首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we present the infrared spectroscopic characterization of the bound ubiquinone in cytochrome bo(3) from Escherichia coli. Electrochemically induced Fourier transform infrared (FTIR) difference spectra of DeltaUbiA (an oxidase devoid of bound ubiquinone) and DeltaUbiA reconstituted with ubiquinone 2 and with isotopically labeled ubiquinone 2, where (13)C was introduced either at the 1- or at the 4-position of the ring (C=O groups), have been obtained. The vibrational modes of the quinone bound to the discussed high-affinity binding site (Q(H)) are compared to those from the synthetic quinones in solution, leading to the assignment of the C=O modes to a split signal at 1658/1668 cm(-)(1), with both carbonyls similarly contributing. The FTIR spectra of DeltaUbiA reconstituted with the labeled quinones indicate an essentially symmetrical and weak hydrogen bonding of the two C=O groups from the neutral quinone with the protein and distinct conformations of the 2- and 3-methoxy groups. Perturbations of the vibrational modes of the 5-methyl side groups are discussed for a signal at 1452 cm(-)(1). Only negligible shifts of the aromatic ring modes can be reported for the reduced and the protonated form of the quinone. Alterations of the protein upon quinone binding are reflected in the electrochemically induced FTIR difference spectra. In particular, difference signals at 1640-1633 cm(-)(1) and 1700-1670 cm(-)(1) indicate variations of beta-sheet secondary structure elements and loops, bands at 1706 and 1678 cm(-)(1) are tentatively attributed to individual amino acids, and a difference signal a 1540 cm(-)(1) is discussed to reflect an influence on C=C modes of the porphyrin ring or on deprotonated propionate groups of the hemes. Further tentative assignments are presented and discussed. The (13)C labeling experiments allow the assignment of the vibrational modes of a bound ubiquinone 8 in the electrochemically induced FTIR difference spectra of wild-type bo(3).  相似文献   

2.
Elucidating the properties of the heme Fe-Cu(B) binuclear center and the dynamics of the protein response in cytochrome c oxidase is crucial to understanding not only the dioxygen activation and bond cleavage by the enzyme but also the events related to the release of the produced water molecules. The time-resolved step-scan FTIR difference spectra show the ν(7a)(CO) of the protonated form of Tyr residues at 1247 cm(-1) and that of the deprotonated form at 1301 cm(-1). By monitoring the intensity changes of the 1247 and 1301 cm(-1) modes as a function of pH, we measured a pK(a) of 7.8 for the observed tyrosine. The FTIR spectral changes associated with the tyrosine do not belong to Tyr-237 but are attributed to the highly conserved in heme-copper oxidases Tyr-136 and/or Tyr-133 residue (Koutsoupakis, K., Stavrakis, S., Pinakoulaki, E., Soulimane, T., and Varotsis, C. (2002) J. Biol. Chem. 277, 32860-32866). The oxygenation of CO by the mixed-valence form of the enzyme revealed the formation of the ~607 nm P (Fe(IV)=O) species in the pH 6-9 range and the return to the oxidized form without the formation of the 580 nm F form. The data indicate that Tyr-237 is not involved in the proton transfer pathway in the oxygenation of CO by the mixed-valence form of the enzyme. The implication of these results with respect to the role of Tyr-136 and Tyr-133 in proton transfer/gating along with heme a(3) ring D propionate-H(2)O-ring A propionate-Asp-372 site to the exit/output proton channel (H(2)O pool) is discussed.  相似文献   

3.
In this report, from time-resolved step-scan Fourier transform infrared investigations from 15 ns to 160 ms, we provide evidence for the subsequent rise of three different M states that differ in their structures. The first state rises with approximately 3 microseconds to only a small percentage. Its structure as judged from amide I/II bands differs in small but well-defined aspects from the L state. The next M state, which appears in approximately 40 microseconds, has almost all of the characteristics of the "late" M state, i.e., it differs considerably from the first one. Here, the L left arrow over right arrow M equilibrium is shifted toward M, although some percentage of L still persists. In the last M state (rise time approximately 130 microseconds), the equilibrium is shifted toward full deprotonation of the Schiff base, and only small additional structural changes take place. In addition to these results obtained for unbuffered conditions or at pH 7, experiments performed at lower and higher pH are presented. These results are discussed in terms of the molecular changes postulated to occur in the M intermediate to allow the shift of the L/M equilibrium toward M and possibly to regulate the change of the accessibility of the Schiff base necessary for effective proton pumping.  相似文献   

