首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human erythrocyte membranes metabolize inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] in the presence of Mg2+. In the absence of Mg2+ a less rapid conversion of Ins(1,3,4,5)P4 into Ins(1,4,5)P3 was revealed. Such an enzyme activity, if present in hormonally sensitive cells, could provide a mechanism for maintaining constant concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4, important for stimulation of Ca2+ entry after Ca2+ mobilization.  相似文献   

2.
1. We have studied the metabolism of Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) by rat liver homogenates incubated in a medium resembling intracellular ionic strength and pH. 2. Ins(1,3,4,5)P4 was dephosphorylated to a single inositol trisphosphate product, Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate), the identity of which was confirmed by periodate degradation, followed by reduction and dephosphorylation to yield altritol. 3. The major InsP2 (inositol bisphosphate) product was inositol 3,4-bisphosphate [Shears, Storey, Morris, Cubitt, Parry, Michell & Kirk (1987) Biochem. J. 242, 393-402]. Small quantities of a second InsP2 product was also detected in some experiments, but its isomeric configuration was not identified. 4. The Ins(1,3,4,5)P4 5-phosphatase activity was primarily associated with plasma membranes. 5. ATP (5 mM) decreased the membrane-associated Ins(1,4,5)P3 5-phosphatase and Ins(1,3,4,5)P4 5-phosphatase activities by 40-50%. This inhibition was imitated by AMP, adenosine 5'-[beta gamma-imido]triphosphate, adenosine 5'-[gamma-thio]triphosphate or PPi, but not by adenosine or Pi. A decrease in [ATP] from 7 to 3 mM halved the inhibition of Ins(1,3,4,5)P4 5-phosphatase activity, but the extent of inhibition was not further decreased unless [ATP] less than 0.1 mM. 6. Ins(1,3,4,5)P4 5-phosphatase was insensitive to 50 mM-Li+, but was inhibited by 5 mM-2,3-bisphosphoglycerate. 7. The Ins(1,3,4,5)P4 5-phosphatase activity was unchanged by cyclic AMP, GTP, guanosine 5'-[beta gamma-imido]triphosphate or guanosine 5'-[gamma-thio]triphosphate, or by increasing [Ca2+] from 0.1 to 1 microM. 8. Ins(1,3,4)P3 was phosphorylated in an ATP-dependent manner to an isomer of InsP4 that was partially separable on h.p.l.c. from Ins(1,3,4,5)P4. The novel InsP4 appears to be Ins(1,3,4,6)P4. Its metabolic fate and function are not known.  相似文献   

3.
We have augmented our previous studies [Storey, Shears, Kirk & Michell (1984) Nature (London) 312, 374-376] on the subcellular location and properties of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate) phosphatases in rat liver and human erythrocytes. We also investigate Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) metabolism by rat liver. Membrane-bound and cytosolic Ins(1,4,5)P3 phosphatases both attack the 5-phosphate. The membrane-bound enzyme is located on the inner face of the plasma membrane, and there is little or no activity associated with Golgi apparatus. Cytosolic Ins(1,4,5)P3 5-phosphatase (Mr 77,000) was separated by gel filtration from Ins(1,4)P2 (inositol 1,4-bisphosphate) and inositol 1-phosphate phosphatases (Mr 54,000). Ins(1,4,5)P3 5-phosphatase activity in hepatocytes was unaffected by treatment of the cells with insulin, vasopressin, glucagon or dibutyryl cyclic AMP. Ins(1,4,5)P3 5-phosphatase activity in cell homogenates was unaffected by changes in [Ca2+] from 0.1 to 2 microM. After centrifugation of a liver homogenate at 100,000 g, Ins(1,3,4)P3 phosphatase activity was largely confined to the supernatant. The sum of the activities in the supernatant and the pellet exceeded that in the original homogenate. When these fractions were recombined, Ins(1,3,4)P3 phosphatase activity was restored to that observed in unfractionated homogenate. Ins(1,3,4)P3 was produced from Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) and was metabolized to a novel InsP2 that was the 3,4-isomer. Ins(1,3,4)P3 phosphatase activity was not changed by 50 mM-Li+ or 0.07 mM-Ins(1,4)P2 alone, but when added together these agents inhibited Ins(1,3,4)P3 metabolism. In Li+-treated and vasopressin-stimulated hepatocytes, Ins(1,4)P2 may reach concentrations sufficient to inhibit Ins(1,3,4)P3 metabolism, with little effect on Ins(1,4,5)P3 hydrolysis.  相似文献   

