首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of red and white light on ethylene production was investigated in several plant species. In most cases light inhibited ethylene production. However, stimulation or no effect were also observed in a few species. In those plants where light inhibited ethylene synthesis, the effect of red light was much stronger than that of white light.Both red and white light inhibited ethylene production in green and etiolated seedlings and green leaves of Impatiens balsamina L. The inhibitory effect of red light was stronger than that of white light and much more pronounced when the plants were pretreated with ACC. The effect of red light could be reversed by far-red light. These results suggest that light affects the ethylene forming enzyme (EFE) activity and that its action is mediated by phytochrome.  相似文献   

2.
In crude extracts of the unicellular green alga Chlorella kessleri Fott et Novákóva grown in red light the activity of the glycolytic enzyme phosphofructokinase (PFK, EC 2.7.1.11) is about 40% higher compared to white light conditions giving the same dry matter production. Application of cycloheximide and density labelling with D2O indicate that this increase depends on the de novo synthesis of the enzyme: Twelve h of illumination at a fluence rate of 7 × 1018 quanta m−2 s−1 (11.6 μmol m−2 s−1) suffice to saturate the effect. In autotrophically grown algae maximal increase in enzyme saturate the effect. In autotrophically grown algae maximal increase in enzyme activity is reached in light of 680 nm, while in 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)-poisoned, glucose-fed cells, light of wavelengths around 727 nm is most effective. Involvement of a phytochrome-like photoreceptor is discussed.  相似文献   

3.
In order to elucidate the mechanism of anthocyanin formation by Populus cells in suspension culture, the favourable conditions for anthocyanin formation were investigated. The influence of some factors affecting the anthocyanin formation, i.e. light, sucrose and riboflavin etc. were also examined. Light irradiation and high sucrose concentrations brought about a marked increase of PAL activity, which increased rapidly at the lag phase preceding the anthocyanin formation. The effect of blue light on anthocyanin formation was markedly superior to other kinds of monochromatic light (green and red) or white light. Riboflavin was effective only under light exposure. It was inferred that light, sucrose, riboflavin and PAL activity etc. were closely related with the anthocyanin formation. Especially, light and sucrose cooperated in the increase of PAL activity which was a key enzyme in the biosynthesis of anthocyanin.  相似文献   

4.
As has been previously reported an increased intensity of light-induced green fluorescence is observed for some tumor cells. The present paper deals with the cause of this phenomenon, employing for this hepatoma cells of line HTC acted upon with 2,4-DNP, amytal and malonate. It has been shown that the light-induced increase in green fluorescence in cells is due to the oxidation of NADH-dehydrogenase, a mitochondrial flavine-containing enzyme, occurring at the time of fluorescence induction. The increased intensity of green fluorescence of flavoproteins in tumor cells is associated with an infringement in oxidation of NAD-dependent substrates in these, and with the activation of the reverse electron transport in the oxidative chain. The exciding light activates NADH-dehydrogenase and accelerates the translocation of reduced equivalents from this enzyme, which results in its oxidation, and thus--in the observed effect of increased intensity of green fluorescence.  相似文献   

5.
The effect of light on the activity of phospholipase D (PLD) in oat (Avena sativa L.) seedlings and the dependence of this enzyme activity on the regime of their illumination were studied. The PLD activity in etiolated seedlings was 1.5–2.0-fold higher than in green plants. The illumination of etiolated seedlings with white light resulted in a decrease in PLD activity to its level in the seedlings grown under light. In contrast, the transfer of green seedlings to darkness enhanced the activity of the enzyme up to its level in etiolated seedlings. The illumination of etiolated seedlings with red light inhibited the PLD as well. It was shown that this photoeffect decreased with seedling aging and correlated with a phytochrome content in plants. Far-red light reversed the effect of red light. The involvement of phytochrome in the control of the PLD activity is discussed.  相似文献   

6.
The blue green algae Anabaena azollae has been isolated from the leaf cavity of water fern Azolla imbricata and grown aseptically in N-free medium. It was used for the study on the effects of white, red, yellow, green and blue light illuminations on the growth, acetylene reduction activity and heteroeyst formation. The results are summarized as follows: The growth rate under white, red and yellow light was greater than under green light and the yield of the former was increased nearly two folds than the latter after 7 days culture. However, the green light enhanced heterocyst formation up to 40% than the other light illuminations. Chlorophyll content was also higher under green light. Nitrogen fixation activity was proportional to the heterocyst formation. Whatever the light quality used, nitrogen fixation activity could be increased up to several folds by adding 0.2% fructose to the culture medium. When the fructose was added to the 5 days culture, green light illumination showed the highest nitrogen fixation activity. The significant reaction of Anabaena azollae to the green light seems to be a physiological feature of the symbiont.  相似文献   

