Respiratory enthalpy change, rectal temperature, and heart rate of mine rescue workers exercising at a metabolic energy production rate of 4 met (1 met-58.15 W.m-2) in a 40 degrees C saturated environment, wearing closed-circuit breathing apparatus, were continuously measured in 10 volunteer subjects. The effects of using liquid O2 and compressed O2 apparatus were compared in each subject. Evaporative heat exchange was much greater with the liquid O2 type of apparatus, causing a significantly lower rate of rise of rectal temperature and heart rate. Convective heat exchange was negligible. Mean values for evaporative heat loss (maximum) were 61 +/- 16 (SD) W with liquid O2 and 20 +/- 18 W with compressed O2 (P less than 0.0001, 2-sided t test). Mean values for rectal temperature (rate of increase) were 0.022 +/- 0.009 (SD) degrees C.min-1 for liquid O2 and 0.036 +/- 0.015 degrees C.min-1 for compressed O2 (P less than 0.005, 2-sided paired t test). Mean values for heart rate (rate of increase) were 2.64 +/- 0.74 (SD) min-2 for liquid O2 and 3.27 +/- 0.89 min-2 for compressed O2 (P less than 0.02, 2-sided paired t test). This study quantifies, for the first time, the respiratory enthalpy change in exercising heat-stressed mine rescue workers and shows, from a physiological point of view, that the liquid O2 apparatus is clearly superior to the compressed O2 apparatus.  相似文献   

8.
W F Beck  G W Brudvig 《Biochemistry》1986,25(21):6479-6486
The binding of several primary amines to the O2-evolving center (OEC) of photosystem II (PSII) has been studied by using low-temperature electron paramagnetic resonance (EPR) spectroscopy of the S2 state. Spinach PSII membranes treated with NH4Cl at pH 7.5 produce a novel S2-state multiline EPR spectrum with a 67.5-G hyperfine line spacing when the S2 state is produced by illumination at 0 degrees C [Beck, W. F., de Paula, J. C., & Brudvig, G. W. (1986) J. Am. Chem. Soc. 108, 4018-4022]. The altered hyperfine line spacing and temperature dependence of the S2-state multiline EPR signal observed in the presence of NH4Cl are direct spectroscopic evidence for coordination of one or more NH3 molecules to the Mn site in the OEC. In contrast, the hyperfine line pattern and temperature dependence of the S2-state multiline EPR spectrum in the presence of tris(hydroxymethyl)aminomethane, 2-amino-2-ethyl-1,3-propanediol, or CH3NH2 at pH 7.5 were the same as those observed in untreated PSII membranes. We conclude that amines other than NH3 do not readily bind to the Mn site in the S2 state because of steric factors. Further, NH3 binds to an additional site on the OEC, not necessarily located on Mn, and alters the stability of the S2-state g = 4.1 EPR signal species. The effects on the intensities of the g = 4.1 and multiline EPR signals as the NH3 concentration was varied indicate that both EPR signals arise from the same paramagnetic site and that binding of NH3 to the OEC affects an equilibrium between two configurations exhibiting the different EPR signals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Calcium ions produce a 3-4-fold stimulation of the actin-activated ATPase activities of phosphorylated myosin from bovine pulmonary artery or chicken gizzard at 37 degrees C and at physiological ionic strengths, 0.12-0.16 M. Actins from either chicken gizzard or rabbit skeletal muscle stimulate the activity of phosphorylated myosin in a Ca2+-dependent manner, indicating that the Ca2+ sensitivity involves myosin or a protein associated with it. Partial loss of Ca2+ sensitivity upon treatment of phosphorylated gizzard myosin with low concentrations of chymotrypsin and the lack of any change on similar treatment of actin supports the above conclusion. Although both actins enhance ATPase activity, activation by gizzard actin exhibits Ca2+ dependence at higher temperatures or lower ionic strengths than does activation by skeletal muscle actin. The Ca2+ dependence of the activity of phosphorylated heavy meromyosin is about half that of myosin and is affected differently by temperature, ionic strength and Mg2+, being independent of temperature and optimal at lower concentrations of NaCl. Raising the concentration of Mg2+ above 2-3 mM inhibits the activity of heavy meromyosin but stimulates that of myosin, indicating that Mg2+ and Ca2+ activate myosin at different binding sites.  相似文献   

