首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Transformation of an E. coli strain with a recombinant plasmid DNA (pB1) encoding the genes for phenylalanyl- and threonyl-tRNA synthetases causes overproduction of these enzymes by about 100- and 5-fold, respectively. A possible effect of the overproduction of the two aminoacyl-tRNA synthetases on intracellular cognate tRNA levels has been searched for by comparing tRNAThr and tRNAPhe aminoacylation capacities in the RNA extracts from strains carrying pB1 or pBR322 plasmid DNA. The answer is that the levels of these tRNAs are not changed by selective increase of the cognate synthetases.  相似文献   

2.
Transfer RNAs from Escherichia coli, yeast (Sacharomyces cerevisiae), and calf liver were subjected to controlled hydrolysis with venom exonuclease to remove 3'-terminal nucleotides, and then reconstructed successively with cytosine triphosphate (CTP) and 2'- or 3'-deoxyadenosine 5'-triphosphate in the presence of yeast CTP(ATP):tRNA nucleotidyltransferase. The modified tRNAs were purified by chromatography on DBAE-cellulose or acetylated DBAE-cellulose and then utilized in tRNA aminoacylation experiments in the presence of the homologous aminoacyl-tRNA synthetase activities. The E. coli, yeast, and calf liver aminoacyl-tRNA synthetases specific for alanine, glycine, histidine, lysine, serine, and threonine, as well as the E. coli and yeast prolyl-tRNA synthetases and the yeast glutaminyl-tRNA synthetase utilized only those homologous modified tRNAs terminating in 2'-deoxyadenosine (i.e., having an available 3'-OH group). This is interpreted as evidence that these aminoacyl-tRNA synthetases normally aminoacylate their unmodified cognate tRNAs on the 3'-OH group. The aminoacyl-tRNA synthetases from all three sources specific argining, isoleucine, leucine, phenylalanine, and valine, as well as the E. coli and yeast enzymes specific for methionine and the E. coli glutamyl-tRNA synthetase, used as substrates exclusively those tRNAs terminating in 3'-deoxyadenosine. Certain aminoacyl-tRNA synthetases, including the E. coli, yeast, and calf liver asparagine and tyrosine activating enzymes, the E. coli and yeast cysteinyl-tRNA synthetases, and the aspartyl-tRNA synthetase from yeast, utilized both isomeric tRNAs as substrates, although generally not at the same rate. While the calf liver aspartyl- and cysteinyl-tRNA synthetases utilized only the corresponding modified tRNA species terminating in 2'-deoxyadenosine, the use of a more concentrated enzyme preparation might well result in aminoacylation of the isomeric species. The one tRNA for which positional specificity does seem to have changed during evolution is tryptophan, whose E. coli aminoacyl-tRNA synthetase utilized predominantly the cognate tRNA terminating in 3'-deoxyadenosine, while the corresponding yeast and calf liver enzymes were found to utilize predominantly the isomeric tRNAs terminating in 2'-deoxyadenosine. The data presented indicate that while there is considerable diversity in the initial position of aminoacylation of individual tRNA isoacceptors derived from a single source, positional specificity has generally been conserved during the evolution from a prokaryotic to mammalian organism.  相似文献   

3.
Periodate-oxidized ATP (oATP) inactivates the partial reaction of aminoacyl-tRNA synthetases in which amino acid is transferred to tRNA without altering the other partial reaction in which ATP is a substrate or a product. The inactivation has been shown to be nonspecific with regard to substituents on the dialdehyde and with regard to the enzymes susceptible to inactivation; oxidized GTP and oxidized uridine react as well as oATP with aminoacyl-tRNA synthetases and all three dialdehydes also inactivate rabbit muscle aldolase.  相似文献   

4.
The presence of high-molecular-weight complexes of aminoacyl-tRNA synthetases in Escherichia coli has been reported (C. L. Harris, J. Bacteriol. 169:2718-2723, 1987). In the current study, Bio-Gel A-5M gel chromatography of 105,000 x g supernatant preparations from E. coli Q13 indicated high molecular weights for both tRNA methylase (300,000) and tRNA sulfurtransferase (450,000). These tRNA modification enzymes did not appear to exist in the same multienzymic complex. On the other hand, 4-thiouridine sulfurtransferase eluted with aminoacyl-tRNA synthetase activity on Bio-Gel A-5M, and both of these activities were cosedimented after further centrifugation of cell supernatants at 160,000 x g for 18 h. Despite this evidence for association of the sulfurtransferase with the synthetase complex, isoleucyl-tRNA synthetase and tRNA sulfurtransferase were totally resolved from each other by DEAE-Sephacel chromatography. Subsequent gel chromatography showed little change in their elution positions on agarose. Hence, either nonspecific aggregation occurred here, or the modification enzymes studied are not members of the aminoacyl-tRNA synthetase complex in E. coli. These findings do suggest that some bacterial tRNA modification enzymes are present in multiprotein complexes of high molecular weight.  相似文献   

