首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Glutamate (Glu) dehydrogenase (GDH, EC 1.4.1.2-1.4.1.4) catalyzes in vitro the reversible amination of 2-oxoglutarate to Glu. The in vivo direction(s) of the GDH reaction in higher plants and hence the role(s) of this enzyme is unclear, a situation confounded by the existence of isoenzymes comprised totally of either GDH beta- (isoenzyme 1) or alpha- (isoenzyme 7) subunits, as well as another five alpha-beta isoenzyme permutations. To clarify the in vivo direction of the reaction catalyzed by GDH isoenzyme 1, [(15)N]Glu was supplied to roots of two independent transgenic tobacco (Nicotiana tabacum) lines with increased isoenzyme 1 levels (S4-H and S49-H). The [(15)N]ammonium (NH(4)(+)) accumulation rate in these lines was elevated approximately 65% compared with a null segregant control line, indicating that isoenzyme 1 catabolizes Glu in roots. Leaf glutamine synthetase (GS) was inhibited with a GS-specific herbicide to quantify any contribution by GDH toward photorespiratory NH(4)(+) reassimilation. Transgenic line S49-H did not show enhanced resistance to the herbicide, indicating that the large pool of isoenzyme 1 in S49-H leaves was unable to compensate for GS and suggesting that isoenzyme 1 does not assimilate NH(4)(+) in vivo.  相似文献   

4.
5.
6.
7.
Interconversion between glutamate and 2-oxoglutarate, which can be catalysed by glutamate dehydrogenase (GDH), is a key reaction in plant carbon (C) and nitrogen (N) metabolism. However, the physiological role of plant GDH has been a controversial issue for several decades. To elucidate the function of GDH, the expression of GDH in various tissues of Arabidopsis thaliana was studied. Results suggested that the expression of two Arabidopsis GDH genes was differently regulated depending on the organ/tissue types and cellular C availability. Moreover, Arabidopsis mutants defective in GDH genes were identified and characterized. The two isolated mutants, gdh1-2 and gdh2-1, were crossed to make a double knockout mutant, gdh1-2/gdh2-1, which contained negligible levels of NAD(H)-dependent GDH activity. Phenotypic analysis on these mutants revealed an increased susceptibility of gdh1-2/gdh2-1 plants to C-deficient conditions. This conditional phenotype of the double knockout mutant supports the catabolic role of GDH and its role in fuelling the TCA cycle during C starvation. The reduced rate of glutamate catabolism in the gdh2-1 and gdh1-2/gdh2-1 plants was also evident by the growth retardation of these mutants when glutamate was supplied as the alternative N source. Furthermore, amino acid profiles during prolonged dark conditions were significantly different between WT and the gdh mutant plants. For instance, glutamate levels increased in WT plants but decreased in gdh1-2/gdh2-1 plants, and aberrant accumulation of several amino acids was detected in the gdh1-2/gdh2-1 plants. These results suggest that GDH plays a central role in amino acid breakdown under C-deficient conditions.  相似文献   

8.
Glutamate dehydrogenase (GDH) from vertebrates is unusual among NAD(P)H-dependent dehydrogenases in that it can use either NAD(H) or NADP(H) as cofactor. In this study, we measure the rate of cofactor utilization by bovine GDH when both cofactors are present. Methods for both reaction directions were developed, and for the first time, to our knowledge, the GDH activity has been simultaneously studied in the presence of both NAD(H) and NADP(H). Our data indicate that NADP(H) has inhibitory effects on the rate of NAD(H) utilization by GDH, a characteristic of GDH not previously recognized. The response of GDH to allosteric activators in the presence of NAD(H) and NADP(H) suggests that ADP and leucine moderate much of the inhibitory effect of NADP(H) on the utilization of NAD(H). These results illustrate that simple assumptions of cofactor preference by mammalian GDH are incomplete without an appreciation of allosteric effects when both cofactors are simultaneously present.  相似文献   

9.
Summary Hydrogenomonas H 16 synthetized two chromatographically distinct forms of glutamate dehydrogenase which differed in their thermolability. One glutamate dehydrogenase utilized NAD, the other NADP as a coenzyme.Low specific activity of NAD-dependent glutamate dehydrogenase was found in cells grown with glutamate as sole nitrogen source or in cells grown with a high concentration of ammonium ions. In the presence of a low concentration of ammonium ions or in a nitrogen free medium, the specific activity of the NAD-dependent enzyme increased. Corresponding to the formation of the NAD-dependent glutamate dehydrogenase the enzyme glutamine synthetase was synthesized. The ratio of NAD-dependent glutamate dehydrogenase to glutamine synthetase activity differed only slightly in cells grown with different nitrogen and carbon sources.The NADP-dependent glutamate dehydrogenase was found in high specific activity in cells grown with an excess of ammonium ions. Under nitrogen starvation the formation of the NADP-dependent glutamate dehydrogenase ceased and the enzyme activity decreased.  相似文献   