4.
S Park  L P Pan  S I Chan    J O Alben 《Biophysical journal》1996,71(2):1036-1047
Purified cytochrome c oxidase CO complex from beef heart has been studied by Fourier transform infrared absorbance difference spectroscopy. Photolysis at 10-20 Kelvin results in dissociation of a3FeCO, formation of CuBCO, and perturbation of the a3-heme and CuB complex. The vibrational perturbation spectrum between 900 and 1700 cm-1 contains a wealth of information about the binuclear center. Appearance in infrared photoperturbation difference spectra of virtually all bands previously reported from resonance Raman spectra indicate the importance of polarization along the 4-vinyl:8-formyl axis, which results in the reduction of heme symmetry to C2v. Frequency-shifted bands due to the 8-formyl and 4-vinyl groups of the a3-heme have been identified and quantitated. The frequency shifts have been interpreted as being due to a change in porphyrin polarization with change in spin state of the iron by photodissociation of CO or perturbation of the CuB coordination complex.  相似文献   

5.
Both the aa(3)-type cytochrome c oxidase from Rhodobacter sphaeroides (RsCcO(aa3)) and the closely related bo(3)-type ubiquinol oxidase from Escherichia coli (EcQO(bo3)) possess a proton-conducting D-channel that terminates at a glutamic acid, E286, which is critical for controlling proton transfer to the active site for oxygen chemistry and to a proton loading site for proton pumping. E286 mutations in each enzyme block proton flux and, therefore, inhibit oxidase function. In the current work, resonance Raman spectroscopy was used to show that the E286A and E286C mutations in RsCcO(aa3) result in long range conformational changes that influence the protein interactions with both heme a and heme a(3). Therefore, the severe reduction of the steady-state activity of the E286 mutants in RsCcO(aa3) to ~0.05% is not simply a result of the direct blockage of the D-channel, but it is also a consequence of the conformational changes induced by the mutations to heme a and to the heme a(3)-Cu(B) active site. In contrast, the E286C mutation of EcQO(bo3) exhibits no evidence of conformational changes at the two heme sites, indicating that its reduced activity (3%) is exclusively a result of the inhibition of proton transfer from the D-channel. We propose that in RsCcO(aa3), the E286 mutations severely perturb the active site through a close interaction with F282, which lies between E286 and the heme-copper active site. The local structure around E286 in EcQO(bo3) is different, providing a rationale for the very different effects of E286 mutations in the two enzymes. This article is part of a Special Issue entitled: Allosteric cooperativity in respiratory proteins.  相似文献   

6.
Electrochemical redox titrations of cytochrome c oxidase from Paraccocus denitrificans were performed by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The majority of the differential infrared absorption features may be divided into four groups, which correlate with the redox transitions of the four redox centers of the enzyme. Infrared spectroscopy has the advantage of allowing one to measure independent alterations in redox centers, which are not well separated, or even observed, by other spectroscopic techniques. We found 12 infrared bands that titrated with the highest observed midpoint redox potential (E(m) = 412 mV at pH 6.5) and which had a pH dependence of 52 mV per pH unit in the alkaline region. These bands were assigned to be linked to the Cu(B) center. We assigned bands to the Cu(A) center that showed a pH-independent E(m) of 250 mV. Two other groups of infrared differential bands reflected redox transitions of the two heme groups and showed a more complex behavior. Each of them included two parts, corresponding to high- and low-potential redox transitions. For the bands representing heme a, the ratio of high- to low-potential components was ca. 3:2; for heme a(3) this ratio was ca. 2:3. Taking into account the redox interactions between the hemes, these ratios yielded a difference in E(m) of 9 mV between the hemes (359 mV for heme a; 350 mV for heme a(3) at pH 8.0). The extent of the redox interaction between the hemes (-115 mV at pH 8.0) was found to be pH-dependent. The pH dependence of the E(m) values for the two hemes was the same and about two times smaller than the theoretical one, suggesting that an acid/base group binds a proton upon reduction of either heme. The applied approach allowed assignment of infrared bands in each of the four groups to vibrations of the hemes, ligands of the redox centers, amino acid residues, and/or protein backbone. For example, the well-known band shift at 1737/1746 cm(-)(1) corresponding to the protonated glutamic acid E278 correlated with oxidoreduction of heme a.  相似文献   

