首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 727 毫秒
1.
A family of structured peptides that bind to FcepsilonRIalpha, the alpha-chain of the high-affinity receptor for IgE, has been identified. Binding selections using FcepsilonRIalpha and polyvalent peptide-phage libraries yielded a dominant 18-residue peptide-phage clone, as well as related sequences that did not resemble fragments of IgE. Synthetic peptides based on these sequences inhibited IgE binding to its receptor, and were found by NMR analysis to adopt a stable beta-hairpin structure in solution. Optimized peptides with micromolar receptor affinity exhibited high stability in biological fluids and inhibited cellular histamine release in an in vitro bioassay of IgE activity. The structure-activity relationships of these peptides, which are less than 1% of the size of IgE, suggest an overlap between their binding site and that of IgE on FcepsilonRI. Thus, the peptides demonstrate that blocking a small epitope on this receptor chain is sufficient to block IgE activity. Such structured peptides represent a possible starting point for the design of novel antagonists, and offer the potential for testing in vivo a new approach for treating allergic disease.  相似文献   

2.
Immunoglobulin E (IgE) exhibits a uniquely high affinity for its receptor, FcepsilonRI, on the surface of mast cells and basophils. Previous work has implicated the third domain of the constant region of the epsilon-heavy chain (Cepsilon3) in binding to FcepsilonRI, but the smallest fragment of IgE that is known to bind with full affinity is a covalent dimer of the Cepsilon3 and Cepsilon4 domains. We have expressed the isolated Cepsilon3 in Escherichia coli, measured its affinity for FcepsilonRI, and examined its conformation alone and in the complex with FcepsilonRI. Sedimentation equilibrium in the analytical centrifuge reveals that this product is a monomer. The kinetics of binding to an immobilized fragment of the FcepsilonRI alpha-chain, measured by surface plasmon resonance, yields an affinity constant K(a) = 5 x 10(6) M(-)(1), as compared with 4 x 10(9) M(-)(1) for IgE. The circular dichroism spectrum and measurements of fluorescence as a function of the concentration of a denaturant do not reveal any recognizable secondary structure or hydrophobic core. On binding to the FcepsilonRI alpha-chain fragment, there is no change in the circular dichroism spectrum, indicating that the conformation of Cepsilon3 is unchanged in the complex. Thus the isolated Cepsilon3 domain is sufficient for binding to FcepsilonRI, but with lower affinity than IgE. This may be due to the loss of its native immunoglobulin domain structure or to the requirement for two Cepsilon3 domains to constitute the complete binding site for FcepsilonRI or to a combination of these factors.  相似文献   

3.
Mast cells express the high affinity receptor for IgE (FcepsilonRI). Aggregation of this receptor by IgE and antigen leads to a signaling cascade resulting in the secretion of histamine, in the synthesis of other pro-inflammatory mediators such as leukotrienes and prostaglandins, and in the production of various cytokines, all of which participate in the development of the allergic reaction. In the last years, growing evidence accumulated that binding of IgEs to FcepsilonRI in itself induces active signals leading to mast cell survival, increased expression of FcepsilonRI, transient induction of histidine decarboxylase synthesis, and increased cell adhesion. The mechanisms underlying monomeric IgE signaling in the absence of receptor aggregation are still poorly understood. Here, we show that a protein of 28 kDa (p28) is physically and constitutively associated with FcepsilonRI in mast cells. Coimmunoprecipitation studies from (125)I surface-labeled cells demonstrated that this association involves at least 50% of membrane-expressed FcepsilonRI. After the addition of monomeric IgE to the cells, the p28.FcepsilonRI complex dissociates almost completely in less than 2 min. This dissociation is temperature-sensitive and is not due to the recruitment of additional proteins to the complex. Stripping bound IgE from the cells by acidic treatment promotes a rapid reassociation between p28 and FcepsilonRI. Altogether, these data are consistent with a conformational regulation of the complex. Thus, p28 is a sensor for FcepsilonRI occupation by IgE on mast cells, and its dissociation from the receptor could represent an early step of monomeric IgE signaling.  相似文献   