4.
The action of carbachol on the generation of inositol trisphosphate and tetrakisphosphate isomers was investigated in dog-thyroid primary cultured cells radiolabelled with [3H]inositol. The separation of the inositol phosphate isomers was performed by reverse-phase high pressure liquid chromatography. The structure of inositol phosphates co-eluting with inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] standards was determined by enzymatic degradation using a purified Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphatase. The data indicate that Ins(1,3,4,5)P4 was the only [3H]inositol phosphate which co-eluted with a [32P]Ins(1,3,4,5)P4 standard, whereas 80% of the [3H]InsP3 co-eluting with an Ins(1,4,5)P3 standard was actually this isomer. In the presence of Li+, carbachol led to rapid increases in [3H]Ins(1,4,5)P4. The level of Ins(1,4,5)P3 reached a peak at 200% of the control after 5-10 s of stimulation and fell to a plateau that remained slightly elevated for 2 min. The level of Ins(1,3,4,5)P4 reached its maximum at 20s. The level of inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] increased continuously for 2 min after the addition of carbachol. Inositol-phosphate generation was also investigated under different pharmacological conditions. Li+ largely increased the level of Ins(1,3,4)P3 but had no effect on Ins(1,4,5)P3 and Ins(1,3,4,5)P4. Forskolin, which stimulates dog-thyroid adenylate cyclase and cyclic-AMP accumulation, had no effect on the generation of inositol phosphates. The absence of extracellular Ca2+ largely decreased the level of Ins(1,3,4,5)P4 as expected considering the Ca2(+)-calmodulin sensitivity of the Ins(1,4,5)P3 3-kinase. Staurosporine, an inhibitor of protein kinase C, increased the levels of Ins(1,4,5)P3, Ins(1,3,4,5)P4 and Ins(1,3,4)P3. This supports a negative feedback control of diacyglycerol on Ins(1,4,5)P3 generation.  相似文献   

5.
The 43 kDa inositol polyphosphate 5-phosphatase (5-phosphatase) hydrolyses the second messenger molecules inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. We have underexpressed the 43 kDa 5-phosphatase by stably transfecting normal rat kidney cells with the cDNA encoding the enzyme, cloned in the antisense orientation into the tetracycline-inducible expression vector pUHD10-3. Antisense-transfected cells demonstrated a 45% reduction in Ins(1,4,5)P3 5-phosphatase activity in the total cell homogenate upon withdrawal of tetracycline, and an approximately 80% reduction in the detergent-soluble membrane fraction of the cell, as compared with antisense-transfected cells in the presence of tetracycline. Unstimulated antisense-transfected cells showed a concomitant 2-fold increase in Ins(1,4,5)P3 and 4-fold increase in Ins(1,3,4,5)P4 levels. The basal intracellular calcium concentration of antisense-transfected cells (170 +/- 25 nM) was increased 1.9-fold, compared with cells transfected with vector alone (90 +/- 25 nM). Cells underexpressing the 43 kDa 5-phosphatase demonstrated a transformed phenotype. Antisense-transfected cells grew at a 1.7-fold faster rate, reached confluence at higher density and demonstrated increased [3H]thymidine incorporation compared with cells transfected with vector alone. Furthermore, antisense-transfected cells formed colonies in soft agar and tumours in nude mice. These studies support the contention that a decrease in Ins(1,4,5)P3 5-phosphatase activity is associated with cellular transformation.  相似文献   

