首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three major serine proteinase inhibitors (SBI-1, -2, and -3) were purified from the seeds of white sword bean (Canavalia gladiata) by FPLC and reversed-phase HPLC. The sequences of these inhibitors were established by automatic Edman degradation and TOF-mass spectrometry. SBI-1, -2, and -3 consisted of 72, 73, and 75 amino acid residues, with molecular masses of 7806.5, 7919.8, and 8163.4, respectively. The sequences of SBI-1 and -2 coincided with those of CLT I and II [Terada et al. (1994) Biosci. Biotech. Biochem., 58, 376-379] except only N- or C-terminal amino acid residues. Analysis of the amino acid sequences showed that the active sites of the inhibitors contained a Lys21-Ser22 against trypsin and Leu48-Ser49 against chymotrypsin, respectively. Further, it became apparent that about seven disulfide bonds were present. These results suggest that sword bean inhibitors are members of the Bowman-Birk proteinase inhibitor family.  相似文献   

2.
Two proteinase inhibitors, designated as inhibitors I and II, were purified from adzuki beans (Phaseolus angularis) by chromatographies on DEAE- and CM-cellulose, and gel filtration on a Sephadex G-100 column. Each inhibitor shows unique inhibitory activities. Inhibitor I was a powerful inhibitor of trypsin [EC 3.4.21.4], but essentially not of chymotrypsin ]EC 3.4.21.1]. On the other hand, inhibitor II inhibited chymotrypsin more strongly than trypsin. The molecular weights estimated from the enzyme inhibition were 3,750 and 9,700 for inhibitors I and II, respectively, assuming that the inhibitions were stoichiometric and in 1 : 1 molar ratio. The amino acid compositions of both inhibitors closely resemble those of low molecular weight inhibitors of other leguminous seeds: they contain large amounts of half-cystine, aspartic acid and serine, and little or no hydrophobic and aromatic amino acids. Inhibitor I lacks both tyrosine and tryptophan residues. The molecular weights were calculated to be 7,894 and 8,620 for inhibitors I and II, respectively. The reliability of these molecular weights was confirmed by the sedimentation equilibrium and 6 M guanidine gel filtration methods. On comparison with the values obtained from enzyme inhibition, it was concluded that inhibitor I and two trypsin inhibitory sites on the molecule, whereas inhibitor II had one chymotrypsin and one trypsin inhibitory sites on the molecule.  相似文献   

3.
The amino acid sequence of a Bowman-Birk type proteinase inhibitor (FBI) from seeds of faba bean (Vicia faba L.) was determined by analysis of peptide fragments generated by reduction and S-carboxymethylation of enzymatically modified inhibitors, which were obtained from native FBI by limited proteolysis with TPCK-trypsin or TLCK-chymotrypsin at pH 3.5. The established sequence showed that FBI is highly homologous with Vicia angustifolia inhibitor (VAI0 but lacks the portion corresponding to the C-terminal 9 amino acids of VAI. The trypsin reactive-site peptide bond in FBI was also indicated to be Lys(16)-Ser(17) and the chymotrypsin reactive-site peptide bond to be Tyr(42)-Ser(43) by limited proteolysis with TPCK-trypsin or TLCK-chymotrypsin and by sequence comparison with other Bowman-Birk type inhibitors.  相似文献   

4.
The complete amino acid sequence of winged bean chymotrypsin inhibitor 3 (WCI-3) was determined by the conventional methods. WCI-3 consisted of 183 amino acid residues, but was heterogeneous in the carboxyl terminal region owing to the loss of one to four carboxyl terminal amino acid residues. The sequence of WCI-3 was highly homologous with those of soybean trypsin inhibitor Tia, winged bean trypsin inhibitor WTI-1, and Erythrina latissima trypsin inhibitor DE-3. One of the reactive site peptide bonds of WCI-3 was identified as Leu(65)-Ser(66), which was located at the same position as those of the other Kunitz-family leguminous proteinase inhibitors.  相似文献   

5.
The complete amino acid sequence of a major trypsin inhibitor (FMTI-II) from seeds of foxtail millet (Setaria italica) was determined by analysis of peptides derived from the reduced and S-carboxymethylated protein by digestion with TPCK-trypsin and Staphylococcus aureus V8 protease. FMTI-II consists of 67 amino acid residues, including 10 half-cystine residues which are involved in 5 disulfide bridges in the molecule. The established sequence had a high degree of homology to Bowman-Birk type inhibitors from leguminous and gramineous plants. The trypsin reactive-site peptide bond in FMTI-II also appears to be Lys (16)-Ser (17) by comparison with these sequences.  相似文献   

