首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Southern New England is currently experiencing the first major gypsy moth (Lymantria dispar) defoliation event in nearly 30 years. Using a novel approach based on time series of Landsat satellite observations, we generated consistent maps of gypsy moth defoliation for 2015 (first year of the outbreak), 2016 (second year of outbreak), and 2017 (third year of outbreak). Our mapped results demonstrate that the defoliation event continued through the 2017 growing season. Moreover, the affected area more than doubled in extent each year and expanded radially to encompass 4386 km2 of forested area in Rhode Island, eastern Connecticut, and central Massachusetts. The current gypsy moth outbreak is believed to be the result of a series of unusually dry springs in 2014, 2015, and 2016, which suppressed Entomophaga maimaiga, a fungal mortality agent that has historically reduced gypsy moth impacts in this region. The continuation and marked expansion of the outbreak in 2017 despite average spring rainfall suggests that caterpillars were active early in the growing season, and mortality from the fungus likely peaked after significant defoliation had already occurred. Our Landsat time series approach represents an important new source of data on spatial and temporal patterns in gypsy moth defoliation, and continued satellite-based monitoring will be essential for tracking the progress of this and other gypsy moth outbreaks.  相似文献   

2.
Disturbance regimes within temperate forests can significantly impact carbon cycling. Additionally, projected climate change in combination with multiple, interacting disturbance effects may disrupt the capacity of forests to act as carbon sinks at large spatial and temporal scales. We used a spatially explicit forest succession and disturbance model, LANDIS-II, to model the effects of climate change, gypsy moth (Lymantria dispar L.) defoliation, and wildfire on the C dynamics of the forests of the New Jersey Pine Barrens over the next century. Climate scenarios were simulated using current climate conditions (baseline), as well as a high emissions scenario (HadCM3 A2 emissions scenario). Our results suggest that long-term changes in C cycling will be driven more by climate change than by fire or gypsy moths over the next century. We also found that simulated disturbances will affect species composition more than tree growth or C sequestration rates at the landscape level. Projected changes in tree species biomass indicate a potential increase in oaks with climate change and gypsy moth defoliation over the course of the 100-year simulation, exacerbating current successional trends towards increased oak abundance. Our research suggests that defoliation under climate change may play a critical role in increasing the variability of tree growth rates and in determining landscape species composition over the next 100 years.  相似文献   

3.
The gypsy moth, Lymantria dispar (L.), is a polyphagous defoliator introduced to Medford, Massachusetts in 1869. It has spread to over 860,000 km2 in North America, but this still only represents ¼ of its susceptible host range in the United States. To delay defoliation in the remaining susceptible host range, the government maintains a barrier zone and a quarantine, reflecting a presumption that anthropogenic factors are important in the spread of gypsy moth. We develop a model framework that relates these factors along with biophysical characteristics to a county’s susceptibility to gypsy moth invasion. We then compile a dataset for counties within 200 km of the infested area and use trap catch data from 1999 to 2007 to estimate the probability of gypsy moth presence. As expected, gypsy moth is more likely to be found close to the population front and to traps that recorded moths in the previous year. However, when controlling for these factors, our most robust finding is that the use of wood for home heating and energy is consistently positively correlated with the presence of gypsy moth. In contrast, the movement of wood products by industry, which is actively regulated by state and federal governments, is rarely correlated with the presence of gypsy moth. This is consistent with effective regulation of the movement of goods by industry, but not by the public. Our findings provide empirical support for the importance and challenge of firewood as a vector for non-native forest insects.  相似文献   

4.
Although wound-induced responses in plants are widespread, neither the ecological nor the evolutionary significance of phytochemical induction is clear. Several studies have shown, for example, that induced responses can act against both plant pathogens and herbivores simultaneously. We present the first evidence that phytochemical induction can inhibit a pathogen of the herbivore responsible for the defoliation. In 1990, we generated leaf damage by enclosing gypsy moth larvae on branches of red oak trees. We then inoculated a second cohort of larvae with a nuclear polyhedrosis virus (LdNPV) on foliage from the damaged branches. Larvae were less susceptible to virus consumed on foliage from branches with increasing levels of defoliation, and with higher concentrations of gallotannin. Defoliation itself was not related to any of our chemistry measures. Field sampling supported the results of our experiments: death from virus among feral larvae collected from unmanipulated trees was also negatively correlated with defoliation. In 1991, defoliation and gallotannin were again found to inhibit the virus. In addition, gallotannin concentrations were found to be positively correlated with defoliation the previous year. Compared with previous results that demonstrated a delecterious effect of induction on gypsy moth pupal weight and fecundity, the inhibition of the virus should confer an advantage to the gypsy moth. Since leaf damage levels increase as gypsy moth density increases, and since leaf damage inhibits the gypsy moth virus, there is the potential for positive feedback in the system. If phytochemical induction in red oak can inhibit an animal pathogen such as LdNPV, it suggests to us that induction in red oak is a generalized response to tissue damage rather than an adaptive defense against herbivores.  相似文献   