4.
Extracts from immature fruit of the apple (Rosaceae, Malus sp.), which contain procyanidins (polymers of catechins) as the major ingredients, are known to inhibit histamine release from mast cells. We analyzed in this study the mechanism for the anti-allergic activity of two polyphenol-enriched apple extracts. These extracts, termed "crude apple polyphenol (CAP)" and "apple condensed tannin (ACT)", reduced the degranulation of mast cells caused by cross-linking of the high-affinity receptor for IgE (FcepsilonRI) with IgE and the antigen in a dose-dependent manner. Furthermore, western blotting revealed that phosphorylation of the intracellular signal-transduction molecules caused by cross-linking of FcepsilonRI was markedly decreased by the addition of CAP or ACT. We then analyzed the effects of CAP and ACT on the binding of the IgE antibody to FcepsilonRI on mast cells, which is the first key step in the allergic reaction mediated by mast cells, and found that this binding was markedly inhibited by both CAP and ACT. These results indicate that the inhibition of binding between FcepsilonRI and IgE by either CAP or ACT was the probable cause of the suppression of mast cell activation. This is the first report demonstrating the molecular mechanism for the anti-allergic effect of procyanidin-enriched extracts from apples.  相似文献   

5.
The high affinity of IgE for its receptor, FcepsilonRI (K(a) approximately 10(10) M(-1)), is responsible for the persistence of mast cell sensitization. Cross-linking of FcepsilonRI-bound IgE by multivalent allergen leads to cellular activation and release of pro-inflammatory mediators responsible for the symptoms of allergic disease. We previously demonstrated that limiting the IgE-FcepsilonRI interaction to just one of the two Cepsilon3 domains in IgE-Fc, which together constitute the high affinity binding site, results in 1000-fold reduced affinity. Such attenuation, effected by a small molecule binding to part of the IgE:FcepsilonRI interface or a distant allosteric site, rather than complete blocking of the interaction, may represent a viable approach to the treatment of allergic disease. However, the degree to which the interaction would need to be disrupted is unclear, because the importance of high affinity for immediate hypersensitivity has never been investigated. We have incorporated into human IgE a mutation, R334S, previously characterized in IgE-Fc, which reduces its affinity for FcepsilonRI approximately 50-fold. We have compared the ability of wild type and R334S IgE to stimulate allergen-induced mast cell activation in vitro and in vivo. We confirmed the expected difference in affinity between wild type and mutant IgE for FcepsilonRI (approximately 50-fold) and found that, in vitro, mast cell degranulation was reduced proportionately. The effect in vivo was also marked, with a 75% reduction in the passive cutaneous anaphylaxis response. We have therefore demonstrated that the high affinity of IgE for FcepsilonRI is critical to the allergic response, and that even moderate attenuation of this affinity has a substantial effect in vivo.  相似文献   

6.
The high affinity receptor for IgE, FcepsilonRI, binds IgE through the second Ig-like domain of the alpha subunit. The role of the first Ig-like domain is not well understood, but it is required for optimal binding of IgE to FcepsilonRI, either through a minor contact interaction or in a supporting structural capacity. The results reported here demonstrate that domain one of FcepsilonRI plays a major structural role supporting the presentation of the ligand-binding site, by interactions generated within the interdomain interface. Analysis of a series of chimeric receptors and point mutants indicated that specific residues within the A' strand of domain one are crucial to the maintenance of the interdomain interface, and IgE binding. Mutation of the Arg(15) and Phe(17) residues caused loss in ligand binding, and utilizing a homology model of FcepsilonRI-alpha based on the solved structure of FcgammaRIIa, it appears likely that this decrease is brought about by collapse of the interface and consequently the IgE-binding site. In addition discrepancies in results of previous studies using chimeric IgE receptors comprising FcepsilonRIalpha with either FcgammaRIIa or FcgammaRIIIA can be explained by the presence or absence of Arg(15) and its influence on the IgE-binding site. The data presented here suggest that the second domain of FcepsilonRI-alpha is the only domain involved in direct contact with the IgE ligand and that domain one has a structural function of great importance in maintaining the integrity of the interdomain interface and, through it, the ligand-binding site.  相似文献   