5.
Crystallographic studies of a number of aminoacyl-tRNA synthetases and their complexes with ATP, amino acid and cognate tRNA are leading to an increasingly detailed picture of how these sophisticated enzymes function. Within the two distinct structural classes of ten synthetases, many common features are apparent, although evolution has led to many interesting idiosyncrasies in certain enzymes. Recent advances, specially concerning class II enzymes, have increased out knowledge of both the role of electrophiles in the mechanism of amino acid activation and cross-subunit tRNA recognition and help solve the evolutionary puzzles that have emerged from the extension of the aminoacyl-tRNA synthetase database to include Archae  相似文献   

6.
Aminoacyl-tRNA is generally formed by aminoacyl-tRNA synthetases, a family of 20 enzymes essential for accurate protein synthesis. However, most bacteria generate one of the two amide aminoacyl-tRNAs, Asn-tRNA or Gln-tRNA, by transamidation of mischarged Asp-tRNA(Asn) or Glu-tRNA(Gln) catalyzed by a heterotrimeric amidotransferase (encoded by the gatA, gatB, and gatC genes). The Chlamydia trachomatis genome sequence reveals genes for 18 synthetases, whereas those for asparaginyl-tRNA synthetase and glutaminyl-tRNA synthetase are absent. Yet the genome harbors three gat genes in an operon-like arrangement (gatCAB). We reasoned that Chlamydia uses the gatCAB-encoded amidotransferase to generate both Asn-tRNA and Gln-tRNA. C. trachomatis aspartyl-tRNA synthetase and glutamyl-tRNA synthetase were shown to be non-discriminating synthetases that form the misacylated tRNA(Asn) and tRNA(Gln) species. A preparation of pure heterotrimeric recombinant C. trachomatis amidotransferase converted Asp-tRNA(Asn) and Glu-tRNA(Gln) into Asn-tRNA and Gln-tRNA, respectively. The enzyme used glutamine, asparagine, or ammonia as amide donors in the presence of either ATP or GTP. These results suggest that C. trachomatis employs the dual specificity gatCAB-encoded amidotransferase and 18 aminoacyl-tRNA synthetases to create the complete set of 20 aminoacyl-tRNAs.  相似文献   

7.
Aminoacyl-tRNA synthetases are well known for their remarkable precision in substrate selection during aminoacyl-tRNA formation. Some synthetases enhance the accuracy of this process by editing mechanisms that lead to hydrolysis of incorrectly activated and/or charged amino acids. Prolyl-tRNA synthetases (ProRSs) can be divided into two structurally divergent groups, archaeal-type and bacterial-type enzymes. A striking difference between these groups is the presence of an insertion domain (approximately 180 amino acids) in the bacterial-type ProRS. Because the archaeal-type ProRS enzymes have been shown to recognize cysteine, we tested selected ProRSs from all three domains of life to determine whether cysteine activation is a general property of ProRS. Here we show that cysteine is activated by recombinant ProRS enzymes from the archaea Methanocaldococcus jannaschii and Methanothermobacter thermautotrophicus, from the eukaryote Saccharomyces cerevisiae, and from the bacteria Aquifex aeolicus, Borrelia burgdorferi, Clostridium sticklandii, Cytophaga hutchinsonii, Deinococcus radiodurans, Escherichia coli, Magnetospirillum magnetotacticum, Novosphingobium aromaticivorans, Rhodopseudomonas palustris, and Thermus thermophilus. This non-cognate amino acid was efficiently acylated in vitro onto tRNA(Pro), and the misacylated Cys-tRNA(Pro) was not edited by ProRS. Therefore, ProRS exhibits a natural level of mischarging that is to date unequalled among the aminoacyl-tRNA synthetases.  相似文献   

