首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
“Prey Play” is an interactive role-play activity that provides fifth-grade students with opportunities to examine predator–prey interactions. This four-part, role-play activity allows students to take on the role of a predator and prey as they reflect on the behaviors animals exhibit as they collect food and interact with one another, as well as limiting factors. Through this activity, students will enhance their communication and observation skills and showcase their creativity.  相似文献   

2.
The aim of this work is to develop and analyse a mathematical model for a predator-2 preys system arising in insular environments. We are interested in the evolution of a native prey population without behavioural traits to cope with predation or competition, after the introduction of alien species. Here, we consider a long living bird population with low fertility rate. We point out the effects of the preference of the predator for either juvenile or adult stages. In addition, we study the impact of alien prey introduction in such a model. We use a reaction-diffusion system with a singular logistic right hand side. The aim of this work is to bring interesting dynamics to the fore. As a first example, oscillatory behaviour takes place in the model without alien preys and when predators have an average preference coefficient. Introduction of alien preys can lead to species extinction.  相似文献   

3.
The extinction of species is a major threat to the biodiversity. The species exhibiting a strong Allee effect are vulnerable to extinction due to predation. The refuge used by species having a strong Allee effect may affect their predation and hence extinction risk. A mathematical study of such behavioral phenomenon may aid in management of many endangered species. However, a little attention has been paid in this direction. In this paper, we have studied the impact of a constant prey refuge on the dynamics of a ratio-dependent predator–prey system with strong Allee effect in prey growth. The stability analysis of the model has been carried out, and a comprehensive bifurcation analysis is presented. It is found that if prey refuge is less than the Allee threshold, the incorporation of prey refuge increases the threshold values of the predation rate and conversion efficiency at which unconditional extinction occurs. Moreover, if the prey refuge is greater than the Allee threshold, situation of unconditional extinction may not occur. It is found that at a critical value of prey refuge, which is greater than the Allee threshold but less than the carrying capacity of prey population, system undergoes cusp bifurcation and the rich spectrum of dynamics exhibited by the system disappears if the prey refuge is increased further.  相似文献   

4.
Biswas  S.  Pal  D.  Mahapatra  G. S.  Samanta  G. P. 《Biophysics》2020,65(5):826-835
Biophysics - This paper mainly deals with the prey?predator dynamics where both the prey and predator exhibit herd behavior. Positivity, boundedness, some extinction criteria, stability of...  相似文献   

5.
Throughout many arid lands of Africa, Australia and the United States, wildlife agencies provide water year-round for increasing game populations and enhancing biodiversity, despite concerns that water provisioning may favor species more dependent on water, increase predation, and reduce biodiversity. In part, understanding the effects of water provisioning requires identifying why and when animals visit water. Employing this information, by matching water provisioning with use by target species, could assist wildlife management objectives while mitigating unintended consequences of year-round watering regimes. Therefore, we examined if weather variables (maximum temperature, relative humidity [RH], vapor pressure deficit [VPD], long and short-term precipitation) and predator-prey relationships (i.e., prey presence) predicted water visitation by 9 mammals. We modeled visitation as recorded by trail cameras at Sevilleta National Wildlife Refuge, New Mexico, USA (June 2009 to September 2014) using generalized linear modeling. For 3 native ungulates, elk (Cervus Canadensis), mule deer (Odocoileus hemionus), and pronghorn (Antilocapra americana), less long-term precipitation and higher maximum temperatures increased visitation, including RH for mule deer. Less long-term precipitation and higher VPD increased oryx (Oryx gazella) and desert cottontail rabbits (Sylvilagus audubonii) visitation. Long-term precipitation, with RH or VPD, predicted visitation for black-tailed jackrabbits (Lepus californicus). Standardized model coefficients demonstrated that the amount of long-term precipitation influenced herbivore visitation most. Weather (especially maximum temperature) and prey (cottontails and jackrabbits) predicted bobcat (Lynx rufus) visitation. Mule deer visitation had the largest influence on coyote (Canis latrans) visitation. Puma (Puma concolor) visitation was solely predicted by prey visitation (elk, mule deer, oryx). Most ungulate visitation peaked during May and June. Coyote, elk and puma visitation was relatively consistent throughout the year. Within the diel-period, activity patterns for predators corresponded with prey. Year-round water management may favor species with consistent use throughout the year, and facilitate predation. Providing water only during periods of high use by target species may moderate unwanted biological costs.  相似文献   

