首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
课堂教学是学习和掌握知识的重要手段和途径,是学生了解学科的窗口,是教师最本质的工作之一。因此教师要重视课堂教学,学生要认真学习。但学生不能死读书,死背书,教师不能满堂灌,特别是生物课。生物学是一门实验性很强的科学,实验是获得和验证正确理论的根本手段,是实验性生物科学的基本特点。  相似文献   

2.
变异与进化     
变异是生物进化的起步。生物进化的另一个重要内容是选择。生物进化的结果是产生出形形色色的生物类型及其对环境的各种适应。不言而喻,没有变异,就没有进化。种内变异已知遗传物质(主要是DNA)能准确地复制自己,这有助于我们了解生物的遗传。但是,遗传总不是绝对的。这是说,同一种生物之间总有些变异。一般说,后代是亲代的复制品或拷贝。从大处讲,无疑这是对的。可是这拷贝总不会是完全的。因此,我们能够认识我们的朋友。已知人的指纹没有两个人是完全相同的。从一个指纹就经常可以鉴別那是谁  相似文献   

3.
中国是世界上淡水生物资源最丰富的国家之一。仅是淡水鱼类,就有八百多种,而且,其中有一半以上是我国特有的。这些淡水鱼类,有许多是具有比较高的经济价值和科学研究价值的,是珍贵的稀有鱼类。本文介绍两种珍贵鱼类,一种是我国特有的中华鲟,另一种是长江特有的白鲟。这两种鱼均被国家列为第一类重点保护的淡水鱼类。  相似文献   

4.
高中《生物》第212页对“捕食”作了正确的解释,捕食关系指的是一种生物以另一种生物为食的现象。但在教学中常出现错误的解释。其一,说捕食关系是一种动物以另一种动物为食的现象。其理由是既然是“捕”,其被捕对象一定是动物,不可能是植物。例如,可以说猫捕老鼠,青蛙捕食昆虫等,但是,马吃草,不能说是马捕食草。这种解释是错误的。  相似文献   

5.
几种天然色素及其应用实例   总被引:6,自引:0,他引:6  
什么是天然色素?这是一个有趣并且可以作出许多答案的问题。在论述“食品添加剂”一文中,这是一个最重要的问题。应该说,答案是正确的,人们也是普遍赞同的。虽然有许多天然来源的色素在商业上是有价值的,但是本文的目的是给它下一个比以往更为确切的定义。有许多物质,其来源无疑是天然的,但是这些物质的成分并不是人类各种饮食所需要  相似文献   

6.
种子的形成     
种子是被子植物繁殖后代的器官,对人类来说是不可缺少的食物的重要来源。种子是由受精后的胚珠发育而来,它包含胚、胚乳(或缺少)及种皮。胚是幼小植物体的雏形,胚乳是作为胚生长的营养组织,而种皮是种子的保护结构。种子的这几部分是如何形成的呢?下面分别介绍。胚乳胚乳是胚囊中两个极核(或先融合  相似文献   

7.
拥抱是一个纯正的巴西动作。拥抱,是爱和接受的象征,是奥林匹克运动的主题,是贯穿我们2016年奥林匹克公园总体规划的特征。  相似文献   

8.
刘崇乐教授是我国著名的昆虫学家,他的一生是热爱祖国的一生,是勤奋治学的一生,是有益于人民的一生。刘先生是福建省福州市人,1901年出生。解放前曾在北京师范大学、清华大学任教,解放后历任清华大学、北京农  相似文献   

9.
问题的提出在教学中培养学生的能力,发展学生的智力是涉及整个教学改革的一个重大问题。中学生物教学可以培养学生哪些能力呢?我们认为应以培养观察能力和思维能力为主。因为观察能力是智力结构的门户,是基础,而思维能力是智力结构的核心,是中心环节。观察是进行思维加工的前提,而思维是观察的发展和上升阶段。依照心理学的调查,知道人的感觉器官对知识的吸收比率中视觉就占了81%,可见视觉是吸收知识、捕获信息的重要门户。学生学习生物知识,基本上从观察入手,因此,观察能力的培养,对学生获得生物知识是具有重大意义的。然而,观察与思考是密切不可分,观察所  相似文献   

10.
张港 《化石》2002,(3):24
“蛛丝马迹”是人人皆知的成语 ,一般辞典的解释 ,“马迹”就是马经过后留下的痕迹或马脚印。蛛丝马迹比喻事情留下来的隐约可寻的痕迹和线索。可是 ,仔细推敲后发现 ,这样的解释是很难成立的。从事理来说 ,蛛丝是很不明显的 ,那么与之并列的马迹也应该是很不明显的 ,可是 ,作为家畜的马是个庞然大物 ,除了在水泥 ,柏油路上 ,它留下的脚印与痕迹应该是很明显的。蜘蛛的丝与高头大马的迹 ,可以说是风马牛不相及的 ,是很难放在一起相提并论的。从结构来说 ,很明显 ,这一成语中 ,“蛛丝”与“马迹”是并列的结构 ,“蛛丝”就是蛛的丝 ,是偏正关…  相似文献   