10.
Crystals of a bacterial NAD+-dependent glutamate dehydrogenase (GDHase) have been grown over a wide range of pH values by using the hanging drop method of vapour diffusion with ammonium sulphate as the precipitant. Sodium dodecyl sulphate/polyacrylamide gel electrophoresis of this enzyme together with high pressure liquid chromatography/gel filtration, shows that this GDHase is hexameric like the GDHases of vertebrates. X-ray photographs of the crystals show that they diffract to at least 2.0 A, and an analysis of the diffraction pattern demonstrates that the hexamer is arranged in at least pseudo 32 symmetry.  相似文献   

11.
12.
13.
In plants, glutamine synthetase (GS) is the enzyme that is mainly responsible for the assimilation of ammonium. Conversely, in microorganisms such as bacteria and Ascomycota, NADP(H)-dependent glutamate dehydrogenase (GDH) and GS both have important roles in ammonium assimilation. Here, we report the changes in nitrogen assimilation, metabolism, growth, and grain yield of rice plants caused by an ectopic expression of NADP(H)-GDH (gdhA) from the fungus Aspergillus niger in the cytoplasm. An investigation of the kinetic properties of purified recombinant protein showed that the fungal gdhA had 5.4–10.2 times higher V max value and 15.9–43.1 times higher K m value for NH4 +, compared with corresponding values for rice cytosolic GS as reported in the literature. These results suggested that the introduction of fungal GDH into rice could modify its ammonium assimilation pathway. We therefore expressed gdhA in the cytoplasm of rice plants. NADP(H)-GDH activities in the gdhA-transgenic lines were markedly higher than those in a control line. Tracer experiments by feeding with 15NH4 + showed that the introduced gdhA, together with the endogenous GS, directly assimilated NH4 + absorbed from the roots. Furthermore, in comparison with the control line, the transgenic lines showed an increase in dry weight and nitrogen content when sufficient nitrogen was present, but did not do so under low-nitrogen conditions. Under field condition, the transgenic line examined showed a significant increase in grain yield in comparison with the control line. These results suggest that the introduction of fungal gdhA into rice plants could lead to better growth and higher grain yield by enhancing the assimilation of ammonium.  相似文献   

14.
A simple, rapid, and sensitive spectrofluorometric assay for 15-hydroxyprostaglandin dehydrogenase activity was developed in which the rate of production of NADH was monitored. The cytosolic fraction prepared from human placental tissue was employed as the enzyme source. The assay was conducted at pH 9.5 since 15-ketoprostaglandin Δ13-reductase and NADH oxidase activities were inhibited at this pH, thereby minimizing the interference of the reactions catalyzed by these enzymes in the assay of prostaglandin dehydrogenase activity.  相似文献   

15.
The beta 3 beta 3 (formerly called beta Indianapolis) and beta 1 beta 1 isoenzymes of human alcohol dehydrogenase differ substantially in their catalytic properties. Specifically, the KM value for NAD+ of beta 3 beta 3 is 70 times greater than that of beta 1 beta 1, and the Ki value for NADH is 35 times greater than that of beta 1 beta 1. To identify the structural basis of these catalytic differences, we sequenced regions of the beta 3 subunit and the beta 3 gene. beta 3 differs from beta 1 by the substitution of Cys for Arg-369. Based on x-ray crystallography of horse ADH, Arg-369 should interact with the nicotinamide phosphate moiety of NAD(H). The Cys for Arg-369 substitution would decrease the enzyme's affinity for coenzyme and, thus, account for the observed kinetic differences between beta 3 beta 3 and beta 1 beta 1.  相似文献   

16.
  • 1.1. A NAD+-dependent glutamate dehydrogenase (EC 1.4.1.2.) was purified 126-fold from Halobacterium halobium.
  • 2.2. Activity and stability of the enzyme were affected by salt concentration. Maximum activity of the NADH-dependent reductive amination of 2-oxoglutarate occurs at 3.2 M NaCl and 0.8 M KCl, and the NAD+-dependent oxidative deamination of l-glutamate occurs at 0.9 M NaCl and 0.4 M KCl. The maximum activity is higher with Na+ than with K+ in the amination reaction while the reverse is true in the deamination reaction.
  • 3.3. The apparent Km values of the various substrates and coenzymes under optimal conditions were: 2-oxoglutarate, 20.2 mM; ammonium, 0.45 M; NADH, 0.07 mM; l-glutamate, 4.0 mM; NAD+, 0.30 mM.
  • 4.4. No effect of ADP or GTP on the enzyme activity was found. The purified enzyme was activated by some l-amino acids.
  相似文献   