10.
Thermotropic structural transitions in rabbit skeletal muscle heavy meromyosin and subfragment-1 (S-1) have been quantitatively investigated by using nucleotide-induced UV difference spectroscopy. The magnitude of the adenylyl 5'-imidophosphate (AMP-PNP)-induced difference spectrum is temperature-dependent for both S-1 and heavy meromyosin (HMM). The transition observed here appears to be the same transition observed by 31P NMR of bound AMP-PNP (Shriver, J., and Sykes, B. D. (1981) Biochemistry 20, 2004-2012). The ADP-induced spectrum is temperature-independent, which differs from the 31P NMR data, indicating that the chromophore contributing to the difference spectrum resides in a domain distinct from the active site, at least when ADP is bound. Although the magnitudes of the AMP-PNP-induced spectra are equal in magnitude for S-1 and HMM on a globular head basis, the temperature dependence of the AMP-PNP induced difference spectrum for S-1 differs significantly from that of HMM. The van't Hoff enthalpy for the apparent two-state transition in S-1 is half that observed with HMM: 19 (+/- 7.5) kcal/mol for S-1 and 35 (+/- 5) kcal/mol for HMM. This indicates an additional cooperative interaction in HMM which is not present in S-1. Modification of SH1 results in the loss of the temperature dependence of the AMP-PNP-induced difference spectrum, and the resulting difference spectra appear identical to those induced by ADP.  相似文献   

11.
The interaction of magnesium-ADP with skeletal muscle heavy meromyosin has been studied by measuring the accompanying release of protons. Total pH changes of the order of 0.03 were involved, and measurements were performed with a discrimination of some ten-thousandths of a pH unit. At pH 8.0 and 25 degrees C about 0.5 mol of protons per mol of heavy meromyosin is released at saturation. A stoichiometry of binding close to 2 mol of ADP per mol of protein was found, with a binding constant, obtained from the proton release titration curve (pH 8.0, 25 degrees C), of 2 X 10(5) M-1. At 5 degrees C the release of protons per mole is slightly greater, and the binding constant is somewhat increased, reflecting a negative enthalpy of binding. Similar proton release behavior is observed in the presence of manganous ions in place of magnesium. The liberation of protons is thus unrelated to the temperature-dependent isomerization of myosin in the presence of substrate. Alkylation of a reactive thiol group (SH1) does not change the proton liberation at pH 8.0. From the pH dependence of proton release, the association constant of heavy meromyosin with magnesium-ADP at other pH values can be inferred and shows an appreciable rise as the pH increases. The pH-proton release profile also allows the pK of the ionizing groups perturbed by the ligand to be deduced. At least two groups ionizing above pH 7 and one below are involved. Their pK's in the unperturbed state are assigned as 8.5, 9.3, and about 6.6, respectively; they are displaced in the complex to about 8.0, 9.1, and 6.3. A relation to the pH-activity profile of myosin ATPase is indicated. The pH-proton release profile is somewhat changed when the SH1 group is alkylated. Measurements with potassium-ADP, in the absence of magnesium, show that at pH 8.0 there is no proton release but rather a sizeable proton absorption (about 0.5 mol of protons per mol of heavy meromyosin). The association constant derived from the titration curves (pH 8.0, 25 degrees C) is 3 X 10(4) M-1.  相似文献   