7.
Cytochrome bo3 is the major respiratory oxidase located in the cytoplasmic membrane of Escherichia coli when grown under high oxygen tension. The enzyme catalyzes the 2-electron oxidation of ubiquinol-8 and the 4-electron reduction of dioxygen to water. When solubilized and isolated using dodecylmaltoside, the enzyme contains one equivalent of ubiquinone-8, bound at a high affinity site (QH). The quinone bound at the QH site can form a stable semiquinone, and the amino acid residues which hydrogen bond to the semiquinone have been identified. In the current work, it is shown that the tightly bound ubiquinone-8 at the QH site is not displaced by ubiquinol-1 even during enzyme turnover. Furthermore, the presence of high affinity inhibitors, HQNO and aurachin C1–10, does not displace ubiquinone-8 from the QH site. The data clearly support the existence of a second binding site for ubiquinone, the QL site, which can rapidly exchange with the substrate pool. HQNO is shown to bind to a single site on the enzyme and to prevent formation of the stable ubisemiquinone, though without displacing the bound quinone. Inhibition of the steady state kinetics of the enzyme indicates that aurachin C1–10 may compete for binding with quinol at the QL site while, at the same time, preventing formation of the ubisemiquinone at the QH site. It is suggested that the two quinone binding sites may be adjacent to each other or partially overlap.  相似文献   

8.
Attenuated total reflection Fourier transform infrared (ATR-FTIR) difference spectroscopy has been performed on samples of bovine cytochrome c oxidase that have been deposited as a thin film on the surface of a silicon microprism. The technique has several advantages over transmission methods in terms of amount of material required, the time required to reach sufficient optical stability, and the range of reactants that can be repetitively added and removed. The ATR-FTIR method has been used to record redox difference spectra of cytochrome c oxidase in the unligated and cyanide-ligated states. By subtraction of the spectra, the redox FTIR difference spectrum of heme a(3) can be resolved from those of the other metal centers. This difference spectrum is compared with available vibrational and Raman data on homologous oxidases and on heme A model compounds.  相似文献   

9.
Miksovská J  Gennis RB  Larsen RW 《FEBS letters》2005,579(14):3014-3018
Here, we report the volume and enthalpy changes accompanying CO photodissociation from the mixed valence form of cytochrome bo3 oxidase from Escherichia coli. The results of photoacoustic calorimetry indicate two kinetic phases with distinct volume and enthalpy changes accompanying CO photodissociation from heme o3 and its transfer to CuB. The first phase occurring on a timescale of <50 ns is characterized by a volume decrease of -1.3+/-0.3 mL mol-1 and enthalpy change of 32+/-1.6 kcal mol-1. Subsequently, a volume increase of 2.9 mL mol-1 with an enthalpy change of -5.3+/-2.5 kcal mol-1 is observed with the lifetime of approximately 250 ns (this phase has not been detected in previous optical studies). These volume and enthalpy changes differ from the volume and enthalpy changes observed for CO dissociation from fully reduced cytochrome bo3 oxidase indicating that the heme o3/CuB active site dynamics are affected by the redox state of heme b.  相似文献   

10.
In cytochrome c oxidase, the terminal respiratory enzyme, electron transfers are strongly coupled to proton movements within the enzyme. Two proton pathways (K and D) containing water molecules and hydrophobic amino acids have been identified and suggested to be involved in the proton translocation from the mitochondrial matrix or the bacterial cytoplasm into the active site. In addition to the K and D proton pathways, a third proton pathway (Q) has been identified only in ba3-cytochrome c oxidase from Thermus thermophilus, and consists of residues that are highly conserved in all structurally known heme-copper oxidases. The Q pathway starts from the cytoplasmic side of the membrane and leads through the axial heme a3 ligand His-384 to the propionate of the heme a3 pyrrol ring A, and then via Asn-366 and Asp-372 to the water pool. We have applied FTIR and time-resolved step-scan Fourier transform infrared (TRS2-FTIR) spectroscopies to investigate the protonation/deprotonation events in the Q-proton pathway at ambient temperature. The photolysis of CO from heme a3 and its transient binding to CuB is dynamically linked to structural changes that can be tentatively attributed to ring A propionate of heme a3 (1695/1708 cm(-1)) and to deprotonation of Asp-372 (1726 cm(-1)). The implications of these results with respect to the role of the ring A propionate of heme a3-Asp372-H2O site as a proton carrier to the exit/output proton channel (H2O pool) that is conserved among all structurally known heme-copper oxidases, and is part of the Q-proton pathway in ba3-cytochrome c oxidase, are discussed.  相似文献   