8.
1. Transfer RNA makes up 30-40% of total RNA in previtellogenic oocytes of Xenopus laevis. The bulk of tRNA is associated with 5-S RNA and two proteins in a high-molecular-weight complex sedimenting at 42S. 2. We show here that all kinds of tRNA are present in the 42-S particles and all of them sediment coincidently. Particle tRNA is fully charged in vivo. During purification of the 42-S particles tRNA becomes partially uncharged. When purified particles are incubated in vitro with amino acids and ATP a charging reaction occurs without disruption of the nucleoprotein complex. Many aminoacyl-tRNA synthetases can be shown to co-sediment with the 42-S particles. We conclude that complete aminoacylation of tRNA within the storage particles results from the activity of particle-bound aminoacyl-tRNA synthetases.  相似文献   

9.
Discovery of mupirocin, an antibiotic that targets isoleucyl-tRNA synthetase, established aminoacyl-tRNA synthetase as an attractive target for the discovery of novel antibacterial agents. Despite a high degree of similarity between the bacterial and human aminoacyl-tRNA synthetases, the selectivity observed with mupirocin triggered the possibility of targeting other aminoacyl-tRNA synthetases as potential drug targets. These enzymes catalyse the condensation of a specific amino acid to its cognate tRNA in an energy-dependent reaction. Therefore, each organism is expected to encode at least twenty aminoacyl-tRNA synthetases, one for each amino acid. However, a bioinformatics search for genes encoding aminoacyl-tRNA synthetases from Mycobacterium smegmatis returned multiple genes for glutamyl (GluRS), cysteinyl (CysRS), prolyl (ProRS) and lysyl (LysRS) tRNA synthetases. The pathogenic mycobacteria, namely, Mycobacterium tuberculosis and Mycobacterium leprae, were also found to possess two genes each for CysRS and LysRS. A similar search indicated the presence of additional genes for LysRS in gram negative bacteria as well. Herein, we describe sequence and structural analysis of the additional aminoacyl-tRNA synthetase genes found in M. smegmatis. Characterization of conditional expression strains of Cysteinyl and Lysyl-tRNA synthetases generated in M. smegmatis revealed that the canonical aminoacyl-tRNA synthetase are essential, while the additional ones are not essential for the growth of M. smegmatis.  相似文献   

10.
Active preparations of tRNA and aminoacyl-tRNA synthetases have been isolated from exponentially growing cells of Mycobacterium smegmatis and Mycobacterium tuberculosis H37Rv. Though the aminoacyl-tRNA synthetases of older cells retain their activity, the tRNAs seem to undergo modification and show poorer activity. The mycobacterial enzyme preparations catalyse homologous and heterologous aminoacylation between tRNA from the two species (M. smegmatis and M. tuberculosis H37Rv) or from Escherichia coli, with equal efficiency; tRNA samples from eukaryotic cells (yeast and rat liver) do not serve as substrates for the mycobacterial synthetases. The analytical separation of the different amino acid specific tRNAs from M. smegmatis resembles the pattern found in other bacteria. Purification of valine- (three species) and methionine-specific tRNA (two species) to 70-80% purity has been accomplished by using column-chromatographic techniques. Of the two species of tRNAMet, one can be formylated in the presence of formyl tetrahydrofolate and the transformylase from mycobacteria.  相似文献   

11.
12.
Abstract— The binding capacity for amino acids of low molecular wt. RNAs isolated from mitochondrial and cytoplasmic fractions from brain was studied in the presence of partially purified aminoacyl-tRNA synthetases obtained from both subcellular fractions. The ability of mitochondrial tRNAs to bind amino acids was greater by about three times in the presence of mitochondrial aminoacyl-tRNA synthetases than in the presence of cytoplasmic enzymes. In contrast, the amino acid-binding ability of cytoplasmic tRNA was the same in the presence of mitochondrial enzymes as in the presence of those from the cytoplasm. When homologous (rabbit) and heterologous (calf) tRNAs were tested in the presence of mitochondrial or cytoplasmic enzymes obtained from rabbit brain and a mixture of amino acids, a significant species specificity was seen: in both heterologous systems the highest amount of tRNA binding was only 44-66 per cent of that obtained with the homologous enzyme system.  相似文献   