7.
Interaction of secretory IgE with FcepsilonRI is the prerequisite for allergen-driven cellular responses, fundamental events in immediate and chronic allergic manifestations. Previous studies reported the binding of soluble FcepsilonRIalpha to membrane IgE exposed on B cells. In this study, the functional interaction between human membrane IgE and human FcepsilonRI is presented. Four different IgE versions were expressed in mouse B cell lines, namely: a truncation at the Cepsilon2-Cepsilon3 junction of membrane IgE isoform long, membrane IgE isoform long (without Igalpha/Igbeta BCR accessory proteins), and both epsilonBCRs (containing membrane IgE isoforms short and long). All membrane IgE versions activated a rat basophilic leukemia cell line transfected with human FcepsilonRI, as detected by measuring the release of both preformed and newly synthesized mediators. The interaction led also to Ca(2+) responses in the basophil cell line, while membrane IgE-FcepsilonRI complexes were detected by immunoprecipitation. FcepsilonRI activation by membrane IgE occurs in an Ag-independent manner. Noteworthily, human peripheral blood basophils and monocytes also were activated upon contact with cells bearing membrane IgE. In humans, the presence of FcepsilonRI in several cellular entities suggests a possible membrane IgE-FcepsilonRI-driven cell-cell dialogue, with likely implications for IgE homeostasis in physiology and pathology.  相似文献   

8.
The high-affinity IgE receptor (FcepsilonRI) on mast cells and basophils consists of a ligand-binding alpha-chain and two kinds of signaling chains, a beta-chain and disulfide-linked homodimeric gamma-chains. Crosslinking by multivalent antigen results in the aggregation of the bound IgE/alpha-chain complexes at the cell surface, triggering cell activation, and subsequent internalization through coated pits. However, the precise topographical alterations of the signaling beta- and gamma-chains during stimulation remain unclarified despite their importance in ligand binding/signaling coupling. Here we describe the dynamics of FcepsilonRI subunit distribution in rat basophilic leukemia cells during stimulation as revealed by immunofluorescence and immunogold electron microscopy. Immunolocalization of beta- and gamma-chains was homogeneously distributed on the cell surfaces before stimulation, while crosslinking with multivalent antigen, which elicited optimal degranulation, caused a distinct aggregation of these signaling chains on the cell membrane. Moreover, only gamma- but not beta-chains were aggregated during the stimulation that evoked suboptimal secretion. These findings suggest that high-affinity IgE receptor beta- and gamma-chains do not co-aggregate but for the most part form homogenous aggregates of beta-chains or gamma-chains after crosslinking.  相似文献   

9.
A variant of the high affinity IgE receptor FcepsilonRI, which is composed of alpha- and gamma-chains without the beta-chain, is expressed on human APC, such as dendritic cells, and has been suggested to facilitate Ag uptake through IgE and hence to facilitate Ag presentation to T cells. The level of FcepsilonRI on these cells is correlated with the serum IgE concentration, suggesting IgE mediates the up-regulation of the alphagamma2-type FcepsilonRI. The IgE-mediated FcepsilonRI up-regulation on mast cells and basophils has been shown to enhance the ability of these cells to release chemical mediators and cytokines that are responsible for allergic inflammatory reactions. Here, to elucidate the mechanism controlling FcepsilonRI expression, we compared two structurally related Ig receptors, human FcepsilonRI and FcgammaRIIIA, which carry different alpha-chains but the same gamma-chains. The half-life of FcepsilonRI on the cell surface was short unless it bound IgE, whereas FcgammaRIIIA was stably expressed without IgG binding. Shuffling of the non Ig-binding portions of the FcepsilonRIalpha and FcgammaRIIIAalpha chains revealed that the stalk region was critical in determining the difference in their stability and ligand-induced up-regulation. Unexpectedly, analyses with added or deleted amino acids in the stalk region strongly suggested that the length rather than the amino acid sequence of the stalk region was of major importance in determining the different stabilities of FcepsilonRI and FcgammaRIIIA on the cell surface. This finding provides new insights into the mechanism regulating surface FcepsilonRI expression.  相似文献   