6.
Inositol 1,3,4,5-tetrakisphosphates (Ins(1,3,4,5)P4), 32P-labelled in positions 4 and 5 were prepared enzymatically, using [4-32P]-phosphatidylinositol 4-phosphate (PtdInsP) and [5-32P]phosphatidylinositol 4,5-bisphosphate (PtdInsP2) as substrates, respectively. Degradation studies of Ins(1,3,4,5)P4, using an enriched phosphatase preparation from porcine brain cytosol, led to the formation of two inositol trisphosphate isomers which were identified as inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) and inositol 1,4,5-trisphosphate (Ins(1,4,5)P3). This novel degradation pathway of Ins(1,3,4,5)P4 to Ins(1,4,5)P3 provides an additional source for the generation of Ins(1,4,5)P3, involving a 3-phosphatase.  相似文献   

7.
Dictyostelium discoideum homogenates contain phosphatase activity which rapidly dephosphorylates Ins(1,4,5)P3 (D-myo-inositol 1,4,5-trisphosphate) to Ins (myo-inositol). When assayed in Mg2+, Ins(1,4,5)P3 is dephosphorylated by the soluble Dictyostelium cell fraction to 20% Ins(1,4)P2 (D-myo-inositol 1,4-bisphosphate) and 80% Ins(4,5)P2 (D-myo-inositol 4,5-bisphosphate). In the particulate fraction Ins(1,4,5)P3 5-phosphatase is relatively more active than the Ins(1,4,5)P3 1-phosphatase. CaCl2 can replace MgCl2 only for the Ins(1,4,5)P3 5-phosphatase activity. Ins(1,4)P2 and Ins(4,5)P2 are both further dephosphorylated to Ins4P (D-myo-inositol 4-monophosphate), and ultimately to Ins. Li+ ions inhibit Ins(1,4,5)P3 1-phosphatase, Ins(1,4)P2 1-phosphatase, Ins4P phosphatase and L-Ins1P (L-myo-inositol 1-monophosphate) phosphatase activities; Ins(1,4,5)P3 1-phosphatase is 10-fold more sensitive to Li+ (half-maximal inhibition at about 0.25 mM) than are the other phosphatases (half-maximal inhibition at about 2.5 mM). Ins(1,4,5)P3 5-phosphatase activity is potently inhibited by 2,3-bisphosphoglycerate (half-maximal inhibition at 3 microM). Furthermore, 2,3-bisphosphoglycerate also inhibits dephosphorylation of Ins(4,5)P2. These characteristics point to a number of similarities between Dictyostelium phospho-inositol phosphatases and those from higher organisms. The presence of an hitherto undescribed Ins(1,4,5)P3 1-phosphatase, however, causes the formation of a different inositol bisphosphatase isomer [Ins(4,5)P2] from that found in higher organisms [Ins(1,4)P2]. The high sensitivity of some of these phosphatases for Li+ suggests that they may be the targets for Li+ during the alteration of cell pattern by Li+ in Dictyostelium.  相似文献   

8.
The metabolism of myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] consists of two pathways: dephosphorylation by 5-phosphomonoesterase(s) produces inositol 1,4-bisphosphate, and phosphorylation by Ins(1,4,5)P3 3-kinase yields inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. The requirements for Ins(1,4,5)P3 kinase activity in retina were characterized. Apparent Km values for ATP and Ins(1,4,5)P3 are 1.4 mM and 1.3 microM respectively. A direct demonstration of phosphorylation of Ins(1,4,5)P3 by [gamma-32P]ATP was achieved. Characterization of the 32P-labelled product revealed that it had the expected chromatographic and electrophoretic properties of Ins(1,3,4,5)P4.  相似文献   

9.
A kinetic analysis was undertaken of the inhibition by 5 mM MgATP of Ins(1,4,5)P3 5-phosphatase in 100,000 g particulate fractions prepared from liver homogenates. The Km for Ins(1,4,5)P3 was increased by 44% (from 16 to 23 microM). The competitive nature of the inhibition was confirmed with a Dixon plot. The effect of MgATP on 5-phosphatase was also studied at physiological concentrations of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 (i.e. 1.5 microM); the rate of substrate hydrolysis was inhibited by over 30%. Ins(1,3,4,5)P4 was also hydrolysed by a 3-phosphatase, but this enzyme was unaffected by 5 mM MgATP. Thus, ATP, by differentially affecting Ins(1,3,4,5)P4 3- and 5-phosphatase, may increase the flux through the futile cycle that interconverts Ins(1,4,5)P3 and Ins(1,3,4,5)P4.  相似文献   