5.
1 The twolined chestnut borer, Agrilus bilineatus (Coleoptera: Buprestidae), is a major mortality agent of stressed oak trees. However, patterns of abundance and population change are not well understood. 2 We studied the spatial and temporal variation in abundance of twolined chestnut borer adults during a gypsy moth, Lymantria dispar (Lepidoptera: Lymnatriidae), outbreak and examined the influence of both defoliation and thinning on twolined chestnut borer abundance. 3 In stands that were defoliated by gypsy moth, extensive defoliation occurred in one year, and major overstory tree mortality followed in the next. Most mortality occurred in the year preceding the peak year of twolined chestnut borer abundance and abundance of twolined chestnut borer was positively associated with defoliation and mortality in the previous year. 4 Twolined chestnut borers were more frequently associated with poor or fair crown condition trees than trees with good crown condition and were more abundant on members of the red oak group than the white oak group.  相似文献   

6.
  • 1 Spatial fluctuations of the Sardinian population of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae) were characterized using geostatistical and climate models. Data on gypsy moth egg mass abundance recorded at 282 permanent monitoring sites from 1980 to 2004 were incorporated in a geographic information system with the vegetational, geomorphological and pedological features of the sites.
  • 2 Statistical analyses revealed that the relative outbreak frequency was related to the predominant host tree, slope and elevation of the monitoring sites, whereas there was no correlation between outbreak frequency and exposure and soil type.
  • 3 By using bioclimatic modelling, probability maps of gypsy moth outbreaks were generated. The model identified a probability surface with climatic conditions favourable to gypsy moth outbreaks and thus potentially subject to defoliation. The maps included 92 sites where outbreaks never occurred, suggesting that the Sardinian climate may not be a determinant factor for gypsy moth outbreaks.
  • 4 The geostatistical method cokriging with outbreak frequency as a covariate was found to be the most suitable technique to estimate gypsy moth egg mass abundance. Semivariograms showed spatial correlation of egg mass abundance within the range 18.5–53 km. The results obtained were used to create regional gypsy moth distribution maps by cokriging, which demonstrated the outbreak foci and different infestation levels at each monitoring area. These results can help to delimit the treatment areas and develop rational gypsy moth management programmes.
  相似文献   

7.
Effects of a gypsy moth attack on the productivity of Larix sibirica on tree-ring width were analyzed in a case study of a mountain site in the western Khentey in the northern Mongolian forest-steppe ecotone. A major aim of the study was to assess whether reduced productivity by gypsy moth herbivory could contribute to fluctuations of the forest edge to the steppe in larch-dominated woodlands. In the year of the infestation, larch trees at the forest edge lost 90% of their needles and latewood formation was strongly reduced. However, earlywood formation was widely completed before the gypsy moth attack and, therefore, total tree-ring width was not below the average of the five years prior to infestation. In the two years following the gypsy moth invasion, annual stem increment was strongly reduced. Trees growing 30–100 m inside the forest showed a much weaker response of tree-ring widths to the gypsy moth infestation consistent with significantly higher defoliation at forest edge than in the forest interior. Old trees exhibited a stronger growth decline than middle-aged trees, indicating higher infestation of dominant, exposed trees, which are thought to be better accessible to the wind-dispersed gypsy moth larvae hatching in the early growing season on the steppe. Under the current climate, occasional growth reductions are thought to be of little effect on the performance of L. sibirica, as fast-growing competitors of other tree species, which are not or hardly affected by gypsy moth, are absent.  相似文献   