7.
Chlorophyll a and phycocyanin synthesis in the cyanobacterium Calothrix crustacea Schousboe (ecophene Rivularia bullata) have been studied in white light after the application of red and green light pulses. The light quality produces a complementary pattern in the pigment synthesis. Chlorophyll synthesis is stimulated by red light pulses whereas phycocyanin synthesis is by green light pulses. Because the effect of red light on chlorophyll synthesis shows some far-red photoreversibility, the action of phytochrome is proposed. The green light effect on phycocyanin synthesis is only partially reversed by far-red light. This reversion is lost after incubation in white light for two hours. The effect of green light on phycocyanin synthesis could not only be due to phytochrome since theoretically in green light the level of the active form of phytochrome is lower than in red light. Thus, the action of a specific green light photoreceptor is proposed.  相似文献   

8.
In this study, we describe the effect of red and blue light on the timing of cell division, DNA synthesis, and activity and presence of cyclin-dependent kinases (CDKs), in synchronous cultures of the unicellular green alga Chlamydomonas reinhardtii. Cell division and DNA synthesis were found to occur later in cells grown in blue or white light, than in red light. CDK-like activity, measured using a histone H1 kinase assay, correspondingly occurred later in cultures that were grown in blue light compared to cultures grown in red light. The amount of CDK-like proteins, as detected using an antibody against the PSTAIRE motif, showed a maximum during the division phase. We conclude that the mechanism that causes the delay in the timing of cell division in blue light has its action before DNA replication takes place and also precedes the increase in CDK-like activity.  相似文献   

9.
Nitrate reductase (NADH: nitrate oxidoreductase, EC 1.6.6.1) of spinach ( Spinacia oleracea L.) leaves, inactivated in vitro by acetylene, was reactivated by irradiation with blue light. Red + infrared, green or white light of the same irradiance were less effective. The dehydrogenase activity of the nitrate reductase complex was not required for pliotoreactivation. Photoreactivation of cyanide-inactivated nitrate reductase was greatly enhanced by the addition of 1 and 20 μ of either FMN or FAD; however, flavins showed a much smaller stimulatory effect on photoreactivation of acetylene-inactivated enzyme. The effect of flavins was higher under anaerobic conditions. This might imply the direct ievolvement of excited flavins in the photoreactivation mechanism. Besides promoting photoreactivation, blue light irradiation led simultaneously to a gradual inactivation of the enzyme especially under air and 20 μ FMN, eventually abolishing the recovered activity of the enzyme.  相似文献   

10.
A new method, using incoherent light scattering, has been developed to measure the flagellar beating frequency of swimming microorganisms. By means of this method, transient changes of flagellar beating frequency in response to white light flashes have been revealed in samples of a phototactic microorganism, Haematococcus pluvialis. An increase of flagellar beating frequency occurs when the flash dose (flash intensity × flash duration) is sufficient. Reciprocity between light intensity and flash duration holds for durations not exceeding 60-80 ms. For lower doses a bimodal distribution of flagellar beating frequency is revealed. No effect is observed for very low flashes or for red stimuli, whereas green light is effective. A detailed analysis of experimental results has allowed us to determine the characteristic time of the effect and follow its evolution. The correlation of this effect with visually observed behavior is discussed and a possible underlying mechanism is suggested.  相似文献   

11.
Light and acetate regulate a mitochondrial malate dehydrogenase   总被引:1,自引:1,他引:0       下载免费PDF全文
A malate dehydrogenase was purified from the unicellular green alga Chlorogonium elongatum Dangeard. The enzyme was localized in the mitochondria by immunogold electron microscopy and was found to be present on the cristae. The concentration of the enzyme is regulated by acetate and light. In cells cultured heterotrophically with acetate as carbon source the activity and the concentration of the enzyme is 5- to 6-fold higher than in autotrophic cells. In mixotrophically cultured cells (light and acetate) the enzyme level attains only half of the value of that in heterotrophic cells. Acetate induces an increase of the enzyme concentration while light has an inhibitory effect on this process.  相似文献   