6.
Seven proteinase inhibitors were isolated from winged bean seeds by ion-exchange chromatographies. These inhibitors had molecular weights of around 20,000, included four half-cystine residues, and were Kunitz-type inhibitors. Two (WTI-2 and 3) inhibited bovine trypsin strongly and four (WCI-1, 2, 3, and 4) inhibited bovine alpha-chymotrypsin, but in different ways. One mole of WCI-2 or -3 could inhibit 2 mol of alpha-chymotrypsin. The remaining inhibitor (WTCI-1) could bind both bovine trypsin and alpha-chymotrypsin at the molar ratio of 1:1, but not simultaneously. All four chymotrypsin inhibitors cross-reacted with rabbit anti-WCI-3 serum, while the other inhibitors did not.  相似文献   

7.
Trypsin inhibitory activity from the hemolymph of the tobacco hornworm (Manduca sexta) was purified by affinity chromatography on immobilized trypsin and resolved into two fractions with molecular weights of 14,000 (M. sexta hemolymph trypsin inhibitor (HLTI) A) and 8,000 (HLTI B) by molecular sieve chromatography on Sephadex G-75. Electrophoresis of these inhibitors under reducing conditions on polyacrylamide gels gave molecular weight estimates of 8,300 for HLTI A and 9,100 for HLTI B, suggesting that HLTI A is a dimer and HLTI B is a monomer. Isoelectrofocusing on polyacrylamide gels focused HLTI A as a single band with pI 5.7, whereas HLTI B was resolved into two components with pI values of 5.3 and 7.1. Both inhibitors were stable at 100 degrees C and pH 1.0 for at least 30 min. HLTIs A and B inhibited serine proteases such as trypsin, chymotrypsin, and plasmin, but did not inhibit elastase, papain, pepsin, subtilisin BPN', and thermolysin. In fact, subtilisin BPN' completely inactivated both inhibitors. Both inhibitors formed low-dissociation complexes with trypsin in a 1:1 molar ratio. The inhibition constant for trypsin inhibition by HLTI A was estimated to be 1.45 x 10(-8) M. The HLTI A-chymotrypsin complex did not inhibit trypsin; similarly, the HLTI A-trypsin complex did not inhibit chymotrypsin, indicating that HLTI A has a common binding site for both trypsin and chymotrypsin. The amino-terminal amino acid sequences of HLTIs A and B revealed that both these inhibitors are homologous to bovine pancreatic trypsin inhibitor (Kunitz).  相似文献   

8.
Theil R  Scheit KH 《The EMBO journal》1983,2(7):1159-1163
Analytical ultracentrifugation of highly purified seminalplasmin revealed a molecular mass of 6300. Amino acid analysis of the protein preparation indicated the absence of sulfur-containing amino acids cysteine and methionine. The amino acid sequence of seminalplasmin was determined by manual Edman degradation of peptides obtained by proteolytic enzymes trypsin, chymotrypsin and thermolysin: NH2-Ser Asp Glu Lys Ala Ser Pro Asp Lys His His Arg Phe Ser Leu Ser Arg Tyr Ala Lys Leu Ala Asn Arg Leu Ser Lys Trp Ile Gly Asn Arg Gly Asn Arg Leu Ala Asn Pro Lys Leu Leu Glu Thr Phe Lys Ser Val-COOH. The number of amino acids according to the sequence were 48, the molecular mass 6385. As predicted from the sequence, seminalplasmin very likely contains two α-helical domains in which residues 8-17 and 40-48 are involved. No evidence for the existence of β-sheet structures was obtained. Treatment of seminalplasmin with the above proteases as well as with amino peptidase M and carboxypeptidase Y completely eliminated biological activity.  相似文献   