8.
The gypsy moth, Lymantria dispar, and the northern tiger swallowtail, Papilio canadensis, overlap geographically as well as in their host ranges. Adult female swallowtails are incapable of distinguishing between damaged and undamaged leaves, and the opportunities for competition between these two species are numerous. We designed field and laboratory experiments to look for evidence of indirect competition between P. canadensis and L. dispar larvae. Swallowtail caterpillars were reared in the laboratory on leaves from gypsy-moth-defoliated and undefoliated trees to explore host-plant effects. We tested for pathogen-mediated interactions by rearing swallowtail larvae on both sterilized and unsterilized leaves from defoliated and undefoliated sources. In addition, we measured the effects of known gypsy moth pathogens, as well as gypsy moth body fluids, on the growth and survival of swallowtail larvae. Field experiments were designed to detect the presence of parasitoid-mediated competition, as well: we recorded parasitism of swallowtail caterpillars placed in the field either where there were no gypsy moth larvae present, or where we had artificially created dense gypsy moth populations. We found evidence that swallowtails were negatively affected by gypsy moths in several ways: defoliation by gypsy moths depressed swallowtail growth rate and survival, whether leaves were sterilized or not; sterilization significantly reduced the effect of defoliation, and gypsy moth body fluids proved lethal; and swallowtail caterpillars suffered significantly increased rates of parasitism when they were placed in the field near gypsy moth infestations.  相似文献   

9.
Observed changes in the cyclicity of herbivore populations along latitudinal gradients and the hypothesis that shifts in the importance of generalist versus specialist predators explain such gradients has long been a matter of intense interest. In contrast, elevational gradients in population cyclicity are largely unexplored. We quantified the cyclicity of gypsy moth populations along an elevational gradient by applying wavelet analysis to spatially referenced 31-year records (1975–2005) of defoliation. Based on geographically weighted regression and nonlinear regression, we found either a hump-shaped or plateauing relationship between elevation and the cyclicity of gypsy moth populations and a positive relationship between cyclicity and the density of the gypsy moth’s preferred host-tree species. The potential effects of elevational gradients in the density of generalist predators and preferred host-tree species on the cyclicity of gypsy moth populations were evaluated with mechanistic simulation models. The models suggested that an elevational gradient in the densities of preferred host tree species could partially explain elevational patterns of gypsy moth cyclicity. Results from a model assuming a type-III functional response of generalist predators to changes in gypsy moth density were inconsistent with the observed elevational gradient in gypsy moth cyclicity. However, a model with a more realistic type-II functional response gave results roughly consistent with the empirical findings. In contrast to classical studies on the effects of generalist predators on prey population cycles, our model with a type-II functional response predicts a unimodal relationship between generalist-predator density and the cyclicity of gypsy moth populations.  相似文献   

10.
Whitmire SL  Tobin PC 《Oecologia》2006,147(2):230-237
Exotic invasive species are a mounting threat to native biodiversity, and their effects are gaining more public attention as each new species is detected. Equally important are the dynamics of exotic invasives that are previously well established. While the literature reports many examples of the ability of a newly arrived exotic invader to persist prior to detection and population growth, we focused on the persistence dynamics of an established invader, the European gypsy moth (Lymantria dispar) in the United States. The spread of gypsy moth is largely thought to be the result of the growth and coalescence of isolated colonies in a transition zone ahead of the generally infested area. One important question is thus the ability of these isolated colonies to persist when subject to Allee effects and inimical stochastic events. We analyzed the US gypsy moth survey data and identified isolated colonies of gypsy moth using the local indicator of spatial autocorrelation. We then determined region-specific probabilities of colony persistence given the population abundance in the previous year and its relationship to a suite of ecological factors. We observed that colonies in Wisconsin, US, were significantly more likely to persist in the following year than in other geographic regions of the transition zone, and in all regions, the abundance of preferred host tree species and land use category did not appear to influence persistence. We propose that differences in region-specific rates of persistence may be attributed to Allee effects that are differentially expressed in space, and that the inclusion of geographically varying Allee effects into colony-invasion models may provide an improved paradigm for addressing the establishment and spread of gypsy moth and other invasive exotic species.  相似文献   

11.
12.
Pupal parasitism of the gypsy moth,Lymantria dispar (L.), was monitored in 15 study plots in New Jersey from 1978 to 1988. The predominant parasitoid was a chalcidid wasp,Brachymeria intermedia (Nees), which was found in only six plots. Parasitism was generally observed in the year of or preceding the peak numbers of gypsy moth egg masses. Parasitism exceeded 4% in only one plot. Percentage parasitism was correlated significantly with numbers of egg masses per hectare in the current season and with numbers of pupae per plot in the previous season, suggesting delayed density dependence. A multiple regression analysis found percentage parasitism to be correlated significantly with percentage infection by nuclear polyhedrosis virus, density of male host pupae, and mean minimum temperature in August and March. A canonical discriminant analysis carried out to distinguish study plots with and without the parasitoid was significant. Plots withB. intermedia had relatively higher host populations and defoliation.  相似文献   