10.
Mast cells and basophils involved in allergic responses do not have clonotypic Ag receptors. However, they can acquire Ag specificity through binding of Ag-specific IgE to FcepsilonRI expressed on their surface. Previous studies demonstrated that IgE binding induced the stabilization and accumulation of FcepsilonRI on the cell surface and resulted in up-regulation of FcepsilonRI. In this study we have further analyzed the maintenance of IgE-mediated memory in mast cells and basophils in vivo by comparing kinetics of serum IgE levels, FcepsilonRI expression, and ability to induce systemic anaphylaxis. A single i.v. injection of trinitrophenyl-specific IgE induced 8-fold up-regulation of FcepsilonRI expression on peritoneal mast cells in B cell-deficient (micro m(-/-)) mice. Serum IgE levels became undetectable by day 6, but the treatment of mice with anti-IgE mAb induced a significant drop in body temperature on days 14, 28, and 42. The administration of trinitrophenyl -BSA, but not BSA, in place of anti-IgE mAb gave similar results, indicating the Ag specificity of the allergic response. This long term maintenance of Ag-specific reactivity in the allergic response was also observed in normal mice passively sensitized with IgE even though the duration was shorter than that in B cell-deficient mice. The appearance of IgE with a different specificity did not interfere with the maintenance of IgE-mediated memory of mast cells and basophils. These results suggest that IgE-mediated stabilization and up-regulation of FcepsilonRI enables mast cells and basophils not only to acquire Ag specificity, but also to maintain memory in vivo for lengthy periods of time.  相似文献   

11.
The high-affinity IgE receptor (FcepsilonRI) has recently been reported to be expressed by neutrophils in atopic asthmatic individuals, leading to speculations that IgE could influence biological functions of these cells. In this study, we demonstrate that monomeric human IgE delayed spontaneous apoptosis of primary human neutrophils from atopic asthmatics in vitro. This effect was not dependent on FcepsilonRI cross-linking or autocrine release of soluble mediators; however, it was associated with increased expression of the antiapoptotic myeloid cell leukemia-1 protein, retention of the proapoptotic molecule Bax in the cytoplasm, decreased release of Smac from mitochondria, and reduced caspase-3 activity. Taken together, our results indicate that in vitro IgE can delay programmed cell death of neutrophils from allergic asthmatics and this may possibly contribute to neutrophilic inflammation in atopic asthma.  相似文献   

12.
Immune cells display multiple cell surface receptors that integrate signals for survival, proliferation, migration, and degranulation. Here, immunogold labeling is used to map the plasma membrane distributions of two separate receptors, the N-formyl peptide receptor (FPR) and the high-affinity IgE receptor (FepsilonRI). We show that the FPR forms signaling clusters in response to monovalent ligand. These domains recruit Gi, followed by the negative regulatory molecule arrestin2. There are low levels of colocalization of FPR with FcepsilonRI in unstimulated cells, shown by computer simulation to be a consequence of receptor density. Remarkably, there is a large increase in receptor coclustering when cells are simultaneously treated with N-formyl-methionyl-leucyl-phenylalanine and IgE plus polyvalent antigen. The proximity of two active receptors may promote localized cross-talk, leading to enhanced inositol-(3,4,5)-trisphosphate production and secretion. Some cointernalization and trafficking of the two receptors can be detected by live cell imaging, but the bulk of FPR and FcepsilonRI segregates over time. This segregation is associated with more efficient internalization of cross-linked FcepsilonRI than of arrestin-desensitized FPR. The observation of receptors in lightly coated membrane invaginations suggests that, despite the lack of caveolin, hematopoietic cells harbor caveolae-like structures that are candidates for nonclathrin-mediated endocytosis.  相似文献   

13.
FcepsilonRI expressed by human eosinophils is involved in IgE-mediated cytotoxicity reactions toward the parasite Schistosoma mansoni in vitro. However, because receptor expression is low on these cells, its functional role is still controversial. In this study, we have measured surface and intracellular expression of FcepsilonRI by blood eosinophils from hypereosinophilic patients and normal donors. The number of unoccupied receptors corresponded to approximately 4,500 Ab binding sites per cell, whereas 50,000 Ab binding sites per cell were detected intracellularly. Eosinophils from patients displayed significantly more unoccupied receptors than cells from normal donors. This number correlated to both serum IgE concentrations and to membrane-bound IgE. The lack of FcepsilonRI expression by mouse eosinophils has hampered further studies. To overcome this fact and experimentally confirm our findings on human eosinophils, we engineered IL-5 x hFcepsilonRIalpha double-transgenic mice, whose bone marrow, blood, spleen, and peritoneal eosinophils expressed FcepsilonRI levels similar to levels of human eosinophils, after 4 days culture with IgE in the presence of IL-5. Both human and mouse eosinophils were able to secrete IL-10 upon FcepsilonRI engagement. Thus, comparative analysis of cells from patients and from a relevant animal model allowed us to clearly demonstrate that FcepsilonRI-mediated eosinophil activation leads to IL-10 secretion. Through FcepsilonRI expression, these cells are able to contribute to both the regulation of the immune response and to its effector mechanisms.  相似文献   