13.
14.
Sequence comparisons have been combined with mutational and kinetic analyses to elucidate how the catalytic mechanism of Bacillus stearothermophilus tyrosyl-tRNA synthetase evolved. Catalysis of tRNA(Tyr) aminoacylation by tyrosyl-tRNA synthetase involves two steps: activation of the tyrosine substrate by ATP to form an enzyme-bound tyrosyl-adenylate intermediate, and transfer of tyrosine from the tyrosyl-adenylate intermediate to tRNA(Tyr). Previous investigations indicate that the class I conserved KMSKS motif is involved in only the first step of the reaction (i.e. tyrosine activation). Here, we demonstrate that the class I conserved HIGH motif also is involved only in the tyrosine activation step. In contrast, one amino acid that is conserved in a subset of the class I aminoacyl-tRNA synthetases, Thr40, and two amino acids that are present only in tyrosyl-tRNA synthetases, Lys82 and Arg86, stabilize the transition states for both steps of the tRNA aminoacylation reaction. These results imply that stabilization of the transition state for the first step of the reaction by the class I aminoacyl-tRNA synthetases preceded stabilization of the transition state for the second step of the reaction. This is consistent with the hypothesis that the ability of aminoacyl-tRNA synthetases to catalyze the activation of amino acids with ATP preceded their ability to catalyze attachment of the amino acid to the 3' end of tRNA. We propose that the primordial aminoacyl-tRNA synthetases replaced a ribozyme whose function was to promote the reaction of amino acids and other small molecules with ATP.  相似文献   

15.
Phenylalanyl-tRNA synthetase from the archaebacterium Methanosarcina barkeri activates a number of phenylalanine analogues (methionine, p-fluorophenylalanine, beta-phenylserine, beta-thien-2-ylalanine, 2-amino-4-methylhex-4-enoic acid and ochratoxin A) in the absence of tRNA, as demonstrated by Km and kcat of the ATP/PPi exchange reaction. Upon complexation with tRNA, AMP formation from the enzyme X tRNA complex in the presence of ATP, one of the above analogues or tyrosine, leucine, mimosine, N-benzyl-L- or N-benzyl-D-phenylalanine indicates activation of the analogues under conditions of aminoacylation. Natural noncognate amino acids are not transferred to tRNAPhe-C-C-A or tRNAPhe-C-C-A-(3'-NH2). This pretransfer proofreading mechanism, together with the comparatively low ratio of synthetic to successive hydrolytic steps, resembles the mechanism of liver enzymes of vertebrates. In contrast, eubacterial phenylalanyl-tRNA synthetases achieve the necessary fidelity by post-transfer proofreading, a corrective hydrolytic event after transfer to tRNAPhe. Diadenosine 5',5'-P1,P4-tetraphosphate synthesis is shown to be a common feature for phenylalanyl-tRNA synthetases from all three lineages of descent. The immunological approach demonstrates that aminoacyl-tRNA synthetases do not belong to the group of enzymes in gene expression with high structural conservation.  相似文献   

16.
Temperature and other factors affecting synthesis of bis(5'-adenosyl) tetraphosphate (Ap4A) and bis(5'-adenosyl)triphosphate (Ap3A) catalyzed by phenylalanyl-tRNA synthetases (PheRSs) from Escherichia coli MRE-600 and Thermus thermophilus HB8 have been investigated. Those two synthetases exhibited different temperature-dependent rates of the Ap4A and Ap3A synthesis. However, with respect to the effects of such effectors of the Ap4A synthesis as Zn2+, Mg2+, tRNA and Ap4A phosphonate analogues, as well as some inhibitors of aminoacyl-tRNA synthetase, those two enzymes were apparently undistinguishable.  相似文献   