11.
12.
13.
14.
On the origin of the Hirudinea and the demise of the Oligochaeta   总被引:10,自引:0,他引:10  
The phylogenetic relationships of the Clitellata were investigated with a data set of published and new complete 18S rRNA gene sequences of 51 species representing 41 families. Sequences were aligned on the basis of a secondary structure model and analysed with maximum parsimony and maximum likelihood. In contrast to the latter method, parsimony did not recover the monophyly of Clitellata. However, a close scrutiny of the data suggested a spurious attraction between some polychaetes and clitellates. As a rule, molecular trees are closely aligned with morphology-based phylogenies. Acanthobdellida and Euhirudinea were reconciled in their traditional Hirudinea clade and were included in the Oligochaeta with the Branchiobdellida via the Lumbriculidae as a possible link between the two assemblages. While the 18S gene yielded a meaningful historical signal for determining relationships within clitellates, the exact position of Hirudinea and Branchiobdellida within oligochaetes remained unresolved. The lack of phylogenetic signal is interpreted as evidence for a rapid radiation of these taxa. The placement of Clitellata within the Polychaeta remained unresolved. The biological reality of polytomies within annelids is suggested and supports the hypothesis of an extremely ancient radiation of polychaetes and emergence of clitellates.  相似文献   

15.
16.
17.
18.
19.
Data on the ontogeny of the posterior haptor of monogeneans were obtained from more than 150 publications and summarised. These data were plotted into diagrams showing evolutionary capacity levels based on the theory of a progressive evolution of marginal hooks, anchors and other attachment components of the posterior haptor in the Monogenea (Malmberg, 1986). 5 + 5 unhinged marginal hooks are assumed to be the most primitive monogenean haptoral condition. Thus the diagrams were founded on a 5 + 5 unhinged marginal hook evolutionary capacity level, and the evolutionary capacity levels of anchors and other haptoral attachement components were arranged according to haptoral ontogenetical sequences. In the final plotting diagram data on hosts, type of spermatozoa, oncomiracidial ciliation, sensilla pattern and protonephridial systems were also included. In this way a number of correlations were revealed. Thus, for example, the number of 5 + 5 marginal hooks correlates with the most primitive monogenean type of spermatozoon and with few sensillae, many ciliated cells and a simple protonephridial system in the oncomiracidium. On the basis of the reviewed data it is concluded that the ancient monogeneans with 5 + 5 unhinged marginal hooks were divided into two main lines, one retaining unhinged marginal hooks and the other evolving hinged marginal hooks. Both main lines have recent representatives at different marginal hook evolutionary capacity levels, i.e. monogeneans retaining a haptor with only marginal hooks. For the main line with hinged marginal hooks the name Articulon-choinea n. subclass is proposed. Members with 8 + 8 hinged marginal hooks only are here called Proanchorea n. superord. Monogeneans with unhinged marginal hooks only are here called Ananchorea n. superord. and three new families are erected for its recent members: Anonchohapteridae n. fam., Acolpentronidae n. fam. and Anacanthoridae n. fam. (with 7 + 7, 8 + 8 and 9 + 9 unhinged marginal hooks, respectively). Except for the families of Articulonchoinea (e.g. Acanthocotylidae, Gyrodactylidae, Tetraonchoididae) Bychowsky's (1957) division of the Monogenea into the Oligonchoinea and Polyonchoinea fits the proposed scheme, i.e. monogeneans with unhinged marginal hooks form one old group, the Oligonchoinea, which have 5 + 5 unhinged marginal hooks, and the other group form the Polyonchoinea, which (with the exception of the Hexabothriidae) has a greater number (7 + 7, 8 + 8 or 9 + 9) of unhinged marginal hooks. It is proposed that both these names, Oligonchoinea (sensu mihi) and Polyonchoinea (sensu mihi), will be retained on one side and Articulonchoinea placed on the other side, which reflects the early monogenean evolution. Except for the members of Ananchorea [Polyonchoinea], all members of the Oligonchoinea and Polyonchoinea have anchors, which imply that they are further evolved, i.e. have passed the 5 + 5 marginal hook evolutionary capacity level (Malmberg, 1986). There are two main types of anchors in the Monogenea: haptoral anchors, with anlages appearing in the haptor, and peduncular anchors, with anlages in the peduncle. There are two types of haptoral anchors: peripheral haptoral anchors, ontogenetically the oldest, and central haptoral anchors. Peduncular anchors, in turn, are ontogenetically younger than peripheral haptoral anchors. There may be two pairs of peduncular anchors: medial peduncular anchors, ontogentically the oldest, and lateral peduncular anchors. Only peduncular (not haptoral) anchors have anchor bars. Monogeneans with haptoral anchors are here called Mediohaptanchorea n. superord. and Laterohaptanchorea n. superord. or haptanchoreans. All oligonchoineans and the oldest polyonchoineans are haptanchoreans. Certain members of Calceostomatidae [Polyonchoinea] are the only monogeneans with both (peripheral) haptoral and peduncular anchors (one pair). These monogeneans are here called Mixanchorea n. superord. Polyonchoineans with peduncular anchors and unhinged marginal hooks are here called the Pedunculanchorea n. superord. The most primitive pedunculanchoreans have only one pair of peduncular anchors with an anchor bar, while the most advanced have both medial and lateral peduncular anchors; each pair having an anchor bar. Certain families of the Articulonchoinea, the Anchorea n. superord., also have peduncular anchors (parallel evolution): only one family, the Sundanonchidae n. fam., has both medial and lateral peduncular anchors, each anchor pair with an anchor bar. Evolutionary lines from different monogenean evolutionary capacity levels are discussed and a new system of classification for the Monogenea is proposed.In agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. EditorIn agreeing to publish this article, I recognise that its contents are controversial and contrary to generally accepted views on monogenean systematics and evolution. I have anticipated a reaction to the article by inviting senior workers in the field to comment upon it: their views will be reported in a future issue of this journal. Editor  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号