11.
Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method.  相似文献   

12.
Nanosecond time-resolved magnetic circular dichroism (TRMCD) and time-resolved natural circular dichroism (TRCD) measurements of photolysis products of the CO complex of eukaryotic cytochrome c oxidase (CcO-CO) are presented. TRMCD spectra obtained at 100 ns and 10 microseconds after photolysis are diagnostic of pentacoordinate cytochrome a3Fe2+, as would be expected for simple photodissociation. Other time-resolved spectroscopies (UV-visible and resonance Raman), however, show evidence for unusual Fea3(2+) coordination after CO photolysis (Woodruff, W. H., O. Einarsdóttir, R. B. Dyer, K. A. Bagley, G. Palmer, S. J. Atherton, R. A. Goldbeck, T. D. Dawes, and D. S. Kliger. 1991. Proc. Nat. Acad. Sci. U.S.A. 88:2588-2592). Furthermore, time-resolved IR experiments have shown that photodissociated CO binds to CuB+ prior to recombining with Fea3(2+) (Dyer, R. B., O. Einarsdóttir, P. M. Killough, J. J. López-Garriga, and W. H. Woodruff. 1989. J. Am. Chem. Soc. 111:7657-7659). A model of the CcO-CO photolysis cycle which is consistent with all of the spectroscopic results is presented. A novel feature of this model is the coordination of a ligand endogenous to the protein to the Fe axial site vacated by the photolyzed CO and the simultaneous breaking of the Fe-imidazole(histidine) bond.  相似文献   

13.
Rich PR  Breton J 《Biochemistry》2001,40(21):6441-6449
Photolysis spectra of the CO and cyanide adducts of reduced bovine cytochrome c oxidase have been studied by FTIR difference spectroscopy. Bound CO is predominantly in a single 1963 cm(-1) form whereas cyanide is bound in at least two forms (2058/2045 cm(-1)). These forms are pH-independent between pH 6.5 and 8.5, indicating that there is no titratable protonatable group that influences significantly their binding in this pH range. Photolysis spectra of the cyanide adduct have a positive band around 2090 cm(-1) in H(2)O due at least in part to free HCN and at 1880 cm(-1) in D(2)O due to free DCN. The frequency of the positive band around 2090 cm(-1), and its persistence in D(2)O media, raises the possibility that a transient cyanide-Cu(B) adduct also contributes to this signal, equivalent to the CO-Cu(B) species that is formed when CO is photolyzed. Photolysis produces changes throughout the 1000-1800 cm(-1) region. Reduced minus (reduced + CO) photolysis spectra in H(2)O exhibit a pH-independent and symmetrical peak/trough at 1749/1741 cm(-1). A related feature in homologous oxidases has been suggested to arise from a conserved glutamic acid. However, only around one-third of the feature is shifted to lower frequencies by incubation in D(2)O media, and an additional fraction is shifted if catalytic turnover occurs in D(2)O. Reduced minus (reduced + cyanide) photolysis spectra exhibit multiple features in H(2)O in this region with peaks at 1752, 1725, and 1708 cm(-1) and troughs at 1740, 1715, and 1698 cm(-1). Again, only a part of these features shift in D(2)O, even with catalytic turnover. A variety of additional H/D-sensitive features in the 1700-1000 cm(-1) region of the spectra can be discerned, one of which in cyanide photolysis spectra is tentatively assigned to a conserved tyrosine, Y244. Data are discussed in relation to the structure of the binuclear center and protonatable groups in its vicinity.  相似文献   

14.
Carbon monoxide bound to cytochrome c oxidase has been observed by Fourier transform infrared spectroscopy between 10 K and 280 K in the dark and during and after continuous photolysis. CO bound to a3Fe absorbs near 1963 cm-1, with minor bands at lower frequencies. Photolysis at low temperatures transfers CO to CuB, with the major component near 2062 cm-1 and a minor one near 2043 cm-1. Vibrational absorptions are assigned by comparison with heme and copper carbonyls, by frequency dependence of all bands on the isotopic mass of CO, and by similar behavior of major and minor components with photolysis and relaxation kinetics as a function of temperature. Reformation of a3FeCO after photolysis is an apparent first order process below 210 K with a distribution of rate constants. The kinetics are well described by a power law. Arrhenius behavior is followed between 140 K and 180 K to yield a peak activation enthalpy of 40.3 kJ/mol and a distribution in g(H) = 2.56 kJ/mol (full width at half-maximum). The major component of a3FeCO shows a very narrow CO absorption band (full width at half-maximum = 2.4 cm-1), while that of CuBCO shows a broader CO absorption (full width at half-maximum = 6 cm-1). These data indicate that in the reduced carbon monoxide complex, a3FeCO is in highly ordered nonpolar surroundings sufficiently separated from CuB that it is not perturbed by motion of the latter, while CuBCO is in less ordered, more flexible surroundings.  相似文献   