12.
Acclimation of the photosynthetic apparatus to light absorbed primarily by phycobilisomes (which transfer energy predominantly to photosystem II) or absorbed by chlorophyll a (mainly present in the antenna of photosystem I) was studied in the macroalga Palmaria palmata L. In addition, the influence of blue and yellow light, exciting chlorophyll a and phycobilisomes, respectively, ivas investigated. All results were compared to a white light control. Complementary chromatic adaptation in terms of an enhanced ratio of phycoerythrin to phycocyanin under green light conditions was observed. Red light (mainly absorbed by chlorophyll a) and green light (mainly absorbed by phycobilisomes) caused an increase of the antenna system, which was not preferentially excited. Yellow and blue light led to intermediate states comparable to each other and white light. Growth was reduced under all light qualities in comparison to white light, especially under conditions preferably exciting phycobilisomes (green light-adapted algae had a 58% lower growth rate compared to white light-adapted algae). Red and blue light-adapted algae showed maximal photosynthetic capacity with white light excitation and significantly lower values with green light excitation. In contrast, green and yellow light-adapted algae exhibited comparable photosynthetic capacities at all excitation wavelengths. Low-temperature fluorescence emission analysis showed an increase of photosystem II emission in red light-adapted algae and a decrease in green light-adapted algae. A small increase of photosystem I emission teas also found in green light-adapted algae, but this was much less than the photosystem II emission increase observed in red light-adapted algae (both compared to phycobilisome emission). Efficiency of energy transfer from phycobilisomes to photosystem II was higher in red than in green light-adapted algae. The opposite was found for the energy transfer efficiency from phycobilisomes to photosystem I. Zeaxanthin content increased in green and blue light-adapted algae compared to red, white, and yellow light-adapted algae. Results are discussed in comparison to published data on unicellular red algae and cyanobacteria.  相似文献   

13.
The effect of synthetic analogs of phytohormones and red light absorbed by phytochrome on the phospholipase D activity (PLD) was studied in oat (Avena sativa L.) seedlings. ABA manifested a short-term stimulating effect on PLD activity in the green seedlings and inhibited phospholipase activity in the etiolated plants. Kinetin inhibited enzyme activity in the etiolated seedlings and did not affect its activity in light. GA did not markedly affect PLD activity in the etiolated plants and activated this enzyme in the green seedlings. Finally, IAA did not affect the enzyme activity. The relationship of the regulatory effects of phytohormones and light on PLD activity is discussed.  相似文献   

14.
The color of light (white, red, blue, and green) had a significant effect on the growth and reproductive processes (both in the nucleocytoplasmic and chloroplast compartment of the cells) in synchronous cultures of Scenedesmus obliquus. This effect decreased in the order red > white > blue > green. In the same order, the light phase of the cell cycle (time when first autospores started to be released) was prolonged. The length of dark phase (time when 100 % of daughters were allowed to release from mothers) was not influenced and was the same for all colors. Critical cell size for cell division in green light was shifted to a smaller size (compared with cells grown in other lights) and so was the size of released daughters. The nuclear cycle was slowed in blue and even in green light, contrary to cells grown in red and white light. At the beginning of the cell cycle, one-nucleus daughters possess approximately 10 nucleoids; during the cell cycle their number doubled in all variants before the division of nuclei. Both events were delayed in cultures grown more slowly most markedly in green light. Smaller daughters in the green variant possessed a lower number of nucleoids. Motile cells released in continuous green or blue lights but not in red one were rarely observed.  相似文献   

15.
It is shown that the light microscopic permanent detectable phenoloxidase activity, using dihydroxyphenylalanine as substrate, of the small intestine of white rats is localized in the most cases in eosinophilic granulocytes. The enzyme has been found as well in the cytoplasma as in the granules. The enzyme proof triggered in the granules the so called reverse effect. The results allow to conclude new aspects for the cell mediated immunological defense reaction.  相似文献   

16.
Ethylene production by intact green bean ( Phaseolus vulgaris L. cv. Limburgse vroege) seedlings was investigated in white light and in darkness. In white light both endogenous and 1-aminocyclopropane-1-carboxylic acid (ACC)-induced ethylene production were stimulated. A decrease in the 1-(malonylamino)cyclopropane-1-carboxylic acid (M-ACC) level and a slight increase in the free ACC concentration could be observed in light. The total amount of endogenous ACC was not changed by light. We related the effect of light to the effect of paraquat on ethylene biosynthesis. Paraquat caused a strong increase of endogenous ethylene production in light. However, the conversion of exogenously applied ACC in light was not influenced by the paraquat treatment, although the presence of the herbicide in the chloroplasts was evident through the inhibition of net photosynthesis. In light, paraquat increased the total ACC content. This was due to an enlargement of the free ACC pool. The effects of white light and paraquat on ethylene biosynthesis can be differentiated from one another: white light exerts its influence on the conversion of ACC to ethylene; it also seems to inhibit the malonylation and may act on the formation of ACC itself. Paraquat influences only ACC synthesis.  相似文献   