17.
A chimeric bifunctional enzyme composing of galactose dehydrogenase (galDH; from Pseudomonas fluorescens) and lactate dehydrogenase (LDH; from Bacillus stearothermophilus) was successfully constructed. The chimeric galDH/LDH possessed dual characteristics of both galactose dehydrogenase and lactate dehydrogenase activities while exhibiting hexameric rearrangement with a molecular weight of approximately 400 kDa. In vitro observations showed that the chimeric enzyme was able to recycle NAD with a continuous production of lactate without any externally added NADH. Two fold higher recycling rate (0.3 mM/h) than that of the native enzyme was observed at pH values above 8.5. Proximity effects became especially pronounced during the recycling assay when diffusion hindrance was induced by polyethylene glycol. All these findings open up a high feasibility to apply the NAD(H) recycling system for metabolic engineering purposes e.g. as a model to gain a better understanding on the molecular proximity process and as the routes for synthesizing of numerous high-value-added compounds.  相似文献   

18.
The gene encoding a novel alcohol dehydrogenase that belongs to the short-chain dehydrogenases/reductases (SDRs) superfamily was identified in the aerobic thermoacidophilic crenarchaeon Sulfolobus acidocaldarius strain DSM 639. The saadh gene was heterologously overexpressed in Escherichia coli, and the protein (SaADH) was purified to homogeneity and characterized. SaADH is a tetrameric enzyme consisting of identical 28,978-Da subunits, each composed of 264 amino acids. The enzyme has remarkable thermophilicity and thermal stability, displaying activity at temperatures up to 75°C and a 30-min half-inactivation temperature of ~90°C, and shows good tolerance to common organic solvents. SaADH has a strict requirement for NAD(H) as the coenzyme, and displays a preference for the reduction of alicyclic, bicyclic and aromatic ketones and α-keto esters, but is poorly active on aliphatic, cyclic and aromatic alcohols, and shows no activity on aldehydes. The enzyme catalyses the reduction of α-methyl and α-ethyl benzoylformate, and methyl o-chlorobenzoylformate with 100% conversion to methyl (S)-mandelate [17% enantiomeric excess (ee)], ethyl (R)-mandelate (50% ee), and methyl (R)-o-chloromandelate (72% ee), respectively, with an efficient in situ NADH-recycling system which involves glucose and a thermophilic glucose dehydrogenase. This study provides further evidence supporting the critical role of the D37 residue in discriminating NAD(H) from NAD(P)H in members of the SDR superfamily.  相似文献   

19.
The environmental temperature is one of the mainfactors affecting plant growth and development. Insummer, plants are frequently influenced by hightemperature. In recent years, global temperature wasremarkably elevated accompanied with the climaticchanges,…  相似文献   

20.
After incubation at 42°C for more than 48 h, brown damages occurred on the stems of tobacco (Nicotiana tabacum L.) ndhC-ndhK-ndhJ deletion mutant (ΔndhCKJ), followed by wilt of the leaves, while less the phenotype was found in its wild type (WT). Analysis of the kinetics of post-illumination rise in chlorophyll fluorescence indicated that the PSI cyclic electron flow and the chlororespiration mediated by NAD(P)H dehydrogenase (NDH) was significantly enhanced in WT under the high temperature. After leaf disks were treated with methyl viologen (MV), photosynthetic apparatus of ΔndhCKJ exhibited more severe photo-oxidative damage, even bleaching of chlorophyll. Analysis of P700 oxidation and reduction showed that the NDH mediated cyclic electron flow probably functioned as an electron competitor with Mehler reaction, to reduce the accumulation of reactive oxygen species (ROS). When leaf disks were heat stressed at 42°C for 6 h, the photochemical activity declined more markedly in ΔndhCKJ than in WT, accompanied with more evident decrease in the amount of soluble Rubisco activase. In addition, the slow phase of millisecond-delayed light emission (ms-DLE) of chlorophyll fluorescence indicated that NDH was involved in the building-up of transthylakoid proton gradient (ΔpH), while the consumption of ΔpH was highly inhibited in ΔndhCKJ after heat stress. Based on the results, we supposed that the cyclic electron flow mediated by NDH could be stimulated under the heat stressed conditions, to divert excess electrons via chlororespiration pathway, and sustain CO2 assimilation by providing extra ΔpH, thus reducing the photooxidative damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号