15.
Carbon monoxide bound to myoglobin and cytochrome c oxidase in separated adult rat heart myocytes has been observed with Fourier transform IR spectroscopy at low temperatures. CO complexes of these two proteins can be spectrally separated through temperature manipulation of the relaxation of the photolyzed systems. Photolyzed carboxymyoglobin relaxes very rapidly above 80 K, whereas the CO photolyzed from cytochrome a3 associates with CuB and relaxes very slowly below 140 K. Cytochrome c oxidase is found to be present in two major molecular forms which we designate alpha and beta. Each form contains an a3Fe and its associated CuB which we observe by their CO complexes. The predominant FeCO band, the alpha form of cytochrome oxidase, is similar to that previously seen in beef heart mitochondria, but with a slightly larger activation enthalpy, delta H = 46 kJ/mol. At least one of the beta forms is similar, but two have not been observed in beef heart mitochondria. Upon photolysis of alpha-FeCO, the alpha-CuCO species is formed. This band splits into two at low temperature. Up to half of the FeCO band area of the intact myocytes is distributed among three or more minor species (beta forms). The beta-FeCO bands all appear to be associated with only one beta-CuCO band which does not split at low temperature. After photo-dissociation of CO, the beta forms relax considerably faster than the alpha form, achieving 50% recombination in 10% of the time required for the alpha form. In a tissue slice from an opossum heart exposed to CO, we observed alpha and beta forms of cytochrome oxidase very similar to those in the rat heart myocytes. The cause of the differences between the alpha and beta forms of the enzyme is unknown, but their possible role in the control of respiration is discussed. Carboxymyoglobin contained within intact rat heart myocytes was very similar to sperm whale carboxymyoglobin, but with a much smaller amount of the lower frequency minor component.  相似文献   

16.
Photoacoustic calorimetry has been utilized to probe the thermodynamics accompanying photodissociation of the CO mixed valence form of bovine heart cytochrome c oxidase (COMV CcO). At pH's below 9 photolysis of the COMV CcO results in three kinetic phases with the first phase occurring faster than the time resolution of the instrument (i.e., < approximately 50 ns), a second phase occurring with a lifetime of approximately 100 ns and a third phase occurring with a lifetime of approximately 2 micros. The corresponding volume and enthalpy changes for these processes are: DeltaH1, DeltaV1 = +79 +/- 10 kcal mol(-1), +9 +/- 1 mL mol(-1); DeltaH2, DeltaV2 = -79 +/- 5 kcal mol(-1), -9 +/- 2 mL mol(-1); DeltaH3, DeltaV3 = +54 +/- 7 kcal mol(-1), +8 +/- 1 mL mol(-1). At pH's above 9 only one phase is observed, a prompt phase occurring in < 50 ns. The overall volume change is negligible above pH 9 and the enthalpy change is +29 +/- 5 kcal mol(-1). The data are consistent with the prompt phase being associated with CO-Fe(a3) bond cleavage, CO-CuB+ bond formation, Fe(a3) low-spin to high-spin transition and fast electron transfer (ET) from heme a3 to heme a followed by proton transfer from Glu242 to Arg38 on an approximately 100 ns timescale. The slow phase is likely a combination of CO thermal dissociation from CuB and additional ET between heme a3 to heme a. Interestingly, this phase is not evident above pH 9 suggesting linkage between CO dissociation/ET and the protonation state of a group or groups near the binuclear center.  相似文献   

17.
Cyclobutane-type pyrimidine dimers generated by ultraviolet irradiation of DNA can be cleaved by DNA photolyase. The enzyme-catalysed reaction is believed to be initiated by the light-induced transfer of an electron from the anionic FADH- chromophore of the enzyme to the pyrimidine dimer. In this contribution, first infrared experiments using a novel E109A mutant of Escherichia coli DNA photolyase, which is catalytically active but unable to bind the second cofactor methenyltetrahydrofolate, are described. A stable blue-coloured form of the enzyme carrying a neutral FADH radical cofactor can be interpreted as an intermediate analogue of the light-driven DNA repair reaction and can be reduced to the enzymatically active FADH- form by red-light irradiation. Difference Fourier transform infrared (FT-IR) spectroscopy was used to monitor vibronic bands of the blue radical form and of the fully reduced FADH- form of the enzyme. Preliminary band assignments are based on experiments with 15N-labelled enzyme and on experiments with D2O as solvent. Difference FT-IR measurements were also used to observe the formation of thymidine dimers by ultraviolet irradiation and their repair by light-driven photolyase catalysis. This study provides the basis for future time-resolved FT-IR studies which are aimed at an elucidation of a detailed molecular picture of the light-driven DNA repair process.  相似文献   