17.
1. Different reaction steps involved in protein synthesis were studied in skeletal muscles from control and myopathic hamsters. 2. There was no difference between partially purified aminoacyl-tRNA synthetases from myopathic and control animals in yield or catalytic activity, as tested with exogenous deacylated tRNA. 3. However, isolated deacylated tRNA from myopathic muscle was aminoacylated by these synthetases to a lesser extent than that derived from control muscle. 4. Addition of deacylated tRNA isolated from control muscle improved the performance of pH5 enzymes from myopathic muscle in polypeptide synthesis on homologous polyribosomes; tRNA isolated from myopathic animals did not. 5. Preparation of extracts from both types of animals in the presence of the ribonuclease-absorbent bentonite led to an increased capacity of endogenous tRNA to accept amino acids in pH5 enzymes prepared from normal and abnormal tissue, but the difference between the two systems remained the same. 6. Total tRNA nucleotidyltransferase activity, tested with twice-pyrophosphorolysed rat liver tRNA, was identical in both extracts. 7. Added tRNA nucleotidyltransferase incorporated more AMP and CMP into endogenous tRNA with the pH5 enzyme from myopathic muscle than with that from control muscle. 8. Preincubation of deacylated tRNA from myopathic muscle with ATP, CTP and tRNA nucleotidyltransferase more than doubled its subsequent aminoacyl-acceptor activity, and halved the extent of the defect relative to aminoacylation of control tRNA similarly treated. Endogenous tRNA in pH5 enzyme preparations behaved likewise. 9. It is suggested that a 3'-exonuclease in myopathic muscles attacks tRNA molecules in such a way that some of them remain substrates for tRNA nucleotidyltransferase, which may incorporate into RNA not only AMP and CMP, but also GMP. 10. Cell-free protein synthesis in preparations from myopathic hamster muscles is limited by the supply of intact tRNA molecules.  相似文献   

18.
The highly conserved aspartyl-, asparaginyl-, and lysyl-tRNA synthetases compose one subclass of aminoacyl-tRNA synthetases, called IIb. The three enzymes possess an OB-folded extension at their N terminus. The function of this extension is to specifically recognize the anticodon triplet of the tRNA. Three-dimensional models of bacterial aspartyl- and lysyl-tRNA synthetases complexed to tRNA indicate that a rigid scaffold of amino acid residues along the five beta-strands of the OB-fold accommodates the base U at the center of the anticodon. The binding of the adjacent anticodon bases occurs through interactions with a flexible loop joining strands 4 and 5 (L45). As a result, a switching of the specificity of lysyl-tRNA synthetase from tRNALys (anticodon UUU) toward tRNAAsp (GUC) could be attempted by transplanting the small loop L45 of aspartyl-tRNA synthetase inside lysyl-tRNA synthetase. Upon this transplantation, lysyl-tRNA synthetase loses its capacity to aminoacylate tRNALys. In exchange, the chimeric enzyme acquires the capacity to charge tRNAAsp with lysine. Upon giving the tRNAAsp substrate the discriminator base of tRNALys, the specificity shift is improved. The change of specificity was also established in vivo. Indeed, the transplanted lysyl-tRNA synthetase succeeds in suppressing a missense Lys --> Asp mutation inserted into the beta-lactamase gene. These results functionally establish that sequence variation in a small peptide region of subclass IIb aminoacyl-tRNA synthetases contributes to specification of nucleic acid recognition. Because this peptide element is not part of the core catalytic structure, it may have evolved independently of the active sites of these synthetases.  相似文献   

19.
This paper describes the regulation of a transfer ribonucleic acid (tRNA) biosynthetic enzyme, the tRNA(m5U)methyltransferase (EC 2.1.1.35). This enzyme catalyzes the formation of 5-methyluridine (m5U, ribothymidine) in all tRNA chains of Escherichia coli. Partial deprivation of charged tRNAVal can be imposed by shifting strains carrying a temperature-sensitive valyl-tRNA ligase from a permissive to a semipermissive temperature. By using two such strains differing only in the allelic state of the relA gene, it was possible to show the tRNA(m5U)methyltransferase to be stringently regulated. Upon partial deprivation of charged tRNAVal, the differential rate of tRNA(m5U)methyltransferase synthesis was found to decrease in a strain with stringent RNA control (relA+), whereas it increased in the strain carrying the relA allele. This increase of accumulation of tRNA(m5U)methyltransferase activity required protein synthesis. Thus, when tRNA is partially uncharged in the cell, the relA gene product influences the expression of tRNA(m5U)methyltransferase gene.  相似文献   

20.
The division of the aminoacyl-tRNA synthetases in two classes is compared with a division of the amino acids in two classes, obtained from the AAIndex databank by a principal component analysis. The division of the enzymes in Classes I and II follows to a great extent a division in the chemical and biological properties of their cognate amino acids. Furthermore, the phylogenetic trees of Classes I and II enzymes are highly correlated with dendrograms obtained for their cognate amino acids by using the indices in the AAIndex database. We argue that the evolution of aminoacyl-tRNA synthetases was determined by the characteristics of their corresponding amino acids. We interpret these results considering models for the origin and evolution of the genetic code in which an initial version, containing fewer amino acids, was modified by the incorporation of new amino acids following duplication and divergence of previous synthetases and tRNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号