12.
Hanley J  Sarrou J  Petrouleas V 《Biochemistry》2000,39(50):15441-15445
The central part of the oxygen-evolving complex of photosystem II is a cluster of four manganese atoms. The known EPR spectra in the various oxidation states of the cluster are complicated by the magnetic interactions of the four Mn ions and accordingly are difficult to analyze. It has been shown recently that NO at -30 degrees C slowly reduces the cluster to a Mn(II)-Mn(III) state [Sarrou, J., Ioannidis, N., Deligiannakis, Y., and Petrouleas, V. (1998) Biochemistry 37, 3581-3587). We study herein the orientation dependence of the Mn(II)-Mn(III) EPR spectrum with respect to the thylakoid membrane plane. Both the powder and the oriented spectra are satisfactorily simulated with the same set of fine and hyperfine parameters assuming axial symmetry and collinear g and A tensors. The axial component of the tensors is found to be oriented at an angle of 20 degrees +/- 10 degrees to the membrane plane normal (mosaic spread Omega = 40 degrees ). We make the reasonable assumption that the Mn(II)-Mn(III) dimer is one of the di-mu-oxo units that has been suggested to comprise the Mn tetramer. On the basis of the sign of the hyperfine tensor anisotropy, the axial direction is assigned to the d(z(2)) orbital of Mn(III), which by comparison with synthetic model complexes is assumed to be oriented perpendicular to the Mn-(mu-oxo)-Mn plane. The present results complement earlier orientation studies by EXAFS and suggest that the Mn-(mu-oxo)-Mn plane makes a small angle (approximately 20 degrees) with the membrane plane and the axis connecting the bridging oxygens is approximately parallel to the plane.  相似文献   

13.
Inhibition of bovine brain hexokinase by its product, glucose 6-phosphate, is considered to be a major regulatory step in controlling the glycolytic flux in the brain. Investigations on the molecular basis of this regulation, i.e. allosteric or product inhibition, have led to various proposals. Here, we attempt to resolve this issue by ascertaining the location of the binding sites for glucose and glucose 6-phosphate on the enzyme with respect to a divalent-cation-binding site characterized previously [Jarori, G. K., Kasturi, S. R. & Kenkare, U. W. (1981) Arch. Biochem. Biophys. 211, 258-268]. The paramagnetic effect of enzyme-bound Mn(II) on the spin-lattice relaxation rates (T-1(1] of ligand nuclei (1H and 31P) in E.Mn(II).Glc and E.Mn(II).Glc6P complexes have been measured. The paramagnetic effect of Mn(II) on the proton relaxation rates of C1-H alpha, C1-H beta and C2-H beta of glucose in the E.Mn(II).Glc complex was measured at 270 MHz and 500 MHz. The temperature dependence of these rates was also studied in the range of 5-30 degrees C at 500 MHz. The ligand nuclear relaxation rates in E.Mn(II).Glc are field-dependent and the Arrhenius plot yields an activation energy (delta E) of 16.7-20.9 kJ/mol. Similar measurements have also been carried out on C1-H alpha, C1-H beta and C6-31P at 270 MHz (1H) and 202.5 MHz (31P) for the E.Mn(II).Glc6P complex. The temperature dependence of 31P relaxation rates in this complex was measured in the range 5-30 degrees C, which yielded delta E = 9.2 kJ/mol. The electron-nuclear dipolar correlation time (tau c), determined from the field-dependent measurements of proton relaxation rates in the E.Mn(II).Glc complex, is 0.22-1.27 ns. The distances determined between Mn(II) and C1-H of glucose and glucose 6-phosphate are approximately 1.1 nm and approximately 0.8 nm, respectively. These data, considered together with our recent results [Mehta, A., Jarori, G. K. & Kenkare, U. W. (1988) J. Biol. Chem. 263, 15492-15498], suggest that glucose and glucose 6-phosphate may bind to very nearly the same region of the enzyme. The structure of the binary Glc6P.Mn(II) complex has also been determined. The phosphoryl group of the sugar phosphate forms a first co-ordination complex with the cation. However, on the enzyme, the phosphoryl group is located at a distance of approximately 0.5-0.6 nm from the cation.  相似文献   

14.
The enthalpy change of the binding of Ca2+ and Mn2+ to equine lysozyme was measured at 25 degrees C and pH 7.5 by batch microcalorimetry: delta H degrees Ca2+ = -76 +/- 5 kJ mol-1, delta H degrees Mn2+ = -21 +/- 10 kJ mol-1. Binding constants, log KCa2+ = 6.5 +/- 0.2 and log KMn2+ = 4.1 +/- 0.5, were calculated from the calorimetric data. Therefore, delta S degrees Ca2+ = -131 +/- 20 JK-1 mol-1 and delta S degrees Mn2+ = 8 +/- 44 JK-1 mol-1. Removal of Ca2+ induces small but significant changes in the circular dichroism spectrum, indicating the existence of a partially unfolded apo-conformation, comparable with, but different from, the apo-conformation of bovine alpha-lactalbumin.  相似文献   