10.
Agonist-stimulated production of phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], is considered the primary output signal of activated phosphoinositide (PI) 3-kinase. The physiological targets of this novel phospholipid and the identity of enzymes involved in its metabolism have not yet been established. We report here the identification of two enzymes which hydrolyze the 5-position phosphate of PtdIns(3,4,5)P3, forming phosphatidylinositol (3,4)-bisphosphate. One of these enzymes is the 75 kDa inositol polyphosphate 5-phosphatase (75 kDa 5-phosphatase), which has previously been demonstrated to metabolize inositol 1,4,5-trisphosphate [Ins(1,4,5)P3], inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] and phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2]. We have identified a second PtdIns(3,4,5)P3 5-phosphatase in the cytosolic fraction of platelets, which forms a complex with the p85/p110 form of PI 3-kinase. This enzyme is immunologically and chromatographically distinct from the platelet 43 kDa and 75 kDa 5-phosphatases and is unique in that it removes the 5-position phosphate from PtdIns(3,4,5)P3, but does not metabolize PtdIns(4,5)P2, Ins(1,4,5)P3 or Ins(1,3,4,5)P4. These studies demonstrate the existence of multiple PtdIns(3,4,5)P3 5-phosphatases within the cell.  相似文献   

11.
The analysis of the inositol cycle in Dictyostelium discoideum cells is complicated by the limited uptake of [3H]inositol (0.2% of the applied radioactivity in 6 h), and by the conversion of [3H]inositol into water-soluble inositol metabolites that are eluted near the position of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] on anion-exchange h.p.l.c. columns. The uptake was improved to 2.5% by electroporation of cells in the presence of [3H]inositol; electroporation was optimal at two 210 microseconds pulses of 7 kV. Cells remained viable and responsive to chemotactic signals after electroporation. The intracellular [3H]inositol was rapidly metabolized to phosphatidylinositol and more slowly to phosphatidylinositol phosphate and phosphatidylinositol bisphosphate. More than 85% of the radioactivity in the water-soluble extract that was eluted on Dowex columns as Ins(1,4,5)P3 did not co-elute with authentic [32P]Ins(1,4,5)P3 on h.p.l.c. columns. Chromatography of the extract by ion-pair reversed-phase h.p.l.c. provided a good separation of the polar inositol polyphosphates. Cellular [3H]Ins(1,4,5)P3 was identified by (a) co-elution with authentic [32P]Ins(1,4,5)P3 and (b) degradation by a partially purified Ins(1,4,5)P3 5-phosphatase from rat brain. The chemoattractant cyclic AMP and the non-hydrolysable analogue guanosine 5'-[gamma-thio]triphosphate induced a transient accumulation of radioactivity in Ins(1,4,5)P3; we did not detect radioactivity in inositol 1,3,4-trisphosphate or inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4]. In vitro, Ins(1,4,5)P3 was metabolized to inositol 1,4- and 4,5-bisphosphate, but not to Ins(1,3,4,5)P4 or another tetrakisphosphate isomer. We conclude that Dictyostelium has a receptor- and G-protein-stimulated inositol cycle which is basically identical with that in mammalian cells, but the metabolism of Ins(1,4,5)P3 is probably different.  相似文献   