13.
Structural and functional characteristics of the gypsy moth population in a birch forest were found to be correlated with the level of defoliation and the content of allelochemicals in the foliage. One year after defoliation, the content of flavonoids, total lipid fractions, fatty alcohols, and alcohols increased in the foliage of the heavily (by 75%) damaged trees, whereas the content of free sterols and triterpenes decreased. These changes were associated with low vitality of the insects and a sharp drop in the population density.  相似文献   

14.
Gypsy moth, Lymantria dispar L., is one of the most important pests of deciduous trees in Europe. In regular cycles, it causes large‐scale defoliation mostly of oak, Quercus spp., forests. Government authorities in the most infested countries in Europe conduct large‐scale applications of pesticides against gypsy moth. In 1999, a new natural enemy, the entomopathogenic fungus Entomophaga maimaiga, was successfully introduced into a gypsy moth population in Bulgaria. Recent investigations suggest that now E. maimaiga is quickly spreading in Europe. Herein, past studies are reviewed regarding this fungus with special emphasis on its potential for becoming an important factor regulating gypsy moth populations in Europe, focusing on the host's population dynamics in relation to the fungus, the influence of environmental conditions on fungal activity, the influence of E. maimaiga on the native entomofauna, including other gypsy moth natural enemies, and spread of the fungus. Based on this analysis, the potential of E. maimaiga for providing control in European gypsy moth populations is estimated.  相似文献   

15.
Long-term watershed research conducted in Shenandoah National Park (SNP) in Virginia and elsewhere in the eastern U.S. indicates that annual export of dissolved nitrogen (N) from gaged forested watersheds to surface waters increases dramatically in response to vegetation disturbances. Dissolved N leakage is a common, well-documented response of small forested watersheds to logging in the larger region, while recent defoliation outbreaks of the gypsy moth ( Lymantria dispar) larva in the deciduous forests of SNP have been shown to generate similar biogeochemical responses. A recent modeling analysis further suggests that a parsimonious, empirical, unit N export response function (UNERF) model can explain large percentages of the temporal variation in annual N export from a group of small gaged forested watersheds in the years following disturbance. The empirical UNERF modeling approach is completely analogous to the unit hydrograph technique for describing storm runoff, with the model representing annual N export as a linear deterministic process both in space and in time. The purposes of this analysis are to (1) test the applicability of the UNERF model using quarterly streamwater nitrate data from a group of ungaged watersheds in SNP; (2) demonstrate a park-wide application of a regional UNERF model that references the geographic distributions of bedrock geology and the timing and extent of gypsy moth defoliation over the entire SNP area; and (3) visualize the temporal and spatial patterns in vegetation disturbance and annual dissolved N export through the use of computer animation software. During water year 1992, the year of peak defoliation, our modeling study suggests that park-wide export had transiently increased by 1700% from a baseline rate of about 0.1 kg/ha/year. SNP forests appear to be characteristic of other N-limited second-growth forests in the eastern U.S. that leak little N under undisturbed conditions, despite receiving relatively large inputs of N from atmospheric deposition sources. Vegetation disturbances can apparently cause major changes in N input-output balances with potentially important ramifications for low-order forest streams and downstream receiving waters.  相似文献   

16.
Gypsy moth is regarded as one of the top most harmful invasive species. Its invasion in the northeastern US has led to widespread forest defoliation, wildlife disruption and even a change in biogeochemical conditions over the area of 106 km2. Spread of gypsy moth has a few distinct features such as a patchy spatial distribution of the gypsy moth population, which is largely uncorrelated to the environmental heterogeneity, and a high variability (almost over an order of magnitude) in the spread rates. These features are usually explained by human-assisted dispersal, e.g. when masses of gypsy moth eggs are inadvertently transported by cars and vehicles. This theory, however, somewhat disagrees with the existence of the strong Allee effect that tends to wipe out small new colonies. In this paper, we suggest an alternative explanation that the patchy structure can result from the interplay between two natural factors such as wind dispersal and viral infection. In order to check this hypothesis, we describe the gypsy moth spread with a diffusive SI model and study its properties by means of extensive computer simulations. Interestingly, in a certain parameter range our model shows formation of spatial patterns that are qualitatively similar to those observed in the field. To find out the relevant parameter range, we make a careful review of available literature sources. For biologically meaningful parameter values, we then show that the rates of gypsy moth spread predicted by our model are in good agreement with the lower band of the rates observed in nature.  相似文献   