15.
A characteristic feature of the body temperature regulation of euthermic golden hamsters is a great individual variability of body temperature in the thermoneutral zone. Resting values of the total metabolic rate (M) at ambient temperature 30-34 degrees C vary from 5.3 to 8.8 W.kg-1 between individuals, body temperature reaching 33.5-37.7 degrees C (subcutaneous temperature, Ts) and 35.4-39.0 degrees C (hypothalamic temperature, Th). The dependence of metabolic heat production on steady deviations of peripheral and central body temperature from the resting values in nonlinear in general, but the unknown functional relationship delta M = f (delta Th, delta Ts) can be replaced by a single linear regression function of Ts by neglecting the change of central body temperature: delta M = 2.14-2.00. delta Ts. Total body thermosensitivity of the golden hamster determined from steady changes of rectal temperature and metabolic rate after external cooling is -6.8 +/- 1.3 W.kg-1. degrees C-1.  相似文献   

16.
Core temperature decreases throughout short-term maximal exercise in heart-failure patients. To investigate possible causes for this unusual response to exercise, we studied core (pulmonary arterial blood), femoral vein, muscle, and skin temperatures in eight patients with severe heart failure who performed maximal upright incremental bicycle exercise to 50 W. A normal group (n = 4) was exercised for comparison. In the heart-failure patients, core temperature was 36.95 +/- 0.37 degrees C at rest, significantly (P less than 0.05) decreased at 25 W of exercise to 36.59 +/- 0.40 degrees C, and at 50 W remained decreased to 36.57 +/- 0.40 degrees C. In comparison, we found that the resting core temperature in the normal subjects was 37.28 +/- 0.34 degrees C, was the same at 25 W (37.29 +/- 0.41 degrees C), and increased significantly (P less than 0.05) to 37.50 +/- 0.32 degrees C at 50 W of exercise. Femoral vein temperature in heart-failure patients (n = 6) was below core temperature throughout exercise to 25 and 50 W (36.22 +/- 0.62 and 36.34 +/- 0.65 degrees C, respectively). Muscle temperature (n = 7) was significantly (P less than 0.05) lower in the heart-failure patients (34.8 +/- 1.1 degrees C) at rest compared with the normal subjects (36.2 +/- 1.0 degrees C). During exercise, muscle temperature increased above core temperature in only four of the heart-failure patients and was significantly (P less than 0.05) lower (36.5 +/- 1.3 degrees C) compared with the normal subjects (38.0 +/- 0.2 degrees C).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
A novel thermostable Mn(II)-dependent 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC_JF8) catalyzing the meta-cleavage of the hydroxylated biphenyl ring was purified from the thermophilic biphenyl and naphthalene degrader, Bacillus sp. JF8, and the gene was cloned. The native and recombinant BphC enzyme was purified to homogeneity. The enzyme has a molecular mass of 125 +/- 10 kDa and was composed of four identical subunits (35 kDa). BphC_JF8 has a temperature optimum of 85 degrees C and a pH optimum of 7.5. It exhibited a half-life of 30 min at 80 degrees C and 81 min at 75 degrees C, making it the most thermostable extradiol dioxygenase studied. Inductively coupled plasma mass spectrometry analysis confirmed the presence of 4.0-4.8 manganese atoms per enzyme molecule. The EPR spectrum of BphC_JF8 exhibited g = 2.02 and g = 4.06 signals having the 6-fold hyperfine splitting characteristic of Mn(II). The enzyme can oxidize a wide range of substrates, and the substrate preference was in the order 2,3-dihydroxybiphenyl > 3-methylcatechol > catechol > 4-methylcatechol > 4-chlorocatechol. The enzyme is resistant to denaturation by various chelators and inhibitors (EDTA, 1,10-phenanthroline, H2O2, 3-chlorocatechol) and did not exhibit substrate inhibition even at 3 mm 2,3-dihydroxybiphenyl. A decrease in Km accompanied an increase in temperature, and the Km value of 0.095 microm for 2,3-dihydroxybiphenyl (at 60 degrees C) is among the lowest reported. The kinetic properties and thermal stability of the native and recombinant enzyme were identical. The primary structure of BphC_JF8 exhibits less than 25% sequence identity to other 2,3-dihydroxybiphenyl 1,2-dioxygenases. The metal ligands and active site residues of extradiol dioxygenases are conserved, although several amino acid residues found exclusively in enzymes that preferentially cleave bicyclic substrates are missing in BphC_JF8. A three-dimensional homology model of BphC_JF8 provided a basis for understanding the substrate specificity, quaternary structure, and stability of the enzyme.  相似文献   