12.
D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P(3)) and D-myo-inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P(4)) are both substrates of the 43-kDa type I inositol polyphosphate 5-phosphatase. Transient and okadaic acid-sensitive inhibition by 70-85% of Ins(1,4,5)P(3) and Ins(1,3,4,5)P(4) 5-phosphatase activities was observed in homogenates from rat cortical astrocytes, human astrocytoma 1321N1 cells, and rat basophilic leukemia RBL-2H3 cells after incubation with carbachol. The effect was reproduced in response to UTP in rat astrocytic cells and Chinese hamster ovary cells overexpressing human type I 5-phosphatase. Immunodetection as well as mass spectrometric peptide mass fingerprinting and post-source decay (PSD) sequence data analysis after immunoprecipitation permitted unambiguous identification of the major native 5-phosphatase isoform hydrolyzing Ins(1,4,5)P(3) and Ins(1,3,4,5)P(4) as type I inositol polyphosphate 5-phosphatase. In ortho-(32)P-preincubated cells, the phosphorylated 43 kDa-enzyme could be identified after receptor activation by immunoprecipitation followed by electrophoretic separation. Phosphorylation of type I 5-phosphatase was blocked after cell preincubation in the presence of Ca(2+)/calmodulin kinase II inhibitors (i.e. KN-93 and KN-62). In vitro phosphorylation of recombinant type I enzyme by Ca(2+)/calmodulin kinase II resulted in an inhibition (i.e. 60-80%) of 5-phosphatase activity. In this study, we demonstrated for the first time a novel regulation mechanism of type I 5-phosphatase by phosphorylation in intact cells.  相似文献   

13.
Inositol phosphates: proliferation, metabolism and function   总被引:21,自引:0,他引:21  
After the initial discovery of receptor-linked generation of inositol(1,4,5)trisphosphate (Ins(1,4,5)P3) it was generally assumed that Ins(1,4,5)P3 and its proposed breakdown products inositol(1,4)bisphosphate (Ins(1,4)P2) and Ins1P, along with cyclic inositol monophosphate, were the only inositol phosphates found in significant amounts in animal cells. Since then, three levels of complexity have been introduced. Firstly, Ins(1,4,5)P3 can be phosphorylated to Ins(1,3,4,5)P4, and the subsequent metabolism of these two compounds has been found to be intricate and probably different between various tissues. The functions of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 are almost certainly to regulate cytosolic Ca2+ concentrations, but the reasons for the labyrinth of the metabolic pathways after their deactivation by a specific 5-phosphatase remain obscure. Secondly, inositol pentakis- and hexakisphosphates have been found in many animal cells other than avian erythrocytes. It has been shown that their synthesis pathway is entirely separate from the inositol phosphates discussed above, both in terms of many of the isomers involved and probably in the subcellular localization; some possible functions of InsP5 and InsP6 are discussed here. Thirdly, cyclic inositol polyphosphates have been reported in stimulated tissues; the evidence for their occurrence in vivo and their possible physiological significance are also discussed.  相似文献   

14.
Factors underlying the transience of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] accumulation following muscarinic stimulation of RINm5F cells were examined. Transience was not due to a protein kinase C-mediated stimulation of Ins(1,4,5)P3 dephosphorylation, since pretreatment of cells with tetradecanoyl-phorbol acetate (TPA) did not alter the rate of this conversion. However, preincubation with TPA did inhibit carbamoylcholine-stimulated Ins(1,4,5)P3 formation. In permeabilized cells, the conversion of Ins(1,4,5)P3 to inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] was slightly enhanced in the presence of TPA or cyclic AMP, but much more markedly by raising the Ca2+ concentration from 10(-7) M to 10(-6) or 10(-5) M. In intact cells the most rapid rate of accumulation of Ins(1,4,5)P3 and Ins(1,3,4,5)P4 occurred in the first 2 s following stimulation, whereas the levels of inositol 1,4-bisphosphate were not increased until after 5 s. This suggests that Ins(1,4,5)P3 kinase is chiefly responsible for the early disposal of Ins(1,4,5)P3 following cellular stimulation. The results are consistent with the proposal that the transient accumulation of Ins(1,4,5)P3 is due both to its enhanced metabolism via the Ca2+-calmodulin-sensitive Ins(1,4,5)P3 kinase, as well as a down-regulation of phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