9.
Although the Kunitz-type proteinase inhibitors from the seeds of various Erythrina species have similar molecular weights (approximately 20,000), and share many other chemical characteristics, they could nevertheless be divided into three groups on the basis of their relative abilities to inhibit chymotrypsin, trypsin and tissue plasminogen activator. Group a inhibitors were relatively specific for chymotrypsin; they were poor inhibitors of trypsin and had no apparent effect upon tissue plasminogen activator. Group b proteins inhibited trypsin strongly and chymotrypsin slightly less effectively. They had no effect upon t-PA. Group c inhibitors inhibited trypsin, chymotrypsin and t-PA. Analysis of the amino acid composition of the three groups of inhibitors revealed major differences in alanine content. Minor differences in the content of most other amino acids were also noticed. Group b and group c inhibitors had, in most cases, the same reactive sites (Arg-Ser). The sequences neighbouring the reactive sites showed a significant degree of homology. Chemical modification of arginine in proteinase inhibitors from the seeds of E. latissima and soybeans using 1-2-cyclohexanedione confirmed the presence or absence of arginine in the reactive sites.  相似文献   

10.
Preparations of new low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat Fagopyrum esculentum seeds by chromatography of seed extracts on trypsin-Sepharose 4B, Mono-Q and Mono-S ion-exchangers. Their molecular masses, determined by mass spectrometry, were equal to 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c) and 6031 daltons (BWI-4c). All inhibitors possessed high pH-stability in the pH range 2-12 and thermostability. In addition to trypsin, BWI-3c and BWI-4c inhibitors inhibited chymotrypsin and subtilisin-like proteases. The inhibition constants (Ki) for trypsin, chymotrypsin and subtilisin by the studied inhibitors were determined. The N-terminal sequences of all inhibitors were established: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues) and BWI-4c (20 residues). According to the physicochemical properties and N-terminal amino acid sequences, buckwheat seed protease inhibitors BWI-3c and BWI-4c are suggested to belong to the potato proteinase inhibitor I family.  相似文献   

11.
Four decades of studies on the isolation, characterization, properties, structure, function and possible uses of the Bowman-Birk trypsin- and chymotrypsin-inhibitor from soybeans are reviewed. Starting from Bowman's Acetone Insoluble factor, designated Ai, AA and SBTIAA, the Bowman-Birk inhibitor (BBI) was found to be a protein molecule consisting of a chain of 71 amino acids cross linked by 7 disulfide bonds, with a tendency to self-associate. BBI possesses two independent sites of inhibition, one at Lys 16-Ser 17 against trypsin and the other at Leu 43-Ser 44 against chymotrypsin. It forms a 1:1 complex with either trypsin or chymotrypsin and a ternary complex with both enzymes. Ingestion of BBI by rats, chicks or quails affects the size and protein biosynthesis of the pancreas. Establishment of the full covalent structure of BBI revealed a high homology in the sequences around the two inhibitory sites, suggesting evolutionary gene duplication from a single-headed ancestral inhibitor. Scission of BBI by CNBr followed by pepsin results in two active fragments, one that inhibits trypsin and the other, chymotrypsin. Replacements and substitutions in the reactive sites result in changes in inhibitory activity and in specificity of inhibition. Conformation studies, labeling of BBI with a photoreactive reagent, chemical synthesis of cyclic peptides that include inhibitory sites, in vitro synthesis of BBI, and species specificity regarding the inhibited enzymes are described. The significance of BBI as a prototype of a family of inhibitors present in all legume seeds is discussed.  相似文献   

12.
The Kunitz-type trypsin inhibitors, ETIa and ETIb, and chymotrypsin inhibitor ECI were isolated from the seeds of Erythrina variegata. The proteins were extracted from a defatted meal of seeds with 10 mM phosphate buffer, pH 7.2, containing 0.15 M NaCl, and purified by DEAE-cellulose and Q-Sepharose column chromatographies. The stoichiometry of trypsin inhibitors with trypsin was estimated to be 1:1, while that of chymotrypsin inhibitor with chymotrypsin was 1:2, judging from the titration patterns of their inhibitory activities. The complete amino acids of the two trypsin inhibitors were sequenced by protein chemical methods. The proteins ETIa and ETIb consist of 172 and 176 amino acid residues and have M(r) 19,242 and M(r) 19,783, respectively, and share 112 identical amino acid residues, which is 65% identity. They show structural features characteristic of the Kunitz-type trypsin inhibitor (i.e., identical residues at about 45% with soybean trypsin inhibitor STI). Furthermore, the trypsin inhibitors show a significant homology to the storage proteins, sporamin, in sweet potato and the taste-modifying protein, miraculin, in miracle fruit, having about 30% identical residues.  相似文献   