18.
The enthalpy of hydrolysis of the enzyme-catalyzed (heavy meromyosin) conversion of adenosine 5'-triphosphate (ATP) to adenosine 5'-diphosphate (ADP) and inorganic phosphate has been investigated using heat-conduction microcalorimetry. Enthalpies of reaction were measured as a function of ionic strength (0.05-0.66 mol kg-1), pH (6.4-8.8), and temperature (25-37 degrees C) in Tris/HCl buffer. The measured enthalpies were adjusted for the effects of proton ionization and metal ion binding, protonation and interaction with the Tris buffer, and ionic strength effects to obtain a value of delta H0 = -20.5 +/- 0.4 kJ mol-1 at 25 degrees C for the process, ATP4-(aq) + H2O(l) = ADP3-(aq) + HPO2-4(aq) + H+(aq) where aq is aqueous and l is liquid. Heat measurements carried out at different temperatures lead to a value of delta C0p = -237 +/- 30 J mol-1 K-1 for the above process.  相似文献   

19.
Heat loss from the human head during exercise   总被引:2,自引:0,他引:2  
Evaporative and convective heat loss from head skin and expired air were measured in four male subjects at rest and during incremental exercise at 5, 15, and 25 degrees C ambient temperature (Ta) to verify whether the head can function as a heat sink for selective brain cooling. The heat losses were measured with an open-circuit method. At rest the heat loss from head skin and expired air decreased with increasing Ta from 69 +/- 5 and 37 +/- 18 (SE) W (5 degrees C) to 44 +/- 25 and 26 +/- 7 W (25 degrees C). At a work load of 150 W the heat loss tended to increase with increasing Ta: 119 +/- 21 (head skin) and 82 +/- 5 W (respiratory tract) at 5 degrees C Ta to 132 +/- 27 and 103 +/- 12 W at 25 degrees C Ta. Heat loss was always higher from the head surface than from the respiratory tract. The heat losses, separately and together (total), were highly correlated to the increasing esophageal temperature at 15 and 25 degrees C Ta. At 5 degrees C Ta on correlation occurred. The results showed that the heat loss from the head was larger than the heat brought to the brain by the arterial blood during hyperthermia, estimated to be 45 W per 1 degree C increase above normal temperature, plus the heat produced by the brain, estimated to be up to 20 W. The total heat to be lost is therefore approximately 65 W during a mild hyperthermia (+1 degrees C) if brain temperature is to remain constant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
E W Taylor 《Biochemistry》1977,16(4):732-739
The transient phase of adenosine triphosphate (ATP) hydrolysis (early burst) was investigated for myosin, heavy meromyosin (HMM), and subfragment 1 (S-1) over a range of temperatures and pH's. The burst size at pH 8,20 degrees C, is 0.8-0.85, based on steady-state and transient measurements. The equilibrium constant for the enzyme-substrate to enzyme-product transition is 0.85 +/- 0.05. It is concluded that both myosin heads undergo the rapid hydrolysis step and that there are no significant differences for S-1 vs. HMM or myosin. The transient data are fitted reasonably well by a single rate process, but available evidence is consistent with some heterogeneity and a range of rate constants differing by a factor of two. At pH 6.9 and 3 degrees C, the burst size is 0.5 and the hydrolysis is slower than the configuration change measured by fluorescence. The results are consistent with the kinetic scheme (see article). The lower burst at low temperature and pH can be partly explained by a reduction in the equilibrium constant, K3, and ATP can be synthesized on the enzyme by a pH-temperature jump.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号