15.
The release of Ca2+ from intracellular stores is triggered by the second messenger inositol (1,4,5)-trisphosphate (Ins(1,4,5)P3). The regulation of this process is critically important for cellular homeostasis. Ins(1,4,5)P3 is rapidly metabolised, either to inositol (1,4)-bisphosphate (Ins(1,4)P2) by inositol polyphosphate 5-phosphatases or to inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) by one of a family of inositol (1,4,5)P3 3-kinases (IP3-3Ks). Three isoforms of IP3-3K have now been identified in mammals; they have a conserved C-terminal catalytic domain, but divergent N-termini. This review discusses the metabolism of Ins(1,4,5)P3, compares the IP3-3K isoforms and addresses potential mechanisms by which their activity might be regulated.  相似文献   

16.
We have identified, isolated, and characterized a second inositol polyphosphate-5-phosphatase enzyme from the soluble fraction of human platelets. The enzyme hydrolyzes inositol 1,4,5-trisphosphate (Ins (1,4,5)P3) to inositol 1,4-bisphosphate (Ins(1,4)P2) with an apparent Km of 24 microM and a Vmax of 25 mumol of Ins(1,4,5)P3 hydrolyzed/min/mg of protein. The enzyme hydrolyzes inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) at a rate of 1.3 mumol of Ins(1,3,4,5)P4 hydrolyzed/min/mg of protein with an apparent Km of 7.5 microM. The enzyme also hydrolyzes inositol 1,2-cyclic 4,5-trisphosphate (cIns(1:2,4,5)P3) and Ins(4,5)P2. We purified this enzyme 2,200-fold from human platelets. The enzyme has a molecular mass of 75,000 as determined by both sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by gel filtration chromatography. The enzyme requires magnesium ions for activity and is not inhibited by calcium ions. The 75-kDa inositol polyphosphate-5-phosphatase enzyme differs from the previously identified platelet inositol polyphosphate-5-phosphatase as follows: molecular size (75 kDa versus 45 kDa), affinity for Ins(1,3,4,5)P4 (Km 7.5 microM versus 0.5 microM), Km for Ins(1,4,5)P3 (24 microM versus 7.5 microM), regulation by protein kinase C, wherein the 45-kDa enzyme is phosphorylated and activated while the 75-kDa enzyme is not. The 75-kDa enzyme is inhibited by lower concentrations of phosphate (IC50 2 mM versus 16 mM for the 45-kDa enzyme) and is less inhibited by Ins(1,4)P2 than is the 45-kDa enzyme. The levels of inositol phosphates that act in calcium signalling are likely to be regulated by the interplay of these two enzymes both found in the same cell.  相似文献   

17.
In previous studies it has been shown that both bradykinin and histamine increase the formation of 3H-labeled inositol phosphates in adrenal chromaffin cells prelabelled with [3H]inositol and that both these agonists stimulate release of catecholamines by a mechanism dependent on extracellular calcium. Here, we have used mass assays of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,3,4,5-tetrakisphosphate [Ins(1,3,4,5)P4] to investigate changes in levels of these two candidates as second messengers in response to stimulation with bradykinin and histamine. Bradykinin increased the mass of Ins(1,3,4,5)P4 despite the failure in earlier studies with [3H]inositol-labelled cells to observe a bradykinin-mediated increase in content of [3H]InsP4. Bradykinin elicited a very rapid increase in level of Ins(1,4,5)P3, which was maximal at 5-10 s and then rapidly decreased to a small but sustained elevation at 2 min. The bradykinin-elicited Ins(1,3,4,5)P4 response increased to a maximum at 30-60 s and at 2 min was still elevated severalfold above basal levels. Histamine, which produced a larger overall total inositol phosphate response in [3H]inositol-loaded cells, produced significantly smaller Ins(1,4,5)P3 and Ins(1,3,4,5)P4 responses compared with bradykinin. The bradykinin stimulation of Ins(1,4,5)P3 accumulation was partially dependent on a high (1.8 mM) extracellular Ca2+ concentration, whereas the Ins(1,3,4,5)P4 response was almost completely lost when the extracellular Ca2+ concentration was reduced to 100 nM. Changes in the inositol polyphosphate second messengers are compared with the time course of bradykinin-stimulated increases in free intracellular Ca2+ concentrations and noradrenaline release.  相似文献   