14.
The high affinity receptor for IgE (FcepsilonRI) plays an integral role in triggering IgE-mediated hypersensitivity reactions. The IgE-interactive site of human FcepsilonRI has previously been broadly mapped to several large regions in the second extracellular domain (D2) of the alpha-subunit (FcepsilonRIalpha). In this study, the IgE binding site of human FcepsilonRIalpha has been further localized to subregions of D2, and key residues putatively involved in the interaction with IgE have been identified. Chimeric receptors generated between FcepsilonRIalpha and the functionally distinct but structurally homologous low affinity receptor for IgG (FcgammaRIIa) have been used to localize two IgE binding regions of FcepsilonRIalpha to amino acid segments Tyr129-His134 and Lys154-Glu161. Both regions were capable of independently binding IgE upon placement into FcgammaRIIa. Molecular modeling of the three-dimensional structure of FcepsilonRIalpha-D2 has suggested that these binding regions correspond to the "exposed" C'-E and F-G loop regions at the membrane distal portion of the domain. A systematic site-directed mutagenesis strategy, whereby each residue in the Tyr129-His134 and Lys154-Glu161 regions of FcepsilonRIalpha was replaced with alanine, has identified key residues putatively involved in the interaction with IgE. Substitution of Tyr131, Glu132, Val155, and Asp159 decreased the binding of IgE, whereas substitution of Trp130, Trp156, Tyr160, and Glu161 increased binding. In addition, mutagenesis of residues Trp113, Val115, and Tyr116 in the B-C loop region, which lies adjacent to the C'-E and F-G loops, has suggested Trp113 also contributes to IgE binding, since the substitution of this residue with alanine dramatically reduces binding. This information should prove valuable in the design of strategies to intervene in the FcepsilonRIalpha-IgE interaction for the possible treatment of IgE-mediated allergic disease.  相似文献   

15.
The key role of protein flexibility in modulating IgE interactions   总被引:1,自引:0,他引:1  
The interaction between IgE and its high affinity receptor (FcepsilonRI) is a critical step in the development of allergic responses. Detailed characterization of the IgE-FcepsilonRI interaction may offer insights into possible modes of inhibiting the interaction, which could thereby act as a potential therapy for allergy. In this study, NMR, CD, and fluorescence spectroscopies have been used to characterize structurally the Cepsilon3 domain of IgE and its interaction with other protein ligands, namely, Cepsilon2, Cepsilon4, sFcepsilonRIalpha, and CD23. We have shown that the recombinant Cepsilon3 domain exists alone in solution as a "molten globule." On interaction with sFcepsilonRIalpha, Cepsilon3 adopts a folded tertiary structure, as shown by the release of the fluorescent probe 8-anilinonaphthalene-1-sulfonate and by characteristic changes in the (1)H, (15)N heteronuclear single quantum coherence NMR spectrum. However, the interactions between the Cepsilon3 domain and Cepsilon2, Cepsilon4, or CD23 do not induce such folding and would therefore be expected to involve only local interaction surfaces. The conformational flexibility of the Cepsilon3 domain of the whole IgE molecule may play a role in allowing fine tuning of the affinity and specificity of IgE for a variety of different physiological ligands and may be involved in the conformational change of IgE postulated to occur on interaction with FcepsilonRI.  相似文献   