17.
 We simulated male gypsy moth flight phenology for the location of 1371 weather stations east of 100° W longitude and north of 35° N latitude in North America. The output of these simulations, based on average weather conditions from 1961 to 1990, was submitted to two map-interpolation methods: multiple regression and universal kriging. Multiple regression was found to be as accurate as universal kriging and demands less computing power. A map of the date of peak male gypsy moth flight was generated by universal kriging. This map itself constitutes a useful pest-management planning tool; in addition, the map delineates the potential range of the gypsy moth based on its seasonality at the northern edge of its current distribution in eastern North America. The simulation and map-interpolation methods described in this paper thus constitute an interesting approach to the study and monitoring of the ecological impacts of climate change and shifts in land-use patterns at the sub-continental level. Received: 26 May 1998 / Accepted: 6 July 1998  相似文献   

18.
As the range of the invasive and highly polyphagous gypsy moth (Lymantria dispar) expands, it increasingly overlaps with forest areas that have been subject to invasion by non-native shrubs. We explored the potential for interactions between these co-occurring invasions through a gypsy moth feeding trial using the following three highly invasive, exotic shrubs: honeysuckle (Lonicera maackii), privet (Ligustrum sinense) and burning bush (Euonymus alatus). We compared these with two native shrubs: spicebush (Lindera benzoin) and pawpaw (Asimina triloba). We fed gypsy moth caterpillars foliage exclusively from one of the five shrubs and measured their relative consumptive rate (RCR), relative growth rate (RGR), and development time (DT). The RCR of gypsy moth was strongly influenced by the species of foliage (F = 31.9; P < 0.0001) with little or no consumption of honeysuckle and privet. Caterpillar RGR was influenced by the shrub species (F = 66.2; P < 0.0001), and those caterpillars fed spicebush, honeysuckle or privet lost weight over the course of the assay. Caterpillar DT was also significantly (F = 11.79, P < 0.0001) influenced by the shrub species and those fed honeysuckle, privet and spicebush died prior to molting. Overall, our data suggest that honeysuckle, privet, and spicebush could benefit (indirectly) from the invasion of gypsy moth, while burning bush and pawpaw could be negatively impacted due to direct effects (herbivory). Similarly, invading gypsy moth populations could be sustained on a shrub layer of burning bush and pawpaw in the event of canopy defoliation. Further field and laboratory analysis is needed to clarify herbivore resistance of invasive shrubs, and to investigate the potential interactions among co-occurring insect and plant invasions.  相似文献   

19.
Osier TL  Lindroth RL 《Oecologia》2004,139(1):55-65
This research tested the long-term effects of defoliation on aspen chemistry and growth in relation to genotype and nutrient availability. We grew saplings of four aspen genotypes in a common garden under two conditions of nutrient availability, and subsequently subjected them to two levels of artificial defoliation. Artificial defoliation suppressed plant growth, and saplings of the four genotypes did not show evidence of genetic variation in tolerance to defoliation. Phenolic glycoside concentrations did not respond to defoliation, but were influenced by genotype and nutrient availability. Condensed tannins responded to defoliation and varied among genotypes. Although defoliation affected condensed tannins, plant quality was not altered in a manner important for gypsy moth performance. Regression analyses suggested that phenolic glycoside concentrations accounted for most of the variation in insect performance. The lack of a strong response important for herbivores was surprising given the severity of the defoliation treatment (nearly 100% of leaf area was removed). In this study, plant genotype was of primary importance, nutrient availability was of secondary importance and long-term induced responses were unimportant as determinants of insect performance.  相似文献   

20.
Abstract:  In the laboratory we investigated a kaolin-based crop protectant, Surround® WP, that was mixed in a spray carrier (94% water, 2% methanol, 4% Triton X100) and applied as particle film against gypsy moth Lymantria dispar (L.) and forest tent caterpillar Malacosoma disstria Hubner. Paired-choice feeding tests showed that gypsy moth larvae were significantly (P < 0.05) less disposed to feed on red oak Quercus rubrus L. treated with high concentrations (60 and 120 g/l carrier) of kaolin than on untreated foliage. There was no significant difference (P > 0.05) between gypsy moth's consumption of kaolin-treated and untreated red oak when given a single food choice, but the adults were less inclined to oviposit on the kaolin-treated surfaces than on controls. However, no kaolin treatment completely deterred gypsy moth feeding or oviposition. Kaolin particle film did not influence forest tent caterpillar feeding and there were insufficient data to evaluate the effect of kaolin on the species' oviposition. The spray carrier did not increase the efficacy of the kaolin, but as an independent, albeit impractical treatment it constrained feeding by both insect species but did not affect gypsy moth oviposition. These initial laboratory findings suggest that applying kaolin-based particle film to forests would present significant challenges; but if these could be surmounted, the technique might assist in the management of gypsy moth but not likely in that of forest tent caterpillar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号