6.
Research on coursing predators has revealed that actions throughout the predatory behavioral sequence (using encounter rate, hunting rate, and kill rate as proxy measures of decisions) drive observed prey preferences. We tested whether similar actions drive the observed prey preferences of a stalking predator, the African lion Panthera leo. We conducted two 96 hour, continuous follows of lions in Addo Elephant National Park seasonally from December 2003 until November 2005 (16 follows), and compared prey encounter rate with prey abundance, hunt rate with prey encounter rate, and kill rate with prey hunt rate for the major prey species in Addo using Jacobs' electivity index. We found that lions encountered preferred prey species far more frequently than expected based on their abundance, and they hunted these species more frequently than expected based on this higher encounter rate. Lions responded variably to non-preferred and avoided prey species throughout the predatory sequence, although they hunted avoided prey far less frequently than expected based on the number of encounters of them. We conclude that actions of lions throughout the predatory behavioural sequence, but particularly early on, drive the prey preferences that have been documented for this species. Once a hunt is initiated, evolutionary adaptations to the predator-prey interactions drive hunting success.  相似文献   

7.
Budyansky  A. V.  Tsybulin  V. G. 《Biophysics》2019,64(2):256-260
Biophysics - A model of predator–prey dynamics in a spatially heterogeneous range is considered using a system of two nonlinear equations of the diffusion–advection reaction. The...  相似文献   

8.
We describe a prey–predator system incorporating constant prey refuge through provision of alternative food to predators. The proposed model deals with a problem of non-selective harvesting of a prey–predator system in which both the prey and the predator species obey logistic law of growth. The long-run sustainability of an exploited system is discussed through provision of alternative food to predators. We have analyzed the variability of the system in presence of constant prey refuge and examined the stabilizing effect on predator–prey system. The steady states of the system are derived and dynamical behavior of the system is extensively analyzed around steady states. The optimal harvesting policy is formulated and solved with the help of Pontryagin’s maximal principle. Our objective is to maximize the monetary social benefit through protecting the predator species from extinction, keeping the ecological balance. Results finally illustrated with the help of numerical examples.  相似文献   

9.
The environmental carrying capacity is usually assumed to be fixed quantity in the classical predator–prey population growth models. However, this assumption is not realistic as the environment generally varies with time. In a bid for greater realism, functional forms of carrying capacities have been widely applied to describe varying environments. Modelling carrying capacity as a state variable serves as another approach to capture the dynamical behavior between population and its environment. The proposed modified predator–prey model is based on the ratio-dependent models that have been utilized in the study of food chains. Using a simple non-linear system, the proposed model can be linked to an intra-guild predation model in which predator and prey share the same resource. Distinct from other models, we formulate the carrying capacity proportional to a biotic resource and both predator and prey species can directly alter the amount of resource available by interacting with it. Bifurcation and numerical analyses are presented to illustrate the system’s dynamical behavior. Taking the enrichment parameter of the resource as the bifurcation parameter, a Hopf bifurcation is found for some parameter ranges, which generate solutions that posses limit cycle behavior.  相似文献   

10.
By focusing on the caloric composition of hunted prey species, optimal foraging research has shown that hunters usually make economically rational prey choice decisions. However, research by meat scientists suggests that the gustatory appeal of wildlife meats may vary dramatically. In this study, behavioral research indicates that Mayangna and Miskito hunters in Nicaragua inconsistently pursue multiple prey types in the optimal diet set. We use cognitive methods, including unconstrained pile sorts and cultural consensus analysis, to investigate the hypothesis that these partial preferences are influenced by considerations of meat flavor. Native informants exhibit high agreement on the relative appeal of different meats. Given the absence of other noteworthy differences between spider monkeys (Ateles geoffroyi) and howler monkeys (Alouatta palliata), the unappealing flavor of howler monkeys seems to be a factor in the partial preference for this species.  相似文献   