17.
Triiodothyronine (T (3)) is known to increase liver lipogenic enzyme gene expression both in vivo and in tissue culture. Conflicting results have been reported on the effect of T (3) on lipogenic enzyme gene expression in white adipose tissue. The results presented in this paper indicate that administration of pharmacological doses of T (3) in rats leads to increased fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), ATP-citrate lyase (ACL) and malic enzyme (ME) activity in white adipose tissue. The increase in lipogenic enzyme activity was associated with increased FAS, ACC, ACL and ME mRNA levels. The response was dose-dependent. Activity of lipogenic enzyme and the lipogenic enzyme mRNA levels were positively correlated to serum T (3) concentration. The in vivo effect of T (3) on lipogenic enzyme gene expression could be reproduced in primary white rat adipocyte culture. In conclusion, the results presented in this paper indicate that T (3) exerts a stimulatory effect on lipogenic enzyme gene expression in white adipose tissue both in vivo and in tissue culture. Significant effects of T (3) on lipogenic enzyme gene expression were only observed in the presence of relatively high (pharmacological) concentrations of the hormone.  相似文献   

18.
The effect of starvation-refeeding transitions on the activity of malic enzyme and hexosemonophosphate shunt dehydrogenases in lipogenic and non-lipogenic tissues from rats was investigated. Starvation of the rats caused a decrease of malic enzyme activity in the liver, white and brown adipose tissue. Refeeding of the animals with high carbohydrate diet caused a several fold increase of malic enzyme activity in these tissues. Substitution of high fat for high carbohydrate diet resulted in only a slight increase of malic enzyme activity in the liver, white and brown adipose tissues. In the same rats, no significant effect of starvation-refeeding transition on malic enzyme activity in the kidney cortex, brain, heart, skeletal muscle and spleen was observed. The changes of the activity of hexosemonophosphate shunt dehydrogenases during starvation-refeeding transition essentially paralleled those of malic enzyme in all the tissues examined.  相似文献   

19.
Methods are given for obtaining spectral regimes related to algal absorption regions (red, green, violet) and to coastal, underwater light. Amphidinium and Biddulphia maintained for several months in these regimes have the same structure as when maintained in white light except Biddulphia in the red regime, in which there was breakdown in cytoplasmic structure, preponderance of large cells, and slower growth. Electron microscopy showed that the average number of thylakoid bands increased from 6.0 in white to 7.6 in red and appeared teased. Amphidinium did not show a gross morphological change but slower growth, crimping of bands, and increase in band number from 5.1 to 6.7 were observed. On the basis that increase in number and loss in compactness indicate stress, the stress effect of the regimes decreased from red, to green, to underwater, to white, and finally to violet.Algae grown in white light had their highest photosynthetic rate in the violet regime, then underwater, red, white, and green. When grown in any of the coloured regimes, the rate in violet was again highest. Changes in assimilation number for the different regimes compared with white light fell into three classes. First, both algae showed no change in green; there was also no pigment change with Amphidinium but a decrease with Biddulphia. Secondly, Amphidinium in red or underwater, and Biddulphia in red (before cytoplasmic breakdown) decreased their assimilaton number; this was accompanied by an increase in pigment, suggesting that the decreased usage of pigment in photosynthesis was due to increase in availability. Thirdly, Amphidinium in violet, and Biddulphia in underwater increased their assimilation number; this was accompanied by a decrease in pigments, suggesting that there was increased usage because of decreased availability, and that the pigment changes caused those in assimilation number.  相似文献   

20.
Glutamine-dependent carbamyl phosphate synthetase (from Escherichia coli) was previously shown to be composed of a light subunit (molecular weight similar to 42,000) which has the binding site for glutamine and a heavy subunit (molecular weight similar to 130,000) which has binding sites for the other reactants and allosteric effectors. The subunits may be separated with retention of catalytic activities; only the separated light subunit exhibits glutaminase activity. The previous finding that storage of the native enzyme at pH 9 at 0 degrees increased its glutaminase activity by about 25-fold was further investigated; such storage markedly decreased the glutamine- and ammonia-dependent synthetase activities of the enzyme. Treatment of the enzyme with p-hydroxymercuribenzoate led to transient increase of glutaminase activity followed by inhibition. When the enzyme was treated with N-ethylmaleimide or with 5,5'-dithiobis-(2-nitrobenzoate), the glutaminase activity was increased by about 250-fold with concomitant loss of synthetase activities. The enhancement of glutaminase produced by storage of the enzyme at pH 9 was associated with intermolecular disulfide bond formation and aggregation of the enzyme. Aggregation also was observed after extensive treatment of the enzyme with 5,5'-dithiobis-(2-nitrobenzoate) or N-ethylmaleimide. However, a moderate increase of glutaminase activity (about 30-fold) was observed without aggregation under conditions in which one sulfhydryl group on the light subunit reacted with either reagent. The findings suggest that the increased glutaminase activities observed here are associated with structural changes in the enzyme in which the intersubunit relationship is altered so as to uncouple the catalytic functions of the enzyme and to facilitate access of water to the glutamine binding site on the light subunit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号