18.
Inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), which mobilizes intracellular Ca2+, is metabolized either by dephosphorylation to inositol 1,4-bisphosphate(Ins-(1,4)P2) or by phosphorylation to inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4). It has been shown in vitro that Ins(1,3,4,5)P4 is also dephosphorylated by a 5-phosphomonoesterase to inositol 1,3,4-trisphosphate. However, we have found that exogenous Ins(1,3,4,5)P4 is dephosphorylated to predominantly Ins(1,4,5)P3 in saponin-permeabilized platelets in the presence of KCl (40-160 mM). This inositol polyphosphate 3-phosphomonoesterase activity is independent of Ca2+ (0.1-100 microM), and it was also observed when the ionic strength of the incubation medium was increased with Na+. The action of KCl appears to be due to activation of a 3-phosphomonoesterase as well as an inhibition of the 5-phosphomonoesterase, because the dephosphorylation of Ins(1,4,5)P3 to Ins(1,4)P2 was completely inhibited by KCl. The 3-phosphomonoesterase may be regulated by a protein kinase C, since both thrombin and phorbol dibutyrate increase 3-phosphomonoesterase activity and this is inhibited by staurosporine. The formation of Ins(1,4,5)P3 from Ins(1,3,4,5)P4 reported here provides an additional pathway for the formation of the Ca2+-mobilizing second messenger in stimulated cells.  相似文献   

19.
Addition of Ins(1,3,4,5)P4 at micromolar concentrations causes release of Ca2+ from electroporated L1210 cells, but not from digitonin-permeabilized cells. This was shown to be due to its conversion into Ins(1,4,5)P3, because only the electroporated cells convert Ins(1,3,4,5)P4 into Ins(1,4,5)P3. Thus electroporation appears to activate or expose an Ins(1,3,4,5)P4 3-phosphatase.  相似文献   

20.
In a permeable neoplastic rat liver epithelial (261B) cell system, inositol 1,3,4,5-tetrakisphosphate--Ins(1,3,4,5)P4--induces sequestration of Ca2+ released by inositol 2,4,5-trisphosphate--Ins(2,4,5)P3; a non-metabolized inositol trisphosphate (InsP3) isomer--and Ca2+ added exogenously in the form of CaCl2. Studies were performed to identify the Ca2+ pool filled after Ins(1,3,4,5)P4 treatment. Both Ins(2,4,5)P3 and inositol 1,4,5-trisphosphate--Ins(1,4,5)P3--dose-dependently release Ca2+ from permeable 261B cells--Ins(1,4,5)P3 having a threefold greater potency--but differ in that Ca2+ released by Ins(1,4,5)P3 is readily sequestered, while the Ca2+ released by Ins(2,4,5)P3 is not. Maximal release of Ca2+ by 6 microM Ins(2,4,5)P3 blocked the action of Ins(1,4,5)P3, demonstrating that these two isomers influence the same intracellular Ca2+ pool through a shared membrane receptor. Addition of 2 microM Ins(2,4,5)P3 to discharge partially the Ca2+ pool reduced the amount of Ca2+ released by a maximal dose of Ins(1,4,5)P3 (2 microM). Ins(1,3,4,5)P4 combined with Ins(2,4,5)P3 produced a Ca2+ release and sequestration response, which replenished the InsP3-sensitive pool as indicated by a recovery of full Ca2+ release by 2 microM Ins(1,4,5)P3. Induction of Ca2+ sequestration by Ins(1,3,4,5)P4 occurred dose-dependently, with a half-maximal response elicited at a dose of 0.9 microM. Further studies of the effect of Ins(1,3,4,5)P4 apart from the influence of Ins(2,4,5)P3 using a model in which the Ca2+ levels are raised by an exogenous addition of CaCl2 showed that Ins(1,4,5)P3 released twice the amount of Ca2+ from the storage pool following Ins(1,3,4,5)P4-induced Ca2+ sequestration. These results demonstrate that the Ca2+ uptake induced by Ins(1,3,4,5)P4 preferentially replenishes the intracellular Ca2+ storage sites regulated by Ins(1,4,5)P3 and Ins(2,4,5)P3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号