18.
The secondary structure of adenylate kinase (EC 2.7.4.3) from E. coli was investigated under various conditions using Fourier transform infrared spectroscopy. The overall band contour of the conformation-sensitive amide I mode indicates that in HEPES buffer (pH 7.4) the major structure of the protein is alpha-helical. A more detailed estimate obtained from decomposition of the amide I band into its constituent component bands gives 50% alpha-helix, 26% beta-structure, 15% turns and loops, and about 9% nonrepetitive unordered structures. Binding of nucleotide (e.g., ATP) to the donor site decreases the beta-content and shifts the amide I band to higher wavenumbers, whereas binding of nucleotide (e.g., AMP) to the acceptor site does not produce any change in conformation of the protein. These results agree with the protection by ATP and lack of protection by AMP when adenylate kinase is digested with trypsin. The effect of protein denaturing agents and conditions (temperature, high pH, sodium dodecyl sulfate) on changes in the protein conformation as revealed by the conformation-sensitive amide I bands is discussed.  相似文献   

19.
This study represents the first physicochemical analysis of the recently cloned methionine repressor protein (Met aporepressor) from Escherichia coli. Infrared spectrometry was used to investigate the secondary structure and the hydrogen-deuterium exchange behavior of the E. coli Met aporepressor. The secondary structure of the native bacterial protein was derived by analysis of the amide I mode. The amide I band contour was found to consist of five major component bands (at 1625, 1639, 1653, 1665, and 1676 cm-1) which reflect the presence of various substructures. The relative areas of these component bands are consistent with a high alpha-helical content of the peptide chain secondary structure in solution (43%) and a small amount of beta-sheet structure (7%). The remaining substructure is assigned to turns (10%) and to unordered (or less ordered) structures (40%). The temperature dependence of the infrared spectra of native Met aporepressor in D2O medium over the temperature interval 20-80 degrees C indicates that there are two discrete thermal events: the first thermal event, centered at 42 degrees C, is associated with the hydrogen-deuterium exchange of the hard-to-exchange alpha-helical peptide bonds accompanied by a partial denaturation of the protein, while the second event, centered around 50 degrees C, represents the irreversible thermal denaturation of the protein.  相似文献   

20.
Cytochrome bo is a heme-copper terminal ubiquinol oxidase of Escherichia coli under highly aerated growth conditions. Tyr-288 present at the end of the K-channel forms a Cepsilon-Nepsilon covalent bond with one of the Cu(B) ligand histidines and has been proposed to be an acid-base catalyst essential for the O-O bond cleavage at the Oxy-to-P transition of the dioxygen reduction cycle (Uchida, T., Mogi, T., and Kitagawa, T. (2000) Biochemistry 39, 6669-6678). To probe structural changes at tyrosine residues, we examined redox difference Fourier transform infrared difference spectra of the wild-type enzyme in which either L-[1-13C]Tyr or L-[4-13C]Tyr has been biosynthetically incorporated in the tyrosine auxotroph. Spectral comparison between [1-13C]Tyr-labeled and unlabeled proteins indicated that substitution of the main chain carbonyl of a Tyr residue(s) significantly affected changes in the amide-I (approximately 1620-1680 cm(-1)) and -II ( approximately 1540-1560 cm(-1)) regions. In contrast, spectral comparison between [4-13C]Tyr-labeled and unlabeled proteins showed only negligible changes, which was the case for both the pulsed and the resting forms. Thus, protonation of an OH group of tyrosines including Tyr-288 in the vicinity of the heme o-Cu(B) binuclear center was not detected at pH 7.4 upon full reduction of cytochrome bo. Redox-induced main chain changes at a Tyr residue(s) are associated with structural changes at Glu-286 near the binuclear metal centers and may be related to switching of the K-channel operative at the reductive phase to D-channel at the oxidative phase of the dioxygen reduction cycle via conformational changes in the middle of helix VI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号