11.
We report the discovery of a mutualistic system encompassing prey–predator interactions. A domatium is a small space in a vein axil on the underside of leaves of woody angiosperms. Cinnamomum camphora Linn. has domatia that harbor a microphytophagous eriophyid mite (sp. 1). We previously reported that a predatory mite, Euseius sojaensis (Ehara), depends on this eriophyid mite as food. We revealed that E. sojaensis also preyed upon another eriophyid mite (sp. 2) that induces galls on leaves, and that the mean area of C. camphora leaves with galls was usually less than half that of leaves without galls. We experimentally tested the effect of E. sojaensis on galls, and confirmed that the presence of E. sojaensis reduced gall induction. Therefore, C. camphora, eriophyid mite sp. 1, and E. sojaensis comprise a mutualistic system, in spite of the prey–predator interactions among them. The conventional concept of mutualism does not apply to such prey–predator interactions, so we defined them as systematic mutualism. Here, the system consists of three trophic levels, and individuals that constitute this system benefit from the other species that constitute this system.  相似文献   

12.
This paper deals with designing a harvesting control strategy for a predator–prey dynamical system, with parametric uncertainties and exogenous disturbances. A feedback control law for the harvesting rate of the predator is formulated such that the population dynamics is asymptotically stabilized at a positive operating point, while maintaining a positive, steady state harvesting rate. The hierarchical block strict feedback structure of the dynamics is exploited in designing a backstepping control law, based on Lyapunov theory. In order to account for unknown parameters, an adaptive control strategy has been proposed in which the control law depends on an adaptive variable which tracks the unknown parameter. Further, a switching component has been incorporated to robustify the control performance against bounded disturbances. Proofs have been provided to show that the proposed adaptive control strategy ensures asymptotic stability of the dynamics at a desired operating point, as well as exact parameter learning in the disturbance-free case and learning with bounded error in the disturbance prone case. The dynamics, with uncertainty in the death rate of the predator, subjected to a bounded disturbance has been simulated with the proposed control strategy.  相似文献   

13.
We present a Bayesian method for functional response parameter estimation starting from time series of field data on predator–prey dynamics. Population dynamics is described by a system of stochastic differential equations in which behavioral stochasticities are represented by noise terms affecting each population as well as their interaction. We focus on the estimation of a behavioral parameter appearing in the functional response of predator to prey abundance when a small number of observations is available. To deal with small sample sizes, latent data are introduced between each pair of field observations and are considered as missing data. The method is applied to both simulated and observational data. The results obtained using different numbers of latent data are compared with those achieved following a frequentist approach. As a case study, we consider an acarine predator–prey system relevant to biological control problems.  相似文献   

14.
Carnivorous animals are assumed to consume prey to optimise energy intake. Recently, however, studies using Nutritional Geometry (NG) have demonstrated that specific blends of macronutrients (e.g. protein, fat and in some cases carbohydrates), rather than energy per se, drive the food selection and intake of some vertebrate and invertebrate predators in the laboratory. A vital next step is to examine the role of nutrients in the foraging decisions of predators in the wild, but extending NG studies of carnivores from the laboratory to the field presents several challenges. Biologging technology offers a solution for collecting relevant data which when combined with NG will yield new insights into wild predator nutritional ecology.  相似文献   

15.
Positive or negative prey abundance covariances play an important role in determining prey preference of predators. The goal here was to understand how variations in abundance of two blowfly prey species, a native and a non-native species, influence the switching behavior and functional response of Chrysomya albiceps, an intraguild predatory blowfly, under laboratory conditions. The results suggest C. albiceps prefers to consume a native prey species rather than a non-native prey species. However, when prey densities covariate negatively, both species were consumed at the same rate, changing predator’s functional response from type II to type III. The conditions that trigger the switching behavior in blowfly communities are discussed in detail in this study.  相似文献   