16.
Accumulating evidence suggests that IgE-mediated activation of mast cells occurs even in the absence of antigen, which is referred to as "monomeric IgE" responses. Although monomeric IgE was found to induce a wide variety of responses, such as up-regulation of the FcepsilonRI, survival, cytokine production, histamine synthesis, and adhesion to fibronectin, it remains to be clarified how mast cells are activated in the absence of antigen. It has been controversial whether monomeric IgE responses are mediated by a similar signaling mechanism to antigen stimulation, although recent studies suggest that IgE can induce the FcepsilonRI aggregation even in the absence of antigen. In this study, we focused on the role of conventional protein kinase C (cPKC), since this response is suppressed by a specific inhibitor for cPKC. Monomeric IgE-induced Ca(2+) influx was not observed in a mouse mastocytoma cell line, which lacks the expression of PKCbetaII, although Ca(2+) influx induced by cross-linking of the FcepsilonRI was intact. Transfection of PKCbetaII cDNA was found to restore the Ca(2+) influx induced by monomeric IgE in this cell line. Furthermore, the dominant negative form of PKCbetaII (PKCbetaII/T500V) significantly suppressed the Ca(2+) influx, histamine synthesis, and interleukin-6 production in another mouse mast cell line, which is highly sensitive to monomeric IgE. Expression of PKCbetaII/T500V was found not to affect the antigen-induced responses. These results suggest that PKCbetaII plays a critical role in monomeric IgE responses, but not in antigen responses.  相似文献   

17.
Upon cross-linking by antigen, the high affinity receptor for immunoglobulin E (IgE), FcepsilonRI, is phosphorylated by the Src family tyrosine kinase Lyn to initiate mast cell signaling, leading to degranulation. Using fluorescence correlation spectroscopy (FCS), we observe stimulation-dependent associations between fluorescently labeled IgE-FcepsilonRI and Lyn-EGFP on individual cells. We also simultaneously measure temporal variations in the lateral diffusion of these proteins. Antigen-stimulated interactions between these proteins detected subsequent to the initiation of receptor phosphorylation exhibit time-dependent changes, suggesting multiple associations between FcepsilonRI and Lyn-EGFP. During this period, we also observe a persistent decrease in Lyn-EGFP lateral diffusion that is dependent on Src family kinase activity. These stimulated interactions are not observed between FcepsilonRI and a chimeric EGFP that contains only the membrane-targeting sequence from Lyn. Our results reveal real-time interactions between Lyn and cross-linked FcepsilonRI implicated in downstream signaling events. They demonstrate the capacity of FCS cross-correlation analysis to investigate the mechanism of signaling-dependent protein-protein interactions in intact, living cells.  相似文献   

18.
19.
The spreading epidemic of allergies and asthma has heightened interest in IgE, the central player in the allergic response. The activity of IgE is associated with a network of proteins; prominent among these are its two principal receptors, FcepsilonRI (high-affinity Fc receptor for IgE) and CD23, as well as galectin-3 and several co-receptors for CD23, notably CD21 and various integrins. Here, we review recent progress in uncovering the structures of these proteins and their complexes, and in our understanding of how IgE exerts its effects and how its expression is regulated. The information that has emerged suggests new therapeutic directions for combating allergic disease.  相似文献   

20.
It has been shown that IgE binding to FcepsilonRI on mast cells results in increased FcepsilonRI expression, which in turn enhances IgE-dependent chemical mediator release from mast cells. Therefore, prevention of the IgE-mediated FcepsilonRI up-regulation would be a promising strategy for management of allergic disorders. However, the mechanism of IgE-mediated FcepsilonRI up-regulation has not been fully elucidated. In this study, we analyzed kinetics of FcepsilonRI on peritoneal mast cells and bone marrow-derived mast cells. In the presence of brefeldin A, which prevented transport of new FcepsilonRI molecules to the cell surface, levels of IgE-free FcepsilonRI on mast cells decreased drastically during culture, whereas those of IgE-bound FcepsilonRI were stable. In contrast, levels of FcgammaRIII on the same cells were stable even in the absence of its ligand, indicating that FcepsilonRI alpha-chain, but not beta- and gamma-chains, was responsible for the instability of IgE-free FcepsilonRI. As far as we analyzed, there was no evidence to support the idea that IgE binding to FcepsilonRI facilitated synthesis and/or transport of FcepsilonRI to the cell surface. Therefore, the stabilization and accumulation of FcepsilonRI on the cell surface through IgE binding appears to be the major mechanism of IgE-mediated FcepsilonRI up-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号