13.
A trypsin inhibitor from Ciona intestinalis, present throughout the animal, was purified by ion-exchange chromatography followed by four HPLC steps. By MS the molecular mass of the native form was determined to be 6675 Da. The N-terminal amino acid sequence was determined by protein sequencing, but appeared to be partial because the theoretical molecular mass of the protein was 1101 Da too low. Thermolysin treatment gave rise to several fragments each containing a single disulphide bridge. By sequence analysis and MS intramolecular disulphide bridges could unequivocally be assigned to connect the pairs Cys4-Cys37, Cys8-Cys30 and Cys16-Cys51. The structure of the inhibitor is homologous to Kazal-type trypsin inhibitors. The inhibitor constant, KI, for trypsin inhibition was 0.05 nM whereas chymotrypsin and elastase were not inhibited. To reveal the complete sequence the cDNA encoding the trypsin inhibitor was isolated. This cDNA of 454 bp predicts a protein of 82 amino acid residues including a 20 amino acid signal peptide. Moreover, the cDNA predicts a C-terminal extension of 11 amino acids compared to the part identified by protein sequencing. The molecular mass calculated for this predicted protein is in accordance with the measured value. This C-terminal sequence is unusual for Kazal-type trypsin inhibitors and has apparently been lost early in evolution. The high degree of conservation around the active site strongly supports the importance of the Kazal-type inhibitors.  相似文献   

14.
Five protease inhibitors, I--V, in the molecular weight range 7000--8000 were purified from Tracy soybeans by ammonium sulfate precipitation, gel filtration on Sephadex G-100 and G-75, and column chromatography on DEAE-cellulose. In common with previously described trypsin inhibitors from legumes, I--V have a high content of half-cystine and lack tryptophan. By contrast with other legume inhibitors, inhibitor II contains 3 methionine residues. Isoelectric points range from 6.2 to 4.2 in order from inhibitor I to V. Molar ratios (inhibitor/enzyme) for 50% trypsin inhibition are I = 4.76, II = 1.32, III = 3.22, IV = 2.17, V = 0.97. Only V inhibit chymotrypsin significantly (molar ratio = 1.33 for 50% inhibition). The sequence of the first 16 N-terminal amino acid residued of inhibitor V is identical to that of the Bowman-Birk inhibitor; all other observations also indicate that inhibitor V and Bowman-Birk are identical. The first 20 N-terminal amino acid residues of inhibitor II show high homology to those of Bowman-Birk inhibitor, differing by 1 deletion and 5 substitutions. Immunological tests show that inhibitors I through IV are fully cross-reactive with each other but are distinct from inhibitor V.  相似文献   

15.
Bacterial L-ASNases (L-asparaginases) catalyse the conversion of L-asparagine into L-aspartate and ammonia, and are widely used for the treatment of ALL (acute lymphoblastic leukaemia). In the present paper, we describe an efficient approach, based on protein chemistry and protein engineering studies, for the construction of trypsin-resistant PEGylated L-ASNase from Erwinia carotovora (EcaL-ASNase). Limited proteolysis of EcaL-ASNase with trypsin was found to be associated with a first cleavage of the peptide bond between Lys53 and Gly54, and then a second cleavage at Arg206-Ser207 of the C-terminal fragment, peptide 54-327, showing that the initial recognition sites for trypsin are Lys53 and Arg206. Site-directed mutagenesis of Arg206 to histidine followed by covalent coupling of mPEG-SNHS [methoxypoly(ethylene glycol) succinate N-hydroxysuccinimide ester] to the mutant enzyme resulted in an improved modified form of EcaL-ASNase that retains 82% of the original catalytic activity, exhibits enhanced resistance to trypsin degradation, and has higher thermal stability compared with the wild-type enzyme.  相似文献   

16.
Two proteinase inhibitors, DE-1 and DE-3, were purified from Erythrina latissima seeds. Whereas DE-1 inhibits bovine chymotrypsin and not bovine trypsin, DE-3 inhibits trypsin but not chymotrypsin. The molecular weights and the amino acid compositions of the two inhibitors resemble the corresponding properties of the Kunitz-type proteinase inhibitors. The N-terminal primary structure of DE-3 showed homology with soybean trypsin inhibitor (Kunitz) and also with the proteinase inhibitors (A-II and B-II) from Albizzia julibrissin seed.  相似文献   