16.
17.
An individual's choice of habitat should optimize amongst conflicting demands in a way that maximizes its fitness. Habitat selection by one species will often be influenced by presence and abundance of competitors that interact directly and indirectly with each other (such as through shared predators). The optimal habitat choice will thus depend on competition for resources by other species that can also modify predation risk. It may be possible to disentangle these two effects with careful analysis of density‐dependent habitat selection by a focal prey species. We tested this conjecture by calculating habitat isodars (graphs of density assuming ideal habitat selection) of chital deer living in two adjoining dry‐forest habitats in Gir National Park and Sanctuary, western India. The habitats differed only in presence (Sanctuary) and absence (National Park) of domestic prey (cattle and buffalo). Both species are preyed on by Asiatic lions. The habitat isodar revealed at low densities, that chital live in small groups and prefer habitat co‐occupied by livestock that reduce food resources, but also reduce predation risk. At higher densities, chital form larger groups and switch their preference toward risky habitat without livestock. The switch in chital habitat use is consistent with theories predicting that prey species should trade off safety in favor of food as population density increases.  相似文献   

18.
Zelenchuk  P. A.  Tsybulin  V. G. 《Biophysics》2021,66(3):464-471
Biophysics - The concept of an ideal free distribution (IFD) is analyzed for the predator–prey system in an inhomogeneous ring-shaped habitat. Diffusion–reaction–advection...  相似文献   

19.
Optimal foraging theory suggests that avian parents should prefer the most energetically efficient (largest) prey items when delivering food to offspring at a central place. However, during periods of high demand, selectivity of prey may decline, leading to the delivery of smaller and/or less nutritious items. We compared foraging trade‐offs between great tits (Parus major) which had a wider feeding niche than blue tits (Cyanistes caeruleus). We also compared the foraging efficiency of cross‐fostered young, which had learned the spatial foraging niche and prey size of the foreign species, to that of control conspecifics. Mean delivery rates did not differ between control and cross‐fostered parents of either species but as delivery rates increased, prey size declined for both species and both treatment groups. However, across the range of increasing delivery rates, parents were able to increase the total biomass of prey delivered. Cross‐fostering did not alter the proportion of different prey taxa in the diet, but cross‐fostered birds shifted the size of the prey taken to that of their foster species. Consistent with their broader feeding niche, great tits, but not blue tits, incorporated more unpalatable items (flies) as delivery rates increased. Although great tits foraged less efficiently in the blue tit niche, paradoxically, blue tits seem to deliver more prey biomass when foraging in the great tit niche.  相似文献   

20.
This study assessed the dynamics of predation by Bdellovibrio bacteriovorus HD 100. Predation tests with two different bioluminescent strains of Escherichia coli, one expressing a heat-labile bacterial luciferase and the other a heat-stable form, showed near identical losses from both, indicating that protein expression and stability are not responsible for the “shutting-off” of the prey bioluminescence (BL). Furthermore, it was found that the loss in the prey BL was not proportional with the predator-to-prey ratio (PPR), with significantly greater losses seen as this value was increased. This suggests that other factors also play a role in lowering the prey BL. The loss in BL, however, was very consistent within nine independent experiments to the point that we were able to reliably estimate the predator numbers within only 1 h when present at a PPR of 6 or higher, Using a fluorescent prey, we found that premature lysis of the prey occurs at a significant level and was more prominent as the PPR ratio increased. Based upon the supernatant fluorescent signal, even a relatively low PPR of 10–20 led to approximately 5 % of the prey population being prematurely lysed within 1 h, while a PPR of 90 led to nearly 15 % lysis. Consequently, we developed a modified Lotka–Volterra predator–prey model that accounted for this lysis and is able to reliably estimate the prey and bdelloplast populations for a wide range of PPRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号