17.
The amino acid sequences of trypsin inhibitors I and II from the hemolymph of a solitary ascidian, Halocynthia roretzi, were determined after reduction and S-pyridylethylation. The results indicated that inhibitor I consists of a single polypeptide chain with 55 amino acid residues and four intramolecular disulfide bridges, whereas inhibitor II is composed of two polypeptide chains corresponding to a form derived from inhibitor I by cleavage at the Lys16-Met17 bond. Lys16 may be the reactive-site residue of these inhibitors, because carboxypeptidase B treatment destroys most of the inhibitory activity of inhibitor II but not that of inhibitor I.  相似文献   

18.
G Pearce  S Johnson    C A Ryan 《Plant physiology》1993,102(2):639-644
Six small molecular mass, wound-inducible trypsin and chymotrypsin inhibitor proteins from tobacco (Nicotiana tabacum) leaves were isolated to homogeneity. The isoinhibitors, cumulatively called tobacco trypsin inhibitor (TTI), have molecular masses of approximately 5500 to 5800 D, calculated from gel filtration analysis and amino acid content. The amino acid sequence of the entire 53 residues of one isoinhibitor, TTI-1, and the sequence of 36 amino acid residues from the N terminus of a second isoinhibitor, TTI-5, were determined. The two isoinhibitors differ only at residue 11, which is threonine in TTI-1 and lysine in TTI-5. The isoinhibitors are members of the potato inhibitor II family and show considerable identity with the small molecular mass members of this family, which include the eggplant inhibitor, two small molecular mass trypsin and chymotrypsin inhibitors from potatoes, and an inhibitor from pistils of the ornamental plant Nicotiana alata. Antibodies produced against the isoinhibitors in rabbits were used in radial immunoassays to quantify both the systemic wound inducibility of TTI in tobacco leaves and its constitutive levels in flowers.  相似文献   

19.
Cationic Inhibitors of Serine Proteinases from Buckwheat Seeds   总被引:2,自引:0,他引:2  
Preparations of low molecular weight protein inhibitors of serine proteinases have been obtained from buckwheat (Fagopyrum esculentum) seeds by chromatography of seed extract on trypsin-Sepharose 4B, Mono-Q, and Mono-S ion exchangers (FPLC regime). Their molecular masses, determined by mass spectrometry, were 5203 (BWI-1c), 5347 (BWI-2c), 7760 (BWI-3c), and 6031 daltons (BWI-4c). All of the inhibitors possess high pH- and thermal stability in the pH range 2-12. In addition to trypsin, BWI-3c and BWI-4c inhibited chymotrypsin and subtilisin-like bacterial proteases. The N-terminal sequences of all of the inhibitors were determined: BWI-1c (23 residues), BWI-2c (33 residues), BWI-3c (18 residues), and BWI-4c (20 residues). In their physicochemical properties and N-terminal amino acid sequences, the buckwheat seed trypsin inhibitors BWI-3c and BWI-4c appear to belong to potato proteinase inhibitor I family.  相似文献   

20.
A novel proteinaceous protease inhibitor was isolated from the culture supernatant of Bacillus brevis HPD31. The protease inhibitor of B. brevis (designated BbrPI) was produced extracellularly in multiple forms having at least three different molecular weights. One of them, BbrPI-a, was purified to near homogeneity and only showed inhibitory activity toward serine proteases, such as trypsin, chymotrypsin, and subtilisin. BbrPI was presumed to form a trypsin-inhibitor complex in a molar ratio of 1:1. The inhibitor was found to be heat resistant at neutral and acidic pHs. The gene coding for BbrPI was cloned into Escherichia coli, and its nucleotide sequence was determined. The sequence suggested that BbrPI is produced with a signal peptide of 24 amino acid residues. The amino acid sequence of the protein deduced from the DNA sequence contained the amino acid sequences of amino termini of the inhibitors, a, b, and c, and their putative precursor determined chemically. The molecular weight of the precursor was about 33,000, and the molecular weights of inhibitors a, b, and c were about 22,000, 23,500, and 24,000, respectively. It is presumed that the secreted precursor protein, which is probably inactive, is cleaved by protease into several active protease inhibitor molecules. BbrPI shows no significant homology to the protease inhibitors described previously and is unique in not having any cysteine residues in its molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号